Made easy India's Best Institute for IES, GATE \& PSUs

Section - I (Civil Engineering)

One Mark Questions

Q. 1 If $\mathrm{G}_{\mathrm{s}}=2.7 \%, \mathrm{n}=40 \%, \mathrm{w}=20 \%$ then the degree of saturation is \qquad .

Sol.

$$
\mathrm{Se}=\mathrm{wG}
$$

and

$$
\mathrm{e}=\frac{\mathrm{n}}{1-\mathrm{n}}=0.67
$$

$$
\Rightarrow \quad \mathrm{S}=\frac{2.71 \times 20}{0.67}=81.3 \%
$$

Q. 2 The determinant of matrix is \qquad .

$$
\left|\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 0 \\
2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2
\end{array}\right|
$$

Sol.

$$
\begin{aligned}
\Delta & =\left|\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 0 \\
2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2
\end{array}\right| \\
\mathrm{R}_{4} & \rightarrow \mathrm{R}_{4}-\mathrm{R}_{2}-\mathrm{R}_{3} \\
\Delta & =\left|\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 0 \\
2 & 3 & 0 & 1 \\
0 & -3 & -2 & 1
\end{array}\right| \\
\mathrm{R}_{4} & \rightarrow \mathrm{R}_{4}+3 \mathrm{R}_{1} \\
\Delta & =\left|\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 0 \\
2 & 3 & 0 & 1 \\
0 & 0 & 4 & 10
\end{array}\right| \\
\mathrm{R}_{3} & \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1}
\end{aligned}
$$

Made easy India's Best Institute for IES, GATE \& PSUs

Interchanging column 1 and column 2 and taking transpose

$$
\begin{aligned}
\Delta & =-\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
2 & 3 & -6 & 4 \\
3 & 0 & -8 & 10
\end{array}\right| \\
& =-1 \times\left|\begin{array}{ccc}
1 & 2 & 0 \\
3 & -6 & 4 \\
0 & -8 & 10
\end{array}\right| \\
& =-1 \times\{1(-60+32)+2(0-30)\} \\
& =-(-28-60)=88
\end{aligned}
$$

Q. 3 The static indeterminacy of two span continuous beam with internal hinge is \qquad _.

Sol.

Number of member,
$m=4$
Number of external reaction, $r_{e}=4$
Number of joint, $\quad j=5$
Number of reaction released, $\mathrm{r}_{\mathrm{r}}=1$
Degree of static indeterminacy,

$$
\begin{aligned}
\mathrm{D}_{\mathrm{s}} & =3 \mathrm{~m}+\mathrm{r}_{\mathrm{e}}-3 \mathrm{j}-\mathrm{r}_{\mathrm{r}} \\
& =3 \times 4+4-3 \times 5-1 \\
& =\mathbf{0}
\end{aligned}
$$

Q. 4 A plane blow leak velocity component $u=\frac{x}{T_{1}}, v=-\frac{y}{T_{2}}$ and $w=0$ along x, y and z direction respectively where $\mathrm{T}_{1}(\neq 0), \mathrm{T}_{2}(\neq 0)$ are constants having dimension of time. The given blow is incompressible if

MADE EASY India's Best Institute for IES, GATE \& PSUs
(a) $\mathrm{T}_{1}=-\mathrm{T}_{2}$
(b) $\mathrm{T}_{1}=-\frac{\mathrm{T}_{2}}{2}$
(c) $\mathrm{T}_{1}=\frac{\mathrm{T}_{2}}{2}$
(d) $\mathrm{T}_{1}=\mathrm{T}_{2}$

Ans. (d)
For a flow to exist

$$
\begin{aligned}
\Rightarrow & \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\frac{\partial \mathrm{v}}{\partial \mathrm{y}}=0 \\
\Rightarrow & \frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}=0 \\
\Rightarrow & \mathrm{~T}_{1}
\end{aligned}=\mathrm{T}_{2} \text { }
$$

Q. 5 Groups-I contains representative stress-strain curves as shown in figure. While Group-II gives the list of materials. Match the stress-strain curves with corresponding materials.

Group-I

P. Curve J
Q. Curve K
R. Curve L
(a) P-1, Q-3, R-2
(c) P-2, Q-3, R-1
)

Group-II

1. Cement paste
2. Coarse aggregate
3. Concrete
(b) P-3, Q-1, R-2
(d) P-3, Q-2, R-1

Ans. (d)
Q. 6 As per IS : 456-2000 in design of concrete target mean strength is taken as
(a) $\mathrm{f}_{\mathrm{ck}}+0.825 \sigma$
(b) $\mathrm{f}_{\mathrm{ck}}+1.64 \sigma$
(c) $f_{\text {ck }}+0.50 \sigma$
(d) $\mathrm{f}_{\mathrm{ck}}+0.725 \sigma$

Ans. (b)
Q. 7 Modulus of elasticity of concrete is calculated (as per IS 456 : 2000) by
(a) Secent modulus
(b) Tangent modulus
(c) Initial tangent modulus
(d) None of these

Ans. (a)
Q. 8 The flexural tensile strength of M 25 grade of concrete in $\mathrm{N} / \mathrm{mm}^{2}$, as per IS:456-2000, is \qquad _.

Sol.

$$
\begin{aligned}
\text { Flexural strength } & =0.7 \sqrt{\mathrm{f}_{\mathrm{ck}}} \\
& =3.5 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Q. 9 Survey which is conducted for geological features like river, natural resources, building, cities etc. is denoted as
(a) Land survey
(b) Geological survey
(c) Engineering survey
(d) Topographical survey

Ans. (a)
Q. 10 The integrating factor for the differential equation $\frac{d P}{d t}+\mathrm{k}_{2} \mathrm{P}=\mathrm{k}_{1} \mathrm{~L}_{0} \mathrm{e}^{-\mathrm{k}_{\mathrm{t}} t}$ is
(a) $e^{-k_{1} t}$
(b) $\mathrm{e}^{-\mathrm{k}_{2} \mathrm{t}}$
(c) $e^{k_{1} t}$
(d) $e^{k_{2} t}$

Ans. (d)

$$
\text { I.P. }=e^{\int \mathrm{k}_{2} \mathrm{dt}}
$$

Q. 11 Polar moment of inertia $\left(I_{p}\right)$ in cm^{4} at a rectangular section having width $\mathrm{b}=2 \mathrm{~cm}$ and depth $\mathrm{d}=6 \mathrm{~cm}$ is \qquad .

Sol.

Polar moment of inertia, $\quad I_{p}=I_{x}+I_{y}=\frac{b d^{3}}{12}+\frac{d b^{3}}{12}$

$$
=\frac{\mathrm{bd}}{12}\left(\mathrm{~b}^{2}+\mathrm{d}^{2}\right)=\frac{2 \times 6}{12}\left(2^{2}+6^{2}\right)=40 \mathrm{~cm}^{4}
$$

GATE-2014 Exam Solutions
Q. 12 The average spacing between vehicles in a traffic stream is 50 m , then the density (in veh/km) of stream is \qquad _.

