	The state of the s					
Register				1 N DE		
Number			0.00			

Part III — CHEMISTRY

(English Version)

Time Allowed: 3 Hours]

[Maximum Marks: 150

Note: i) Answer all the questions from Part - I.

- ii) Answer any fifteen questions from Part- II.
- iii) Answer any seven questions from Part III covering all Sections and choosing at least two questions from each Section.
- iv) Question No. 70 is compulsory. Answer any three from the remaining questions in Part IV.
- v) Draw diagrams and write equations wherever necessary.

PART - I

Note: Answer all the questions.

 $30 \times 1 = 30$

Choose and write the correct answer:

- 1. Compound which undergoes iodoform test is
 - a) 1-pentanol

b) 2-pentanone

c) 3-pentanone

- d) pentanal.
- 2. The preparation of diethyl ether by Williamson's synthesis is a / an
 - a) nucleophilic addition reaction
 - b) electrophilic addition reaction
 - c) electrophilic substitution reaction
 - d) nucleophilic substitution reaction.

[Turn over

3.	The state of the s				
	aci	d is called			
	a)	electronation	b)	protonation	
	c)	deprotonation	d)	dehydration.	
4.	Wh	nich of the following compounds is	oxidi	sed to give ethyl methyl ketone?	
	a)	2-propanol	b)	2-pentanone	
	c)	1-butanol	d)	2-butanol.	
5. Ethylene dicyanide on hydrolysis using acid gives				d gives	
	a)	Oxalic acid	b)	Succinic acid	
	c)	Adipic acid	d)	Propionic acid.	
6.	. The size of the anion in Frenkel defect crystal is				
	a)	larger than the cation	b)	smaller than the cation	
	c)	equal in size with cation	d)	both are larger in size.	
7.	. When a liquid boils, there is				
	a)	an increase in entropy		W bita actorigato waxii (v	
	b)	a decrease in entropy			
	c) an increase in heat of vaporization				
	d)	an increase in free energy.			
8.	Change in Gibbs free energy is given by				
	a)	$\Delta G = \Delta H + T \Delta S$	b)	$\Delta G = \Delta H - T \Delta S$	
	c)	$\Delta G = \Delta H \times T \Delta S$	d)	$\Delta G = \Delta H / T \Delta S$.	
9.	In the	he reversible reaction 2 HI (g) $=$	→ H	$_{2}(g)+I_{2}(g)K_{p}$ is	
	a)	greater than K _c	b)	less than K _c	
	c)	equal to K _c	d)	0.	
10.	In th	ne Haber process the yield of amn	nonia	is greater	
V	a)	at high pressure	b)	at low pressure	
	c)	at high temperature	d)	in absence of catalyst.	
	*			7.70	

11.	1. Dual character of an electron was explained by				
	a)	Bohr	b)	Heisenberg	
	c)	de Broglie	d)	Pauli.	
		PHOISUR DATE	al is		
12.	Nun	nber of spherical nodes in 2s orbit	Lett 10		
	a)	1	b)	2 even for a sob abliquett A .08	
	c)	3	d)	4. quota oblass as (a	
13.	On	moving down the group, the radiu	s of ar	n ion	
	a)	decreases	b)	increases	
	c)	no change	d)	all of these.	
14.	4. Which of the following shows negative oxidation state only?				
	a)	Br	b)	F goldling to	
	c)	Cl	d)	I. milifica parti (o	
15.	5. The outer electronic configuration of chromium is				
	a)	3d 6 4s 0	b)	3d ⁵ 4s ¹	
	c)	3d 4 4s 2	d)		
16.	6. In nitroalkanes -NO 2 group is converted to -NH 2 group by the reaction with				
	a)	Sn/HCl	b)	Zn dust	
	c)	Zn / NH ₄ Cl	d)	Zn / NaOH.	
17.	17. The tertiary nitro compound is				
	a)	2-nitropropane	b)	1-nitropropane	
•	c)	1-nitro-2, 2-dimethyl propane	d)	2-nitro-2-methyl propane.	
18.	The	e intermediate formed in the nitra	tion of	benzene is	
	a)	Arrenium ion	b)	Carbanion	
	c)	Oxonium ion	d)	Nitrite ion.	

19.	Inve	ersion of sucrose refers to		er i Dijt ek mader of an electron w
	a)	oxidation of sucrose		
	b)	reduction of sucrose		
	c)	hydrolysis of sucrose to glucose	and fi	ructose
	d)	polymerisation of sucrose.		12. Number of spherical codes in 2a
20.	A di	peptide does not have		
	a)	two peptide units	b)	portions of two amino acids
	c)	an amido group	d)	salt like structure.
21.	The	sum of the powers of the concent	ration	terms that occur in the rate equation
	is ca	alled		
	a)	molecularity	b)	order
	c)	rate	d)	rate constant.
22.	The	phenomenon of Tyndall effect is a	not ob	served in
	a)	emulsion	b)	colloidal solution
	c)	true solution	d)	suspension.
23.	Cata	alyst used in Deacon's method of r	nanuf	acture of chlorine is
	a)	NO	-b)	CuCl ₂
	c)	Fe ₂ O ₃	d)	Ni.
24.	Argy	rol is		16. In althoushouse -NO group to
	a)	colloidal silver	b)	colloidal antimony
	c)	colloidal gold	d)	milk of magnesia.
25.	Whe		etic a	cid the degree of ionisation of acetic
	a)	decreases	b)	does not change
	c)	increases	d)	becomes zero.
26.	The	reagent which is added first in th	e sepa	aration of silver from silver coin is
	a)	conc. sulphuric acid	b)	conc. hydrochloric acid
	c)	conc. nitric acid	d)	Aqua regia.

