MATHEMATICS

1. In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then the common ratio of this progression equals

(1) $\frac{1}{2}(1-\sqrt{5})$	(2) $\frac{1}{2}\sqrt{5}$
(3) √5	(4) $\frac{1}{2}(\sqrt{5}-1)$

Sol: Given $ar^{n-1} = ar^n + ar^{n+1}$ $\Rightarrow 1 = r + r^2$ $\therefore r = \frac{\sqrt{5} - 1}{2}$.

2. If
$$\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$$
 then a value of x is
(1) 1 (2) 3
(3) 4 (4) 5

Ans. (2)

- Sol: $\sin^{-1}\frac{x}{5} + \sin^{-1}\frac{4}{5} = \frac{\pi}{2}$ $\Rightarrow \sin^{-1}\frac{x}{5} = \cos^{-1}\frac{4}{5} \Rightarrow \sin^{-1}\frac{x}{5} = \sin^{-1}\frac{3}{5}$ $\therefore x = 3.$
- 3.

In the binomial expansion of $(a - b)^n$, $n \ge 5$, the sum of 5th and 6th terms is zero, then $\frac{a}{b}$ equals

(1)	$\frac{5}{n-4}$	(2) $\frac{6}{n-5}$
(3)	$\frac{n-5}{6}$	(4) $\frac{n-4}{5}$

Ans. 🥖

(4)

Sol: ${}^{n}C_{4} a^{n-4} (-b)^{4} + {}^{n}C_{5} a^{n-5} (-b)^{5} = 0$ $\Rightarrow \left(\frac{a}{b}\right) = \frac{n-5+1}{5}.$

4. The set S = {1, 2, 3, ..., 12} is to be partitioned into three sets A, B, C of equal size. Thus, $A \cup B \cup C = S, A \cap B = B \cap C = A \cap C = \phi$. The number of ways to partition S is

$(1)\frac{12!}{3!(4!)^3}$	(2) $\frac{12!}{3!(3!)^4}$
(3) $\frac{12!}{(4!)^3}$	(4) $\frac{12!}{(3!)^4}$

Ans. (3)

Sol: Number of ways is ${}^{12}C_4 \times {}^8C_4 \times {}^4C_4$ = $\frac{12!}{(4!)^3}$.

5. The largest interval lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the function

 $\begin{bmatrix} f(x) = 4^{-x^{2}} + \cos^{-1}\left(\frac{x}{2} - 1\right) + \log(\cos x) \end{bmatrix} \text{ is defined, is}$ (1) [0, π]
(2) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (3) $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$ (4) $\left[0, \frac{\pi}{2}\right]$

Ans. (4)

Sol: f(x) is defined if $-1 \le \frac{x}{2} - 1 \le 1$ and $\cos x > 0$ or $0 \le x \le 4$ and $-\frac{\pi}{2} < x < \frac{\pi}{2}$ $\therefore x \in \left[0, \frac{\pi}{2}\right].$

6. A body weighing 13 kg is suspended by two strings 5 m and 12 m long, their other ends being fastened to the extremities of a rod 13 m long. If the rod be so held that the body hangs immediately below the middle point. The tensions in the strings are

(1) 12 kg and 13 kg(3) 5 kg and 12 kg

(2) 5 kg and 5 kg (4) 5 kg and 13 kg


```
Sol: T_2 \cos\left(\frac{\pi}{2} - \theta\right) = T_1 \cos\theta \Rightarrow T_1 \cos\theta = T_2 \sin\theta

T_1 \sin\theta + T_2 \cos\theta = 13.

\therefore \text{ OC} = \text{CA} = \text{CB}

\Rightarrow \angle \text{AOC} = \angle \text{OAC} \text{ and } \angle \text{COB} = \angle \text{OBC}

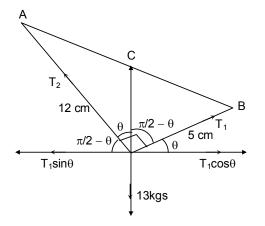
\therefore \sin\theta = \sin\text{A} = \frac{5}{13} \text{ and } \cos\theta = \frac{12}{13}

\Rightarrow \frac{T_1}{T_2} = \frac{5}{12} \Rightarrow T_1 = \frac{5}{12}T_2

T_2\left(\frac{5}{12} \cdot \frac{5}{13} + \frac{12}{13}\right) = 13

T_2\left(\frac{169}{12 \cdot 13}\right) = 13

T_2 = 12 \text{ kgs.} \Rightarrow T_1 = 5 \text{ kgs.}
```