Sol.

$$
\begin{array}{ll}
& \text { Capacity }=\frac{1000 \times \mathrm{V}}{\mathrm{~S}}=\mathrm{V} \times \text { density } \\
\Rightarrow \quad & \text { Density }=\frac{1000}{\mathrm{~S}}=20 \mathrm{veh} / \mathrm{km}
\end{array}
$$

Q.13 A fair (unbiased) coin was tossed 4-times in a succession and resulted in the following outcomes (I) H (II) H (III) H (IV) H. The probability of obtaining a "TAIL' when the coin is tossed again is
(a) 0
(b) $\frac{1}{2}$
(c) $\frac{4}{5}$
(d) $\frac{1}{5}$

Ans. (b)

$$
\begin{aligned}
\mathrm{P}(\mathrm{E}) & =\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{~S})} \\
\mathrm{n}(\mathrm{~s}) & =[\{\mathrm{H}\}, \quad\{\mathrm{T}\}]=2 \\
\mathrm{n}(\mathrm{E}) & =\{(\mathrm{T})\}=1 \\
\therefore \quad \mathrm{P}(\mathrm{E}) & =\frac{1}{2}
\end{aligned}
$$

Q. 14 As per ISSCS (IS : 1498-1970) an expression of A-line is
(a) $\mathrm{I}_{\mathrm{p}}=0.73\left(\mathrm{~W}_{\mathrm{L}}-20\right)$
(b) $\mathrm{I}_{\mathrm{p}}=0.70\left(\mathrm{~W}_{\mathrm{L}}-20\right)$
(c) $\mathrm{I}_{\mathrm{p}}=0.73\left(\mathrm{~W}_{\mathrm{L}}-10\right)$
(d) $\mathrm{I}_{\mathrm{p}}=0.70\left(\mathrm{~W}_{\mathrm{L}}-10\right)$

Ans. (a)
Q. 15 The contact pressure for a rigid footing resting on clay at the centre and the edges are respectively
(a) maximum and zero
(b) maximum and minimum
(c) zero and maximum
(d) minimum and maximum

Ans. (d)

Stress distribution for cohesive soil Minimum at centre and maximum at edge.
Q. 16 The clay mineral primarly governing the swelling behaviour of black cotton soil is
(a) Halloysite
(b) Illite
(c) Kaolinite
(d) Montmorillonite

Ans. (d)
Q. 17 Dominating micro-organisms in Active Sludge Reactor process.
(a) Aerobic heterotrops
(b) Anaerobic heterotrops
(c) Autotrops
(d) Phototrops

Ans. (a)

Two Marks Questions

Q. 18 A rectangular channel of 2.5 m width is carrying a discharge of $4 \mathrm{~m}^{3} / \mathrm{s}$. Considering that acceleration due to gravity as $9.81 \mathrm{~m} / \mathrm{s}^{2}$, then velocity of flow (in m / s) corresponding to the critical depth (at which the specific energy is minimum) is \qquad .

Sol.

$$
\Rightarrow \quad \begin{aligned}
\mathrm{Q} & =4 \mathrm{~m}^{3} / \mathrm{s}, \mathrm{~B}=2.5 \mathrm{~m} \\
\mathrm{q} & =4 / 2.5 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}=1.6 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m} \\
\mathrm{y}_{\mathrm{c}}{ }^{3} & =\frac{\mathrm{q}^{2}}{\mathrm{~g}} \Rightarrow \mathrm{y}_{\mathrm{c}}=0.639 \mathrm{~m}
\end{aligned}
$$

At critical depth velocity head $=\frac{\mathrm{y}_{\mathrm{c}}}{2}$

$$
\begin{aligned}
\Rightarrow & \frac{\mathrm{V}^{2}}{2 \mathrm{~g}} & =\frac{0.639}{2} \\
\Rightarrow & \mathrm{~V} & =\sqrt{0.639 \times \mathrm{g}} \\
& & =2.504 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 19 A waste water stream (flow $=2 \mathrm{~m}^{3} / \mathrm{s}$, ultimate $\mathrm{BOD}=90 \mathrm{mg} / l$) is joining a small river (flow $=12 \mathrm{~m}^{3} / \mathrm{s}$, ultimate $\mathrm{BOD}=5 \mathrm{mg} / l$). Both water streams get mixed up instantaneously. Cross-section area of the river is $50 \mathrm{~m}^{2}$. Assuming the de-oxygenation rate constant, $\mathrm{k}^{\prime}=0.25 /$ day. The BOD (in mg / l) of the river water 10 km downstream of the mixing point is
(a) 1.68
(b) 2.63
(c) 15.46
(d) 1.37

Ans. (c)
Flow of waste water stream, $\mathrm{Q}_{\mathrm{w}}=2 \mathrm{~m}^{3} / \mathrm{sec}$
Ultimate BOD,
$\mathrm{Y}_{\mathrm{w}}=90 \mathrm{mg} / \mathrm{l}=90 \mathrm{gm} / \mathrm{m}^{3}$
Flow of river,

$$
\mathrm{Q}_{\mathrm{R}}=12 \mathrm{~m}^{3} / \mathrm{sec}
$$

Ultimate BOD of river,

$$
\begin{align*}
\mathrm{Y}_{\mathrm{R}} & =0.5 \mathrm{mg} / l=5 \mathrm{gm} / \mathrm{m}^{3} \\
\mathrm{BOD} \text { of mixture, } \quad \mathrm{Y}_{0} & =\frac{(2 \times 90)+(12 \times 5)}{2+12} \\
& =\frac{180+60}{14}=\frac{240}{14}=17.143 \mathrm{gm} / \mathrm{m}^{3} \\
\mathrm{k}_{\mathrm{D}} & =0.434 \mathrm{~K}=0.434 \times 0.25=0.1085 \\
\mathrm{Y}_{\mathrm{t}} & =\mathrm{Y}_{0}\left[1-(10)^{-\mathrm{k}_{\mathrm{D}}}\right]
\end{align*}
$$

Time taken,

$$
\mathrm{t}=\frac{10 \mathrm{~km}}{0.28 \mathrm{~m} / \mathrm{s}}=9.921 \text { days }
$$

\therefore From eq. (i)

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{t}} & =17.143\left[1-(10)^{-0.1085 \times 9.921}\right] \\
& =15.70 \mathrm{gm} / \mathrm{m}^{3}=\mathbf{1 5 . 7 0} \mathbf{~ m g} / \mathbf{l i t}
\end{aligned}
$$

Q. 20 The beam of an overall depth 250 mm (shown below) is used in a building subjected to two different thermal environments. The temperature at the top and the bottom surfaces of the beam are $36^{\circ} \mathrm{C}$ and $72^{\circ} \mathrm{C}$ respectively. Considering coefficient of thermal expansion (α) as $1.50 \times 10^{-5} /{ }^{\circ} \mathrm{C}$, the vertical deflection of the beam (in mm) at its mid span due to temperature gradient is \qquad _.