27.		form(s) oxocations.		
21.		Lanthamide	ы	Actinides
28.		Noble gases is the oxidation sta	d)	Alkali metals.
20.				As Daile againman make a tout
		+ 6	b)	+ 4
	100	+ 3	d)	0.
29.	. The coordination number of Nickel in the complex ion $\left[\begin{array}{c} \text{NiCl}_4 \end{array}\right]^2$ is			
	a)	+ 1	b)	+ 4
	c)	+ 2	d) -	+ 6.
30.	Los	s of a β-particle is equivalent to		
	a)	increase of one proton only	b)	decrease of one neutron only
	c)	both (a) and (b)	d)	increase of one neutron only.
		PAR	T – II	
	Note: i) Answer any fifteen questions.			
			_	n one or two sentences. $15 \times 3 = 45$
31.	Wh	at is the significance of negative el	lectror	nic energy ?
32.	2. Why is electron affinity of fluorine less than that of chlorine?			
33.	Wri	te a note on plumbo solvency.		
34.	1. What happens when phosphorus acid is heated?			
35.	Why do transition elements form complexes ?			
36.	. Why are Zn ²⁺ salts colourless while Ni ²⁺ salts are coloured?			
37.	The	half-life period of a radioactiv	e elen	nent is 100 seconds. Calculate the
		ntegration constant.	0.01	stango estrao comico Santon - (a
38.	Wha	at are superconductors?		
39.	Stat	te Trouton's rule.		est Central metal log
10	Dissociation equilibrium constant of HI is 2.06 × 10 - 2 at 458°C. At equilibrium			

concentration of HI and I $_2$ are 0.36 M and 0.15 M respectively. What is the

equilibrium concentration of H $_2$ at 458°C ?

3533 6

- 41. Give three examples for opposing reactions.
- 42. Define pseudo-first order reaction.
- 43. What is Brownian movement? Give reason.
- 44. Define electrochemical equivalent. What is its unit?
- 45. Write briefly on 'Racemic mixture' with an example.
- 46. How is phenolphthalein prepared?
- 47. How will you convert 2-methyl-2-propanol into 2-methyl propene?
- 48. How is urotropine prepared? Mention its important use.
- 49. Write two tests to identify carboxylic acids.
- 50. What is diazotisation? Give an example.
- 51. What are chromophores? Give two examples.

PART - III

Note: Answer any seven questions choosing at least two questions from each Section. $7 \times 5 = 35$

SECTION - A

- 52. Explain the formation of N $_2$ molecule by molecular orbital theory.
- 53. How is zinc extracted from its chief ore?
- 54. Mention the uses of lanthanides.
- 55. In the coordination complex $\left[\ \text{Co} \ \left(\ \text{NH}_{\ 3} \ \right)_{\ 6} \ \right] \ \text{Cl}_{\ 3}$, mention the following :
 - a) IUPAC name of the complex
 - b) Ligand
 - c) Central metal ion
 - d) Co-ordination number
 - e) Nature of complex.

SECTION - B

- 56. Describe the characteristics of free energy G.
- 57. Discuss the effect of temperature and pressure on the following equilibrium:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g) \Delta H = +59.0 \text{ kJ/mole}.$$

- 58. Derive an equation for the rate constant of a first order reaction.
- 59. Write an account on Cell terminology.

SECTION - C

- 60. Distinguish between aromatic ethers and aliphatic ethers.
- 61. Explain the reaction mechanism of Cannizzaro reaction.
- 62. What happens when lactic acid is
 - i) treated with dilute H 2 SO 4
 - ii) treated with PCl 5
 - iii) oxidised with acidified KMnO 4?
- 63. Give the characteristics of a dye.

PART - IV

Note: Question No. 70 is compulsory and answer any three from the remaining questions. $4 \times 10 = 40$

- 64. a) How do electronegativity values help to find out the nature of bonding between atoms?
 - b) Describe in detail how noble gases are isolated by Dewar's process.
- 65. a) Explain co-ordination and ionisation isomerism with suitable examples.
 - b) List the medicinal uses of radioactive isotopes.
- 66. a) Explain Bragg's spectrometer method in crystal study.
 - b) Give any 5 main differences between physical adsorption and chemical adsorption.
- 67. a) Write the postulates of Arrhenius theory of electrolytic dissociation.
 - b) Write a brief account on the relation between EMF and free energy.

3533

- 68. a) Discuss cis-trans isomerism with a suitable example.
 - b) Account for the reducing nature of Formic acid.
- 69. a) Distinguish between primary, secondary and tertiary amines.
 - b) Elucidate the structure of fructose.
- 70. a) An organic compound (A) C_3H_8O answers Luca's test within 5 10 min and on oxidation forms (B) C_3H_6O . (B) on further oxidation forms (C) $C_2H_4O_2$ which gives effervescence with NaHCO $_3$. (B) also undergoes iodoform reactions. Identify A, B, C. Explain the reactions involved.
 - b) Compound A is a sulphate compound of group II element. This compound is also called as Blue Vitriol. The compound undergoes decomposition at various temperatures.

$$A \xrightarrow{100^{\circ}\text{C}} B \xrightarrow{230^{\circ}\text{C}} C \xrightarrow{720^{\circ}\text{C}} D$$

Identify the compounds A, B, C and D and give equations.

OR

- c) An organic compound (A) of molecular formula C₂H₆O liberates hydrogen with metallic sodium. Compound (A) on heating with excess of conc. H₂SO₄ at 440 K gives an alkene (B). Compound (B) when oxidised by Baeyer's reagent gives compound (C). Identify A, B, C and explain the above reactions.
- d) Calculate the pH of 0.1 M CH $_3$ COOH solution. Dissociation constant of acetic acid is 1.8×10^{-5} .