7. A pair of fair dice is thrown independently three times. The probability of getting a score of exactly 9 twice is (1) 1/729 (2) 8/9 (4) 8/243 (3) 8/729 7. (4) Probability of getting score 9 in a single throw = $\frac{4}{36} = \frac{1}{9}$ Sol: Probability of getting score 9 exactly twice = ${}^{3}C_{2} \times \left(\frac{1}{9}\right)^{2} \times \frac{8}{9} = \frac{8}{243}$. 8. Consider a family of circles which are passing through the point (-1, 1) and are tangent to xaxis. If (h, k) are the co-ordinates of the centre of the circles, then the set of values of k is given by the interval (1) $0 < k < \frac{1}{2}$ (2) k ≥ ½ (3) $-\frac{1}{2} \le k \le \frac{1}{2}$ (4) $k \le \frac{1}{2}$ Ans. (2)Equation of circle $(x - h)^2 + (y - k)^2 = k^2$ Sol: It is passing through (-1, 1) then $(-1 - h)^2 + (1 - k)^2 = k^2$ $h^2 + 2h - 2k + 2 = 0$ $D \ge 0$ $2k - 1 \ge 0 \Longrightarrow k \ge 1/2.$ 9. Let L be the line of intersection of the planes 2x + 3y + z = 1 and x + 3y + 2z = 2. If L makes an angles α with the positive x-axis, then $\cos \alpha$ equals (1) $\frac{1}{\sqrt{3}}$ $(2)\frac{1}{2}$ (4) $\frac{1}{\sqrt{2}}$ (3)1Ans. (1)If direction cosines of L be I, m, n, then Sol: 2l + 3m + n = 01 + 3m + 2n = 0Solving, we get, $\frac{1}{3} = \frac{m}{3} = \frac{n}{3}$ $\therefore 1: m: n = \frac{1}{\sqrt{3}}: -\frac{1}{\sqrt{3}}: \frac{1}{\sqrt{3}} \Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}.$ 10. The differential equation of all circles passing through the origin and having their centres on the x-axis is (2) $x^2 = y^2 + 3xy \frac{dy}{dx}$ (1) $x^2 = y^2 + xy \frac{dy}{dx}$ (4) $y^2 = x^2 - 2xy \frac{dy}{dx}$ (3) $y^2 = x^2 + 2xy \frac{dy}{dx}$

Ans. (3)

Ans. Sol:

Sol: General equation of all such circles is $x^2 + y^2 + 2gx = 0$. Differentiating, we get $2x + 2y \frac{dy}{dx} + 2g = 0$ \therefore Desired equation is

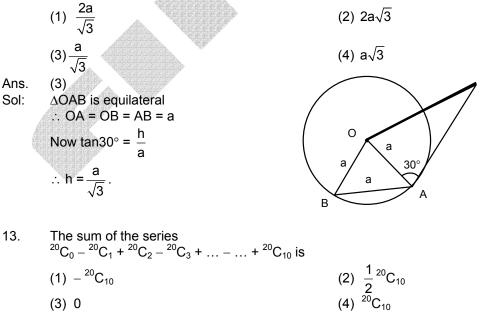
$$x^{2} + y^{2} + \left(-2x - 2y\frac{dy}{dx}\right)x = 0$$
$$\Rightarrow y^{2} = x^{2} + 2xy\frac{dy}{dx}.$$

11. If p and q are positive real numbers such that $p^2 + q^2 = 1$, then the maximum value of (p + q) is

(1) 2
(3)
$$\frac{1}{\sqrt{2}}$$

(4)
Using A.M. \geq G.M.
 $\frac{p^2 + q^2}{2} \geq pq$
 $\Rightarrow pq \leq \frac{1}{2}$
 $(p + q)^2 = p^2 + q^2 + 2pq$
 $\Rightarrow p + q \leq \sqrt{2}$.