Sol.

$$
\mathrm{R}=\frac{\mathrm{h}}{\alpha \mathrm{~T}}
$$

From properties of circle

$$
(2 \mathrm{R}-\delta) \delta=\frac{\mathrm{L}}{2} \times \frac{\mathrm{L}}{2}
$$

(Considering ' δ ' very small so neglect δ^{2})

$$
\Rightarrow \quad \delta=\frac{\mathrm{L}^{2}}{8 \mathrm{R}}=\frac{\mathrm{L}^{2} \alpha \mathrm{~T}}{8 \mathrm{~h}}
$$

GATE-2014 Exam Solutions
made Easy India's Best Institute for IES, GATE \& PSUs

$$
\text { Given, } \quad \begin{aligned}
\alpha & =1.50 \times 10^{-5} /{ }^{\circ} \mathrm{C} \\
\Rightarrow \quad \delta & =\frac{\alpha \mathrm{TL}{ }^{2}}{8 \mathrm{~h}} \\
& =\frac{1.50 \times 10^{-5} \times\left(72^{\circ}-36^{\circ}\right) \times 3^{2}}{8 \times\left(250 \times 10^{-3}\right)} \\
& =2.43 \mathrm{~mm}
\end{aligned}
$$

Q. 21 The expression $\lim _{\alpha \rightarrow 0} \frac{x^{\alpha}-1}{\alpha}$ is equal to
(a) $\log x$
(b) 0
(c) $\mathrm{x} \log \mathrm{x}$
(d) ∞

Ans. (a)

$$
\lim _{\alpha \rightarrow 0} \frac{x^{\alpha}-1}{\alpha} \quad\left[\frac{0}{0} \text { form }\right]
$$

Use L-Hospital Rule

$$
\begin{aligned}
& \lim _{\alpha \rightarrow 0} \\
& \lim _{\alpha \rightarrow 0} \quad \frac{\mathrm{e}^{\alpha \ln x}-1}{\alpha} \\
& \\
& \frac{e^{\alpha \ln x} \ln x}{1} \\
& =\ln \mathrm{x}
\end{aligned}
$$

Q. 22 Match the List-I (Soil exploration) with List-II (Parameters of subsoil strength characteristic) and select the correct answer from the codes given below:

List-I

P. Pressure meter test (PMT)
Q. Static cone penetration (SCPT)
R. Standard penetration (SPT)
S. Vane shear test (VST)
(a) P-1, Q-3, R-2, S-4
(c) P-2, Q-3, R-4, S-1

List-II

1. Menard's method $\left(\mathrm{E}_{\mathrm{m}}\right)$
2. Number of blows (N)
3. Skin resistance (f_{c})
4. Undrained cohesion $\left(\mathrm{C}_{\mathrm{u}}\right)$
(b) P-1, Q-2, R-3, S-4
(d) P-4, Q-1, R-2, S-3

Ans. (a)

GATE-2014 Exam Solutions
Q. 23 The suspension of sand like particles in water with particles of diameter 0.10 mm and below is flowing into a settling tank at $0.10 \mathrm{~m}^{3} / \mathrm{s}$. Assume $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$, specific gravity of particles $=2.65$, and kinematic viscosity of water $=1.0105 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{s}$. The minimum surface area (in m^{2}) required for this settling tank to remove particles of size 0.06 mm and above with 100% efficiency is \qquad —.

Sol.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{s}} & =\frac{\left(\mathrm{G}_{\mathrm{s}}-1\right) \mathrm{gd}^{2}}{18 \mathrm{v}} \\
& =\frac{(2.65-1) \times 9.81 \times\left(6 \times 10^{-2}\right)^{2}}{18 \times 1.0105 \times 10^{-2}} \\
& =\frac{1.65 \times 9.81 \times 36 \times 10^{-4}}{18 \times 1.0105 \times 10^{-2} \times 10^{2}} \\
& =3.204 \times 10^{-3} \mathrm{~m} / \mathrm{s} \\
\mathrm{~V}_{\mathrm{s}} & =\frac{\mathrm{Q}}{\mathrm{BL}} \\
\Rightarrow \quad \mathrm{BL} & =\frac{0.1}{3.204 \times 10^{-3}} \\
& =31.214 \mathrm{~m}^{2}
\end{aligned}
$$

Q. 24 The values of axial stress (σ) in $\mathrm{kN} / \mathrm{m}^{2}$, bending moment (M) in kNm and shear force (V) in kN acting at point P for the arrangement shown in figure are respectively

(a) 1000,75 and 25
(b) 1250,150 and 50
(c) 1500,225 and 75
(d) 1750, 300 and 100

Ans. (b)
Loading after removing the cable

$$
\begin{aligned}
\text { Axial stress } & =\frac{50}{0.2 \times 0.2}=1250 \mathrm{kN} / \mathrm{m}^{2} \\
\text { Bending moment } & =50 \times 3=\mathbf{1 5 0} \mathbf{~ k N m}
\end{aligned}
$$

Q. 25 Considering the symmetry of a rigid frame as shown, the magnitude of the bending moment (in kNm) at P (Preferably using the moment distribution method) is

(a) 170
(b) 172
(c) 176
(d) 178

Ans. (c)
Distribution Factor

GATE-2014 Exam Solutions

Fixed End Moment

$$
\begin{aligned}
& \overline{\mathrm{M}_{\mathrm{AB}}}=\overline{\mathrm{M}_{\mathrm{BA}}}=\overline{\mathrm{M}_{\mathrm{PE}}}=\overline{\mathrm{M}_{\mathrm{EP}}}=\overline{\mathrm{M}_{\mathrm{CD}}}=\overline{\mathrm{M}_{\mathrm{DC}}}=0 \\
& \overline{\mathrm{M}_{\mathrm{BP}}}=-\frac{24 \times(8)^{2}}{12}=-128 \mathrm{kNm} \\
& \overline{\mathrm{M}_{\mathrm{PB}}}=+128 \mathrm{kNm} \\
& \overline{\mathrm{M}_{\mathrm{PC}}}=-128 \mathrm{kNm} \\
& \overline{\mathrm{M}_{\mathrm{CP}}}=128 \mathrm{kNm}
\end{aligned}
$$

Distribution Table

Q. 26 An effluent at a flow rate of $2670 \mathrm{~m}^{3} / \mathrm{d}$ from a sewage treatment plant is to be disinfected. The laboratory data at disinfected studies with a chlorine dosage of $15 \mathrm{mg} / l$ yield the model $\mathrm{N}_{\mathrm{t}}=\mathrm{N}_{0} \mathrm{e}^{-0.145 \mathrm{t}}$ where $\mathrm{N}_{\mathrm{t}}=$ number of micro organism surviving at time $\mathrm{t}\left(\mathrm{in} \mathrm{min}\right.$) and $\mathrm{N}_{0}=$ number of microorganism,

GATE-2014 Exam Solutions
present initially (at $t=0$). The volume of disinfection unit (in m^{3}) required to achieve a 98%. Kill of M.O. is \qquad .

