ANSWER ANY FIVE QUESTIONS ALL QUESTIONS CARRY EQUAL MARKS

1. (a) Solve the recurrence relation of formula
$\mathrm{T}(\mathrm{n})=\square \mathrm{g}(\mathrm{n}), \mathrm{n}$ is small
$2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{F}(\mathrm{n})$, otherwise
when
i. $\mathrm{g}(\mathrm{n})=\mathrm{O}(1)$ and $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{n})$;
ii. $g(n)=O(1)$ and $f(n)=O(1)$.
(b) Write a recursive binary search program.
2. (a) Write an algorithm of Quick sort and explain in detail.
(b) Suggest refinements to Merge sort to make it in-place.
3. (a) Explain the control at straction of Greedy method compare this with Dynamic programming.
(b) Applying the Greedy stentegy find the solution for optimal storage on tapes problem instance $n=3,(11,12,13)=(5,10,3)$.
(c) Explain the 0/1 knap sack problem algorithm with Greedy concept.
4. Use an AVL tree as the basis of an algorithm to execute MIN, UNION, and DELETE on sets consisting of integers 1 through n, using $O(\log n)$ steps per operation. .
5. Using a dynamic programming approach coupled with the set generation approach, show how to obtain an $0(2 \mathrm{n} / 2)$ algorithm for the $0 / 1$ knapsack problem.
6. Write and explain a non-recursive algorithm for inorder traversal of a binary tree with an example. What is the time \& space complexity of your algorithm?
7. Define the following terms: state space, explicit constraints, implicit constraints, problem state, solution states, answer states, live node, E-node, dead node, bound- ing functions.
8. Devise a divide-and-conquer algorithm to evaluate a polynomial at a point. Analyze carefully the time complexities for your algorithm.