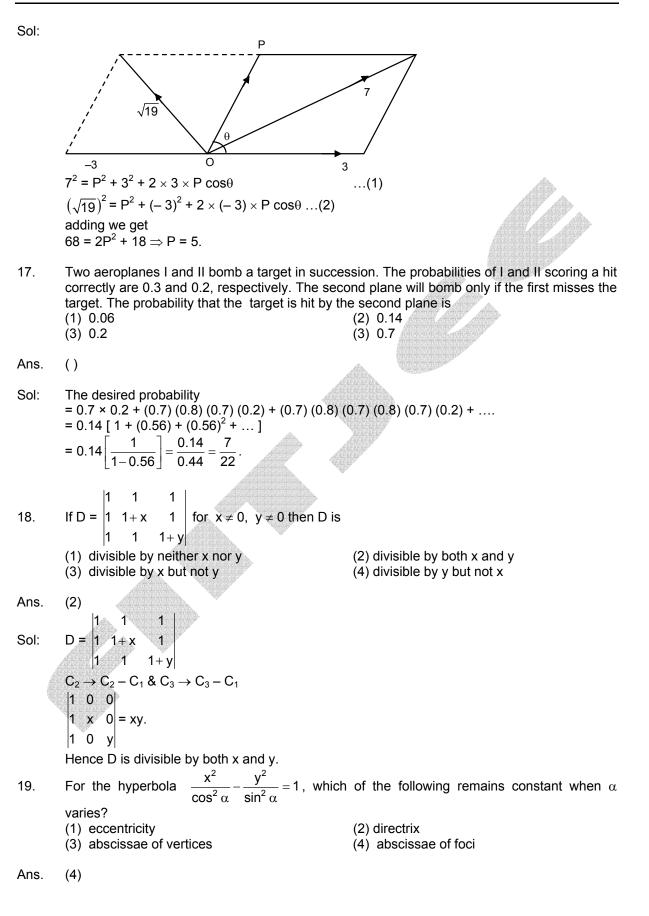
12. A tower stands at the centre of a circular park. A and B are two points on the boundary of the park such that AB (= a) subtends an angle of 60° at the foot of the tower, and the angle of elevation of the top of the tower from A or B is 30°. The height of the tower is



(2) Ans. $(1 + x)^{20} = {}^{20}C_0 + {}^{20}C_1x + \dots + {}^{20}C_{10}x^{10} + \dots + {}^{20}C_{20}x^{20}$ Sol: put x = -1, 0 = ${}^{20}C_0 - {}^{20}C_1 + \dots - {}^{20}C_9 + {}^{20}C_{10} - {}^{20}C_{11} + \dots + {}^{20}C_{20}$ 0 = 2 (${}^{20}C_0 - {}^{20}C_1 + \dots - {}^{20}C_9$) + ${}^{20}C_{10}$ $\Rightarrow {}^{20}C_0 - {}^{20}C_1 + \ldots + {}^{20}C_{10} = \frac{1}{2} {}^{20}C_{10}.$ The normal to a curve at P(x, y) meets the x-axis at G. If the distance of G from the origin is 14. twice the abscissa of P, then the curve is a (1) ellipse (2) parabola (3) circle (4) hyperbola (1), (4)Ans. Equation of normal is $Y - y = -\frac{dx}{dy}(X - x)$ Sol: \Rightarrow G = $\left(x + y \frac{dy}{dx}, 0\right)$ $\left| \mathbf{x} + \mathbf{y} \frac{d\mathbf{y}}{d\mathbf{x}} \right| = \left| 2\mathbf{x} \right|$ $\Rightarrow y \frac{dy}{dx} = x \text{ or } y \frac{dy}{dx} = -3x$ y dy = x dx or y dy = -3x dx $\frac{y^2}{2} = \frac{x^2}{2} + c \text{ or } \frac{y^2}{2} = -\frac{3x^2}{2} + c$ $x^2 - y^2 = -2c \text{ or } 3x^2 + y^2 = 2c.$ If $|z + 4| \le 3$, then the maximum value of |z + 1| is 15. (1)4(B) 10 (3) 6(4) 0 Ans. (3)Sol: From the Argand diagram maximum value of |z + 1| is 6. Alternative: |z + 1| = |z + 4 - 3|(-4, 0) $(-\overline{1, 0})$ (-7, 0) $\leq |z + 4| + |-3| = 6.$ The resultant of two forces P N and 3 N is a force of 7 N. If the direction of 3 N force were 16. reversed, the resultant would be $\sqrt{19}$ N. The value of P is