Sol. (50 m ${ }^{3}$)
Q. 27 A horizontal nozzle of 30 mm diameter discharges a study Jet of water into the atmosphere at a rate of 15 litres/second. The diameter of inlet to the nozzle is 100 mm . The Jet impinges normal to a flat stationary plate held close to the nozzle end. Neglecting air friction and considering density of water as $1000 \mathrm{~kg} / \mathrm{m}^{3}$, the force exerted by the Jet (in N) on the plate is \qquad .

Sol.

$$
\begin{aligned}
\text { Force } & =\rho \mathrm{aV}^{2} \\
\mathrm{Q} & =\mathrm{aV}=15 \text { litre/sec } \quad \text { (given) } \\
\Rightarrow \quad \text { Force } & =\rho \frac{\mathrm{Q}^{2}}{\mathrm{a}} \\
& =100 \times \frac{15^{2}}{\frac{\pi}{4} \times 30^{2}} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 10^{-6} \frac{\mathrm{~m}^{6}}{\mathrm{~s}^{2}} \times \frac{1}{10^{-6}} \mathrm{~m}^{2} \\
& =100 \times \frac{1}{\pi} \mathrm{~N}=31.83 \mathrm{~N}
\end{aligned}
$$

Q. 28 On a section of a highway the speed density relations is linear and is given by $v=\left[80-\frac{2}{3} \mathrm{k}\right]$; where v is in $\mathrm{km} / \mathrm{hr}$ and k in vehicle/km. The capacity (in veh/hr) of this section of the highway would be
(a) 1200
(b) 2400
(c) 4800
(d) 9600

Ans. (b)

$$
\text { Capacity, } \begin{aligned}
\mathrm{v} & =80-\frac{2 \mathrm{k}}{3} \\
\mathrm{q} & =\mathrm{v} \times \mathrm{k} \\
& =80 \mathrm{k}-\frac{2 \mathrm{k}^{2}}{3} \\
\text { For q to be maximum } \quad \frac{\mathrm{dq}}{\mathrm{dk}} & =0 \\
\Rightarrow \quad \frac{\mathrm{dq}}{\mathrm{dk}} & =80-\frac{4 \mathrm{k}}{3}=0
\end{aligned}
$$

GATE-2014 Exam Solutions
made Easy India's Best Institute for IES, GATE \& PSUs

$$
\begin{array}{ll}
\Rightarrow & \mathrm{k}
\end{array}=60 .
$$

Q. 29 Irrigation water is to be provided to a crop in a field to bring the moisture content of the soil from the existing 18% to the field capacity of the soil at 28%. The effective root zone of the crop is 70 cm . If the densities of the soil and water are $1.3 \mathrm{~g} / \mathrm{cm}^{3}$ and $1 \mathrm{gm} / \mathrm{cm}^{3}$ respectively, the depth of the irrigation water (in mm) required for irrigating the crop is \qquad .

Sol.

Given,
Root zone depth,

$$
\begin{aligned}
\mathrm{d} & =70 \mathrm{~cm} \\
\mathrm{~F}_{\mathrm{C}} & =28 \% \\
\mathrm{w} & =18 \% \\
\gamma & =1.3 \mathrm{gm} / \mathrm{cm}^{3} \\
\gamma_{\mathrm{w}} & =1.0 \mathrm{gm} / \mathrm{cm}^{3}
\end{aligned}
$$

Field capacity,
Existing moisture content,
Density of soil,
Density of water,
Depth of irrigation water required,

$$
\begin{aligned}
\mathrm{d}_{\mathrm{w}} & =\frac{\gamma}{\gamma_{\mathrm{w}}} \mathrm{~d}\left(\mathrm{~F}_{\mathrm{c}}-\mathrm{w}\right) \\
& =\frac{1.3}{1.0} \times(70 \times 10)(28 \%-18 \%) \\
& =1.3 \times(70 \times 10) \times \frac{10}{100} \\
& =91 \mathrm{~mm}
\end{aligned}
$$

Q. 30 The rank of the matrix $\left[\begin{array}{cccc}6 & 0 & 4 & 4 \\ -2 & 14 & 8 & 18 \\ 14 & -14 & 0 & -10\end{array}\right]$ is \qquad

Sol.

$$
\left[\begin{array}{cccc}
6 & 0 & 4 & 4 \\
-2 & 14 & 8 & 18 \\
14 & -14 & 0 & -10
\end{array}\right]
$$

$$
\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{1}+\mathrm{R}_{2}
$$

GATE-2014 Exam Solutions
$\left[\begin{array}{cccc}6 & 0 & 4 & 4 \\ -2 & 14 & 8 & 18 \\ 14-2(6)+(-2) & -14-2(0)+(14) & 0-2(4)+8 & -10-2(4)+(18)\end{array}\right]$
$\left[\begin{array}{cccc}6 & 0 & 4 & 4 \\ -2 & 14 & 8 & 18 \\ 0 & 0 & 0 & 0\end{array}\right]$

Determinant of matrix $\left[\begin{array}{cc}6 & 0 \\ -2 & 14\end{array}\right]$ is not zero.
\therefore Rank is 2 .
Q. 31 An infinitely long slope is made up of a C- ϕ soil having the properties cohesion (C) $=20 \mathrm{kPa}$ and dry unit weight $\left(\gamma_{\mathrm{d}}\right)=16 \mathrm{kN} / \mathrm{m}^{3}$. The angle of inclination and critical length of slope are 40° and 5 m respectively. To maintain the limiting equilibrium, the angle of internal friction of soil (in degree) is \qquad .

Sol.
As the given slope is in dry condition, therefore, factory of safety should be more than 2 .

$$
\begin{aligned}
& & \mathrm{F}_{\mathrm{s}} & =\frac{\tan \phi}{\operatorname{tanb}} \geq 2 \text { and } \beta=40^{\circ} \\
\Rightarrow & & \tan \phi & \geq 2 \tan \left(40^{\circ}\right) \\
\Rightarrow & & \tan \phi & \geq 1.6782 \\
\Rightarrow & & \phi & \geq 59.21^{\circ}
\end{aligned}
$$

Q. 32 A student riding a bicycle on a 5 km one way street takes 40 minutes to reach home. The student stopped for 15 minutes during this ride. 60 vehicles over took the student (Assume the number of vehicle overtaken by the student is zero) during the ride and 45 vehicles while the student stopped. The speed of vehicle stream on that road (in $\mathrm{km} / \mathrm{hr}$) is
(a) 7.5
(b) 12
(c) 40
(d) 60

Ans. (d)

$$
\text { Velocity of student }=\frac{5 \mathrm{~km}}{(40-15) \min }=12 \mathrm{~km} / \mathrm{hr}
$$

GATE-2014 Exam Solutions

$$
\begin{aligned}
& \left(\frac{\text { Vehicle/min }}{\text { Relative speed of vehicle w.r.t. student }}\right)_{\text {moving }}=\left(\frac{\text { Vehicle/min }}{\text { Relative speed of vehicle w.r.t. student }}\right)_{\text {standing }} \\
& \Rightarrow \quad \frac{60 / 25}{x-12}=\frac{4^{5} / 15}{x-0} \\
& \Rightarrow \quad \mathrm{x}=60 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Q. 33 In a Marshall sample, the bulk specific gravity of mix and aggregates are 2.324 and 2.546 respectively. The sample includes 5% of bitumen (by total wt. of mix) of specific gravity 1.10 . The theoretical maximum specific gravity of mix is 2.441 . The void filled with bitumen (VFB) in the Marshall sample (in \%) is \qquad .

Sol.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{v}} & =\frac{\mathrm{G}_{\mathrm{t}}-\mathrm{G}_{\mathrm{m}}}{\mathrm{G}_{\mathrm{m}}} \times 100 \\
& =\frac{2.441-2.324}{2.324} \times 100=5.03 \% \\
\mathrm{~V}_{\mathrm{b}} & =\mathrm{G}_{\mathrm{m}} \frac{\mathrm{w}_{\mathrm{b}}}{\mathrm{G}_{\mathrm{b}}}=2.324 \times \frac{5}{1.1}=10.564 \\
\mathrm{VMB} & =\mathrm{V}_{\mathrm{v}}+\mathrm{V}_{\mathrm{b}}=15.594 \% \\
\mathrm{VFB} & =\frac{\mathrm{V}_{\mathrm{b}} \times 100}{\mathrm{VMB}}=\frac{10.564}{15.594} \times 100 \\
& =\mathbf{6 7 . 7 4} \%
\end{aligned}
$$

Q. 34 With reference to a standard Cartesian (x, y) plane, the parabolic velocity distribution profile of fully developed laminar flow in x-direction between two parallel plates. Stationary and identical plates that are separated by distance, h , is given by the expression

$$
\mathrm{u}=-\frac{\mathrm{h}^{2} \mathrm{dP}}{8 \mu \mathrm{dx}}\left[1-4\left(\frac{\mathrm{y}}{\mathrm{~h}}\right)^{2}\right]
$$

In this equation the $\mathrm{y}=0$ axis lies equidistant between the plates at a distance $\mathrm{h} / 2$ from the two plates, P is the pressure variable and μ is the dynamic viscosity term, the maximum and average velocities are respectively
(a) $\mathrm{U}_{\text {max }}=-\frac{\mathrm{h}^{2} \mathrm{dP}}{8 \mu \mathrm{dx}}$ and $\mathrm{U}_{\text {avg }}=\frac{2}{3} \mathrm{U}_{\text {max }}$
(b) $\mathrm{U}_{\text {max }}=\frac{\mathrm{h}^{2} \mathrm{dP}}{8 \mu \mathrm{dx}}$ and $\mathrm{U}_{\text {avg }}=\frac{2}{3} \mathrm{U}_{\text {max }}$
(c) $\mathrm{U}_{\text {max }}=-\frac{\mathrm{h}^{2} \mathrm{dP}}{8 \mu \mathrm{dx}}$ and $\mathrm{U}_{\text {avg }}=\frac{3}{8} \mathrm{U}_{\text {max }}$
(d) $\mathrm{U}_{\text {max }}=\frac{\mathrm{h}^{2} \mathrm{dP}}{8 \mu \mathrm{dx}}$ and $\mathrm{U}_{\text {avg }}=\frac{3}{8} \mathrm{U}_{\text {max }}$

Ans. (a)

Velocity expression for a laminar flow between two parallel plates is

$$
\begin{aligned}
& \mathrm{U}=-\frac{\mathrm{h}^{2}}{8 \mu}\left(\frac{\mathrm{dP}}{\mathrm{dx}}\right)\left[1-4\left(\frac{\mathrm{y}}{\mathrm{~h}}\right)^{2}\right] \\
& \text { End condition, } \quad \mathrm{U}=\mathrm{U}_{\max } \text { at } \mathrm{y}=0 \\
& \Rightarrow \quad \mathrm{U}_{\max }=-\frac{\mathrm{h}^{2}}{8 \mu}\left(\frac{\mathrm{dP}}{\mathrm{dx}}\right) \\
& \text { Discharge, } \quad \mathrm{dQ}=\text { Area } \times \text { Velocity } \\
& \Rightarrow \quad \mathrm{dQ}=\left[-\frac{\mathrm{h}^{2}}{8 \mu}\left(\frac{\mathrm{dP}}{\mathrm{dx}}\right)\left(1-4\left(\frac{\mathrm{y}}{\mathrm{~h}}\right)^{2}\right)\right](\mathrm{dy} \times 1) \\
& \Rightarrow \quad \mathrm{Q}=-\frac{\mathrm{h}^{2}}{8 \mu}\left(\frac{\mathrm{dP}}{\mathrm{dx}}\right) \int_{-\mathrm{h} / 2}^{\mathrm{h} / 2}\left(1-\frac{4 \mathrm{y}^{2}}{\mathrm{~h}^{2}}\right) \mathrm{dy} \\
& =-\frac{\mathrm{h}^{2}}{8 \mu}\left(\frac{\mathrm{dP}}{\mathrm{dx}}\right)\left[\mathrm{y}-\frac{4 \mathrm{y}^{3}}{3 \mathrm{~h}^{2}}\right]_{-\mathrm{h} / 2}^{\mathrm{h} / 2} \\
& =-\frac{\mathrm{h}^{2}}{8 \mu}\left(\frac{\mathrm{dP}}{\mathrm{dx}}\right)\left[\left\{\frac{\mathrm{h}}{2}-\left(-\frac{\mathrm{h}}{2}\right)\right\}-\left\{\frac{4}{3 \mathrm{~h}^{2}}\left(\frac{\mathrm{~h}^{3}}{8}-\left(-\frac{\mathrm{h}^{3}}{8}\right)\right)\right\}\right]
\end{aligned}
$$

$$
\begin{array}{rlrl}
& =-\frac{h^{3}}{12 \mu}\left(\frac{d P}{d x}\right) \\
\because \quad Q & =A V \\
-\frac{h^{3}}{12 \mu}\left(\frac{d P}{d x}\right) & =(h \times 1) \times U_{a v g} \\
\Rightarrow \quad U_{a v g} & =-\frac{h^{2}}{12 \mu}\left(\frac{\mathrm{dP}}{\mathrm{dx}}\right) \\
\frac{U_{\mathrm{avg}}}{\mathrm{U}_{\max }} & =\frac{-\frac{\mathrm{h}^{2}}{12 \mu}\left(\frac{\mathrm{dP}}{\mathrm{dx}}\right)}{\mathrm{h}^{2}} \frac{\mathrm{dP}}{8 \mu}\left(\frac{\mathrm{dP}}{\mathrm{dx}}\right) & \frac{8}{12}=\frac{2}{3} \\
\therefore \quad \mathrm{U}_{\mathrm{avg}} & =\frac{2}{3} \mathrm{U}_{\max }
\end{array}
$$