(1) 5 N (2) 6 N (3) 3N (4) 4N

Ans. (1)



 $a^2 = \cos^2 \alpha$ and $b^2 = \sin^2 \alpha$ Sol: coordinates of focii are (± ae, 0) $\therefore b^2 = a^2(e^2 - 1) \Rightarrow e = \sec \alpha.$ Hence abscissae of foci remain constant when α varies. If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of each of x-axis and y-axis, then 20. the angle that the line makes with the positive direction of the z-axis is $(1)\frac{\pi}{6}$ (2) $\frac{\pi}{3}$ (4) $\frac{\pi}{2}$ $(3)\frac{\pi}{4}$ Ans. (4) $I = \cos \frac{\pi}{4}$, $m = \cos \frac{\pi}{4}$ we know $I^2 + m^2 + n^2 = 1$ Sol: $\frac{1}{2} + \frac{1}{2} + n^2 = 1$ \Rightarrow n = 0 Hence angle with positive direction of z-axis is $\frac{\pi}{2}$ 21. A value of C for which the conclusion of Mean Value Theorem holds for the function f(x) =log_ex on the interval [1, 3] is (2) $\frac{1}{2}\log_e 3$ (1) 2 log₃e $(4) \log_{e} 3$ (3) log₃e Ans. (1)Using mean value theorem Sol: $f'(c) = \frac{f(3) - f(1)}{3 - 1}$ $\Rightarrow \frac{1}{c} = \frac{\log 3 - \log 1}{2}$ \Rightarrow c = $\frac{2}{\log_2 3}$ = $2\log_3 e$. 22. The function $f(x) = \tan^{-1}(\sin x + \cos x)$ is an increasing function in (1) $\left(\frac{\pi}{4},\frac{\pi}{2}\right)$ (2) $\left(-\frac{\pi}{2},\frac{\pi}{4}\right)$ (4) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ $(3)\left(0,\frac{\pi}{2}\right)$ Ans. (2) $f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} (\cos x - \sin x)$ Sol:

	$=\frac{\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)}{1+(\sin x+\cos x)^2}$	
	$f(x)$ is increasing if $-\frac{\pi}{2} < x + \frac{\pi}{4} < \frac{\pi}{2}$	
	$-\frac{3\pi}{4} < x < \frac{\pi}{4}$	
	hence f(x) is increasing when $x \in \left(-\frac{\pi}{2}, \frac{\pi}{4}\right)$.	
23.	Let $A = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$. If $ A^2 = 25$, then $ \alpha $ eq	uals
	(1) 5 ² (3) 1/5	(2) 1 (4) 5
Ans.	(3)	
Sol:	$A^{2} = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$ $\begin{bmatrix} 25 & 25\alpha + 5\alpha^{2} & 5\alpha + 25\alpha^{2} + 5\alpha \end{bmatrix}$	
	$A^{2} = \begin{bmatrix} 25 & 25\alpha + 5\alpha^{2} & 5\alpha + 25\alpha^{2} + 5\alpha \\ 0 & \alpha^{2} & 5\alpha^{2} + 25\alpha \\ 0 & 0 & 25 \end{bmatrix}$	
	$625\alpha^2 = 25$	
	$\Rightarrow \alpha = \frac{1}{5}.$	
24.	The sum of the series $\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots$ upto infi	nity is
	(1) e^{-2} (3) $e^{-1/2}$	(2) e^{-1} (4) $e^{1/2}$
Ans.	(2)	
Sol:	$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots$	
	put x = 1 $\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} \dots = e^{-1}$.	
25.	If \hat{u} and \hat{v} are unit vectors and θ is the acut	e angle between them, then $2\hat{u} \times 3\hat{v}$ is a unit
	vector for (1) exactly two values of θ (3) no value of θ	(2) more than two values of θ (4) exactly one value of θ
Ans.	(4)	

Sol: $|2\hat{u} \times 3\hat{v}| = 1$

 $6|\hat{u}||\hat{v}||\sin\theta| = 1$ $\sin\theta = \frac{1}{6}$ Hence there is exactly one value of θ for which $2\hat{u} \times 3\hat{v}$ is a unit vector.

26. A particle just clears a wall of height b at distance a and strikes the ground at a distance c from the point of projection. The angle of projection is

(1)
$$\tan^{-1} \frac{bc}{ac}$$

(3) $\tan^{-1} \frac{bc}{a(c-a)}$
(4) $\tan^{-1} \frac{bc}{a}$
(5) $a = (u \cos \alpha)t$ and $b = (u \sin \alpha)t - \frac{1}{2}gt^2$
(6) $b = a \tan \alpha - \frac{1}{2}g \frac{a^2}{u^2 \cos^2 \alpha}$
(7) $a = (u \cos \alpha)t$ and $b = (u \sin \alpha)t - \frac{1}{2}gt^2$
(8) $b = a \tan \alpha - \frac{1}{2}g \frac{a^2}{u^2 \cos^2 \alpha}$
(9) $b = a \tan \alpha - \frac{a^2g}{2}(\frac{\sin 2\alpha}{cg})\sec^2 \alpha$
(9) $b = a \tan \alpha - \frac{a^2g}{2}(\frac{\sin 2\alpha}{cg})\sec^2 \alpha$
(9) $b = a \tan \alpha - \frac{a^2g}{2}(2\tan \alpha)$
(1) $\tan^2 = \frac{bc}{a(c-a)}$.

27. The average marks of boys in a class is 52 and that of girls is 42. The average marks of boys and girls combined is 50. The percentage of boys in the class is

(1) 40	A885	A CONTRACTOR OF THE OWNER OWNE	(2) 20
(3) 80			(4) 60

Ans. (3)

- Sol: 52x + 42y = 50 (x + y)2x = 8y $\Rightarrow \frac{x}{y} = \frac{4}{1} \text{ and } \frac{x}{x + y} = \frac{4}{5}$ $\therefore \% \text{ of boys} = 80.$
- 28. The equation of a tangent to the parabola $y^2 = 8x$ is y = x + 2. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is (1) (-1, 1) (2) (0, 2) (3) (2, 4) (4) (-2, 0)
- Ans. (4)
- Sol: Point must be on the directrix of the parabola. Hence the point is (-2, 0).