Q. 35 A venturimeter having a throat diameter of 0.1 m is used to estimate the flow rate of a horizontal pipe having a dia of 0.2 m for an observed pressure difference of 2 m of water head and coefficient of discharge equal to unity, assuming that the energy losses are negligible. The flow rate (in $\mathrm{m}^{3} / \mathrm{s}$) through the pipe is approximately equal to
(a) 0.500
(b) 0.150
(c) 0.050
(d) 0.015

Ans. (c)
Diameter of throat,
$\mathrm{d}=0.1 \mathrm{~m}$
Diameter of pipe,
$\mathrm{D}=0.2 \mathrm{~m}$
Pressure difference,
$\frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{\mathrm{w}}=2 \mathrm{~m}=\mathrm{h}$

Coefficient of discharge,
$C_{D}=1$

Discharge,

$$
\mathrm{Q}=\frac{\mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A}_{1} \mathrm{~A}_{2} \sqrt{\mathrm{rgh}}}{\sqrt{\mathrm{~A}_{1}^{2}-\mathrm{A}_{2}^{2}}}
$$

GATE-2014 Exam Solutions

$$
\begin{aligned}
& \mathrm{A}_{1}=\frac{\pi}{4}(0.2)^{2} \\
& \mathrm{~A}_{2}=\frac{\pi}{4}(0.1)^{2} \\
& \Rightarrow \quad \mathrm{Q}=\frac{1 \times\left(\frac{\pi}{4}\right)^{2} \times(0.2)^{2}(0.1)^{2} \sqrt{2 \times 9.81 \times 2}}{\left(\frac{\pi}{4}\right) \sqrt{(0.2)^{4}-(0.1)^{4}}} \\
& =0.0508 \approx 0.050 \mathrm{~m}^{3} / \mathrm{sec}
\end{aligned}
$$

Q. 36 A prismatic beam (shown) has plastic moment capacity of M_{p}, then the collapse lead P of the beam is

(a) $\frac{2 \mathrm{M}_{\mathrm{p}}}{\mathrm{L}}$
(b) $\frac{4 \mathrm{M}_{\mathrm{p}}}{\mathrm{L}}$
(c) $\frac{6 M_{p}}{L}$
(d) $\frac{8 \mathrm{M}_{\mathrm{p}}}{\mathrm{L}}$

Ans. (c)
Here degree of static indeterminacy $=0$
\therefore Number of plastic hinges required for mechanical

$$
=\mathrm{D}_{\mathrm{s}}+1=0+1=1
$$

From principal of virtual work

$$
\begin{array}{rlrl}
& & -M_{p} \theta-M_{p} \theta+P \frac{L}{2} \theta-\frac{P}{2} \times \frac{L}{3} \theta & =0 \\
\Rightarrow \quad-2 M_{p} \theta+\frac{P L}{2} \theta-\frac{P L}{6} \theta & =0 \\
\Rightarrow \quad 2 M_{p} & =\frac{P L}{2} \times \frac{P L}{6}=\frac{(3-1) P L}{6}=\frac{1}{3} \mathrm{PL} \\
\Rightarrow \quad P & =\frac{6 \mathrm{Mp}}{L}
\end{array}
$$

Q. 37 The axial load (in kN) in the member PQ for the assembly/arrangement shown in figure given below is \qquad -.

Sol.

Free body diagram
For principle of superposition

$$
\begin{equation*}
\frac{160 \times 2^{3}}{3 \mathrm{EI}}+\frac{160 \times 2^{2}}{2 \mathrm{EI}} \times 2-\frac{\mathrm{V}_{\mathrm{Q}} \mathrm{~L}^{3}}{3 \mathrm{EI}}=\frac{\mathrm{V}_{\mathrm{Q}} \mathrm{~L}}{\mathrm{AE}} \tag{i}
\end{equation*}
$$

GATE-2014 Exam Solutions

Deflections due to axial forces will be very less as compared to bending forces.

So we can neglect the axial deformation.
\therefore From equation (i)

$$
\begin{array}{rlrl}
& & \frac{160 \times 2^{3}}{3 \mathrm{EI}}+\frac{160 \times 2^{2}}{2 \mathrm{EI}} \times 2-\frac{\mathrm{V}_{\mathrm{Q}} 4^{3}}{3 \mathrm{EI}} & =0 \\
\Rightarrow & \frac{160 \times 2^{3}}{3}+\frac{160 \times 2^{2} \times 2}{2} & =\frac{\mathrm{V}_{\mathrm{Q}} \times 4^{3}}{3} \\
\Rightarrow & \mathrm{~V}_{\mathrm{Q}} & =50 \mathrm{kN}
\end{array}
$$

Q. 38 Water is flowing at a steady rate through a homogeneous and saturated horizontal soil strip at 10 meter length. The strip is being subjected to a constant water head (H) of 5 m at the beginning and 1 m at the end. If the governing equation of the flow in the soil strip is $\frac{\mathrm{d}^{2} \mathrm{H}}{\mathrm{dx}^{2}}=0$ (where x is the distance along the soil strip), the value of H (in m) at the middle of the strip is \qquad .

Sol.
Given, equation of the flow of soil strip is

$$
\begin{array}{lrl}
& \frac{\mathrm{d}^{2} \mathrm{H}}{\mathrm{dx}^{2}} & =0 \\
\Rightarrow & \frac{\mathrm{dH}}{\mathrm{dx}} & =\mathrm{C}_{1} \\
\Rightarrow & \mathrm{H}=\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2} \\
\text { at } \mathrm{x}=0, \mathrm{H}=5 \mathrm{~m} & \mathrm{C}_{2} & =5 \\
\Rightarrow & \mathrm{H}=\mathrm{C}_{1} \mathrm{x}+5 \\
\Rightarrow & 1 & =\mathrm{C}_{1} \times 10 \\
\text { at } \mathrm{x}=10, \mathrm{H}=1 \mathrm{~m} & 10 \mathrm{C}_{1} & =-4 \\
\Rightarrow & \mathrm{C}_{1} & =-\frac{2}{5} \\
\Rightarrow & \mathrm{H} & =-\frac{2}{5} \mathrm{x}+5
\end{array}
$$

at $\mathrm{x}=5 \mathrm{~m}$

$$
\begin{aligned}
\mathrm{H} & =-\frac{2}{5} \times 5+5 \\
\mathrm{H} & =3 \mathrm{~m}
\end{aligned}
$$

Q. 39 An observer counts $240 \mathrm{veh} / \mathrm{hr}$ at a specific highway location. Assume that the vehicle arrival at the location is Poisson distributed, the probability of having one vehicle arriving over 30 sec time interval is \qquad _.