29.	If (2, 3, 5) is one end of a diameter of the sphere $x^2 + y^2 + z^2 - 6x - 12y - 2z + 20 = 0$, then the coordinates of the other end of the diameter are (1) (4, 9, -3) (2) (4, -3, 3) (3) (4, 3, 5) (4) (4, 3, -3)
Ans.	(1)
Sol:	Coordinates of centre (3, 6, 1) Let the coordinates of the other end of diameter are (α, β, γ) then $\frac{\alpha+2}{2} = 3$, $\frac{\beta+3}{2} = 6$, $\frac{\gamma+5}{2} = 1$ Hence $\alpha = 4$, $\beta = 9$ and $\gamma = -3$.
30.	Let $\overline{a} = \hat{i} + \hat{j} + \hat{k}$, $\overline{b} = \hat{i} - \hat{j} + 2\hat{k}$ and $\overline{c} = x\hat{i} + (x-2)\hat{j} - \hat{k}$. If the vector \overline{c} lies in the plane of \overline{a} and \overline{b} , then x equals (1) 0 (2) 1 (3) -4 (4) -2
Ans.	(4)
Sol:	$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} - \hat{j} + 2\hat{k} \text{ and } \vec{c} = x\hat{i} + (x-2)\hat{j} - \hat{k}$ $\begin{vmatrix} x & x-2 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{vmatrix} = 0$ $3x + 2 - x + 2 = 0$ $2x = -4$ $x = -2.$
31.	Let A(h, k), B(1, 1) and C(2, 1) be the vertices of a right angled triangle with AC as its hypotenuse. If the area of the triangle is 1, then the set of values which 'k' can take is given by (1) $\{1, 3\}$ (2) $\{0, 2\}$ (3) $\{-1, 3\}$ (4) $\{-3, -2\}$
Ans.	(3) \uparrow A(1, k)
Sol:	$\frac{1}{2} \times 1(k-1) = \pm 1$ k - 1 = \pm 2 k = 3 k = -1 B(1, 1) $C(2, 1)$
32.	Let P = (-1, 0), Q = (0, 0) and R = $(3, 3\sqrt{3})$ be three points. The equation of the bisector of the angle PQR

(1) $\sqrt{3} x + y = 0$ (2) $x + \frac{\sqrt{3}}{2} y = 0$ (3) $\frac{\sqrt{3}}{2} x + y = 0$ (4) $x + \sqrt{3} y = 0$

Ans.	(1)
Sol:	Slope of the line QM is $\tan \frac{2\pi}{3} = -\sqrt{3}$ Hence equation is line QM is $y = -\sqrt{3} x$. $\frac{P}{2\pi/3} \frac{\pi/3}{(-1, 0)} Q(0, 0)$
33.	If one of the lines of $my^2 + (1 - m^2)xy - mx^2 = 0$ is a bisector of the angle between the lines xy = 0, then m is (1) -1/2 (2) -2 (3) 1 (4) 2
Ans.	(3)
Sol:	Equation of bisectors of lines $xy = 0$ are $y = \pm x$ put $y = \pm x$ in $my^2 + (1 - m^2)xy - mx^2 = 0$, we get $(1 - m^2) x^2 = 0$ $\Rightarrow m = \pm 1$.
34.	Let $F(x) = f(x) + f\left(\frac{1}{x}\right)$, where $f(x) = \int_{1}^{x} \frac{\log t}{1+t} dt$. Then $F(e)$ equals
	$\begin{array}{c} (1) \ \frac{1}{2} \\ (3) \ 1 \end{array} \tag{2)} \ 0 \\ (4) \ 2 \end{array}$
Ans.	(1)
Sol:	$f(x) = \int_{1}^{x} \frac{\log t}{1+t} dt$
	$F(e) = f(e) + f\left(\frac{1}{e}\right)$
	$F(e) = \int_{1}^{e} \frac{\log t}{1+t} dt + \int_{1}^{1/e} \frac{\log t}{1+t} dt$
6	$=\int_{1}^{e}\frac{\log t}{1+t}+\int_{1}^{e}\frac{\log t}{t(1+t)}dt$
	$=\int_{1}^{e}\frac{\log t}{t}dt=\frac{1}{2}.$

35. Let f: R → R be a function defined by f(x) = Min {x + 1, |x| + 1}. Then which of the following is true?
(1) f(x) ≥ 1 for all x ∈ R
(2) f(x) is not differentiable at x = 1
(3) f(x) is differentiable everywhere
(4) f(x) is not differentiable at x = 0