Sol.

$$
\begin{aligned}
\mathrm{P}(\mathrm{n}, \mathrm{t}) & =\frac{\mathrm{e}^{-\lambda \mathrm{t}} \cdot(\lambda \mathrm{t})^{\mathrm{n}}}{\mathrm{n}!} \\
\lambda & =\text { no. of vehicles }=240 \text { vehicle/km }
\end{aligned}
$$

Here,

$$
\begin{aligned}
P(1,30) & =\frac{e^{\frac{-240 \times 30}{3600}}\left(\frac{240}{3600} \times 30\right)^{1}}{1!} \\
& =2 . \mathrm{e}^{-2} \\
& =\mathbf{0 . 2 7 0 7}
\end{aligned}
$$

Q. 40 A tachometer was placed at point P to estimate the horizontal distance $P Q$ and PR. The corresponding stadia intercept with the telescope kept horizontal are 0.320 and 0.210 m respectively. The $\angle \mathrm{QPR}$ is measured to be $61^{\circ} 30^{\prime} 30^{\prime \prime}$. If the stadia multiplication constant $=100$ and stadia addition constant $=$ 0.10 m , the horizontal distance (in m) between the point Q and R is \qquad .

Sol.

$$
\begin{aligned}
\mathrm{PQ} & =\mathrm{ks}+\mathrm{C} \\
& =100(0.32)+0.1=32.1 \mathrm{~m} \\
\mathrm{PR} & =\mathrm{ks}+\mathrm{C} \\
& =100(0.21)+0.1=21.1 \mathrm{~m}
\end{aligned}
$$

Applying the cosine rule

$$
\mathrm{QR}=\sqrt{\mathrm{PQ}^{2}+\mathrm{PR}^{2}+2(\mathrm{PQ})(\mathrm{PR}) \cos \theta}
$$

Where, $\theta=61^{\circ} 30^{\prime} 30^{\prime \prime}=61.508^{\circ}$

$$
\begin{aligned}
& =\sqrt{1030.41+445.21+2(32.1)(21.1) \cos 61.508^{\circ}} \\
& =\sqrt{1030.41+445.21+696.2} \\
& =46.06 \mathrm{~m}
\end{aligned}
$$

Q. 41 For the state of stresses (in MPa) shown in the figure below, the maximum shear stress (in MPa) is

Sol.

$$
\begin{aligned}
\tau_{\max } & =\frac{\sigma_{1}-\sigma_{2}}{2}=\sqrt{\left(\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2}\right)+\tau_{\mathrm{xy}}^{2}} \\
& =5.0 \mathrm{MPa}
\end{aligned}
$$

Q. 42 The tension (in kN) in a 10 m long cable shown in figure neglecting its self weight is

(a) 120
(b) 75
(c) 60
(d) 45

Ans. (b)

Freebody diagram

$2 \mathrm{SF}_{\mathrm{y}}$	$=0$
$2 \mathrm{Tcos} \theta$	$=120$
$\cos \theta$	$=\frac{4}{5}$
Here,	
$2 \mathrm{~T} \times \frac{4}{5}$	$=120$
$\Rightarrow \quad \mathrm{~T}$	$=\frac{120 \times 5}{2 \times 4}=75 \mathrm{kN}$

Q. 43 A pre-timed four phase signal has critical lane flow rate for the first three phases as 200,187 and $210 \mathrm{veh} / \mathrm{hr}$ with saturation flow rate of 1800 veh/ $\mathrm{hr} / l a n e$ for all phases. The lost time is given as 4 seconds for each phase. If the cycle length is 60 seconds. The efficiency gree time of 4th phase is
\qquad (in seconds).

Sol.
Flow rates for the first three phase are given as
and

$$
\begin{aligned}
& \mathrm{q}_{1}=200 \mathrm{veh} / \mathrm{hr} \\
& \mathrm{q}_{2}=187 \mathrm{veh} / \mathrm{hr} \\
& \mathrm{q}_{3}=210 \mathrm{veh} / \mathrm{hr}
\end{aligned}
$$

Saturation flow rate is 1800 veh/hr/lane
Lost time,
$\mathrm{L}=4 \times 4=16 \mathrm{sec}$
length of the cycle,
$\mathrm{C}_{0}=60 \mathrm{sec}$

Now,
$\mathrm{y}_{1}=\frac{\mathrm{q}_{1}}{\mathrm{~s}_{1}}=\frac{200}{1800}$
$\mathrm{y}_{2}=\frac{\mathrm{q}_{2}}{\mathrm{~s}_{2}}=\frac{187}{1800}$
$\mathrm{y}_{3}=\frac{\mathrm{q}_{3}}{\mathrm{~s}_{3}}=\frac{210}{1800}$
$\mathrm{C}_{0}=\frac{1.5 \mathrm{~L}+5}{1-\mathrm{y}}$
$\Rightarrow \quad 60=\frac{1.5 \times 16+5}{1-\mathrm{y}}$
$\Rightarrow \quad 60=\frac{24+5}{1-y}$
$\Rightarrow \quad 1-\mathrm{y}=\frac{29}{60}$
$\Rightarrow \quad y=\frac{1-29}{60}=\frac{60-29}{60}$
$=0.517$
And $\quad y=y_{1}+y_{2}+y_{3}+y_{4}$
$\Rightarrow \quad 0.517=\frac{597}{1800}+\mathrm{y}_{4}$
$\Rightarrow \quad \mathrm{y}_{4}=0.185$

$$
\mathrm{G}=\frac{\mathrm{y}_{4}}{\mathrm{y}}\left(\mathrm{C}_{0}-\mathrm{L}\right)
$$

$$
=\frac{0.185}{0.517}(60-16)
$$

$$
=15.745 \mathrm{sec}
$$

Q. 44 A single vertical friction pile of dia 500 mm and length 20 m is subjected to a vertical compressive load. The pile is embedded in a homogeneous sandy stratum where; angle of internal friction $(\phi)=30^{\circ}$, dry unit weight $\left(\gamma_{\mathrm{d}}\right)=20 \mathrm{kN} / \mathrm{m}^{3}$ and angle of wall friction $(\delta)=2 \phi / 3$. Considering the coefficient of lateral earth pressure $(\mathrm{k})=2.7$ and the bearing capacity factor $\left(\mathrm{N}_{\mathrm{q}}\right)=25$, the ultimate bearing capacity of the pile is \qquad
Sol.

Homogeneous sandy stratum

$$
\begin{aligned}
\phi & =30^{\circ} \\
\gamma_{\mathrm{d}} & =20 \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

Wall friction angle, $\delta=\frac{2}{3} \phi=\frac{2}{3} \times 30=20^{\circ}$
Lateral earth pressure coefficient,

$$
K=2.7
$$

Bearing capacity factor,

$$
\mathrm{N}_{\mathrm{q}}=25
$$

Ultimate load capacity,

$$
Q_{u}=?
$$

Vertical effective stress at 20 m ,

$$
\overline{\sigma_{\mathrm{v}}}=20 \times 20=400 \mathrm{kN} / \mathrm{m}^{2}
$$

From 0 to 20 m , unit point bearing resistance and skin friction resistance remain constant at

$$
\overline{\sigma_{\mathrm{v}}}=400 \mathrm{kN} / \mathrm{m}^{2}
$$

The ultimate load capacity is given by

$$
\begin{aligned}
Q_{u} & =q_{u p} \cdot A_{p}+q_{s} \cdot A_{s} \\
& =Q_{u p}+f_{s}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{q}_{\text {up }} & =\overline{\sigma_{\mathrm{v}}} \mathrm{~N}_{\mathrm{q}} \\
& =400 \times 25 \\
& =10000 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

and

$$
\mathrm{q}_{\mathrm{s}}=\frac{1}{2} \cdot \overline{\sigma_{\mathrm{v}}} \cdot \mathrm{~K} \cdot \tan \delta
$$

$$
\begin{aligned}
& =\frac{1}{2} \times 400 \times 2.7 \tan 20^{\circ} \\
& =196.54 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Skin friction resistance，

$$
\begin{aligned}
\mathrm{f}_{\mathrm{s}} & =196.54 \times \pi \times 0.5 \times 20 \\
& =6174.49 \mathrm{kN} \\
\mathrm{Q}_{\mathrm{up}} & =\mathrm{q}_{\mathrm{up}} \times \frac{\pi(0.5)^{2}}{4} \\
& =10,000 \times \frac{\pi(0.5)^{2}}{4} \\
& =1963.49 \mathrm{kN}
\end{aligned}
$$

$\therefore \quad$ Ultimate load on the pile

$$
\begin{aligned}
& =1963.49+6179.49 \\
& =8137.98 \mathrm{kN}
\end{aligned}
$$

Q． 45 The chainage of the intersection point of two straights is 1585.60 meter and the angle of inter section is 140° ．If the radius of a circular curves is 600 meter，the tangent distance（in m ）and length of the curve（in m ）respectively are
（a） 418.88 and 1466.08
（b） 218.38 and 1648.49
（c） 218.38 and 418.88
（d） 418.88 and 218.38

Ans．（c）

$\Delta=180^{\circ}-140^{\circ}=40^{\circ}$

Length of the curve $=\frac{\pi \mathrm{R}}{180^{\circ}} \Delta$

$$
=\frac{\pi \times 600}{180} \times 40=418.82 \mathrm{~m}
$$

Tangent distance (T) is the distance between P-C to P.I (also the distance from P.I to P.T)

$$
\begin{aligned}
\Rightarrow \quad \mathrm{T} & =\mathrm{T}_{1} \mathrm{~V}=\mathrm{T}_{2} \mathrm{~V}=\mathrm{OT}_{1} \tan \frac{\Delta}{2}=\mathrm{R} \tan \frac{\Delta}{2} \\
& =600 \tan 20^{\circ} \\
& =218.88 \mathrm{~m}
\end{aligned}
$$

Q. 46 A surface water treatment plant operates round the clock with a flaw rate of $35 \mathrm{~m}^{3} / \mathrm{min}$. The water temperature is $15^{\circ} \mathrm{C}$ and Jar testing indicated and alum dosage of $25 \mathrm{mg} / l$ with flocculation at a Gt value of 4×10^{4} producing optimal results. The alum quantity required for 30 days (in kg) of operation of the plant is \qquad .

Sol.

Given data
Flow rate,

$$
\mathrm{Q}=35 \mathrm{~m}^{3} / \mathrm{min}
$$

$$
\mathrm{Gt}=4 \times 10^{4}
$$

Alum dosage $=25 \mathrm{mg} / \mathrm{lit}$.
Alum quantity (kg) required for 30 days

$$
\begin{aligned}
& =35 \times 10^{3} \times 60 \times 24 \times 30 \times 25 \times 10^{-6} \\
& =37,800 \mathbf{~ k g}
\end{aligned}
$$

Section - II (General Aptitude)

One Mark Questions

Q. 47 The population of a new city is 5 million and is growing at a rate of 20% annually. How many year would it take to double at this growth rate.
(a) 3-4 year
(b) 4-5 year
(c) 5-6 year
(d) 6-7 year

Ans. (a)

$$
\begin{aligned}
& \mathrm{P}_{\text {new }} & =\mathrm{P}_{\text {old }}\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}} \\
\Rightarrow & 10 & =5\left(1+\frac{20}{100}\right)^{\mathrm{n}} \\
\Rightarrow & & =(1.2)^{\mathrm{n}} \\
\Rightarrow & \frac{\log 2}{\log 1.2} & =\mathrm{n} \\
\Rightarrow & \mathrm{n} & =3.8 \text { year }
\end{aligned}
$$

End of Solution
Q. 48 A person affected by Alzheimers disease \qquad short term memory loss.
(a) experiences
(b) has experienced
(c) is experiencing
(d) experienced

Ans. (a)
Q. 49 Select the closest in meaning
"As a women, I have no country"
(a) Women have no country.
(b) Women are not citizens of any country.
(c) Women solidarity knows no national boundary.
(d) Women of all country have equal legal rights.

Ans. (c)

Two Marks Questions

Q. 50 If X is 1 km North east of Y, Y is 1 km South east of Z and W is 1 km West of Z. P is 1 km South of W, Q is 1 km East of P. Then find the distance between X and Q .
(a) 1
(b) $\sqrt{2}$
(c) $\sqrt{3}$
(d) 2

Ans. (c)

Q. 51 In the group of four children. If Som is younger than Riyaz and Shiv is elder than Anshu. Anshu is youngest in the group, so the eldest in the group

1. Shiv is younger than Riyaz.
2. Som is younger than Anshu.
(a) Statement (1) is sufficient to recognize.
(b) Statement (2) is sufficient to recognize.
(c) Statement (1) and statement (2) both are required.
(d) Statement (1) and (2) both are insufficient to find.

Ans. (a)

