Super Talent Batches

India's Best Institute for IES, GATE \& PSUs

Eligibility	- Top 2000 Rank in GATE	- Appeared in IES or 3 PSUs Interview
(Any of the following)	- B.Tech from IIT	B.Tech from Private Engineering college with 70% marks

[^0]Q. 1 In a power plant water is pumped from 80 kPa to 3 MPa . Isentropic efficiency of pump is 0.80 . Temperature is kept-constant. Find the specific work (kJ/kg) input for the pump.
(a) 0.34
(b) 2.48
(c) 2.92
(d) 3.43

Ans. (d)
Work input for compressor (theoretical)

$$
=-\mathrm{V} \Delta \mathrm{P}
$$

$$
=-\frac{1}{\rho}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)
$$

$$
=-\frac{1}{1000}\left(3 \times 10^{3}-80\right)
$$

$$
=-2.92 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\text { Actual work input }=\frac{2.92}{\eta_{\mathrm{c}}}=\frac{2.92}{0.85}
$$

$$
=3.43 \mathrm{~kJ} / \mathrm{kg}
$$

Q. 2 A reversible heat engine receive 2 kJ of heat from reservoir at $1000^{\circ} \mathrm{K}$ and certain amount of heat from another reservoir at $800^{\circ} \mathrm{K}$. It rejects 1 kJ of heat to reservoir at $400^{\circ} \mathrm{K}$. Find net work output

Solution:

For reversible heat engine

$$
(\Delta \mathrm{S})_{\text {Reversible cycle }}=0
$$

$$
\Rightarrow \quad-\frac{\mathrm{Q}_{1}}{\mathrm{~T}_{1}}-\frac{\mathrm{Q}_{2}}{\mathrm{~T}_{3}}+\frac{\mathrm{Q}_{3}}{\mathrm{~T}_{3}}=3
$$

$$
\begin{array}{rlrl}
\Rightarrow & -\frac{2}{1000}-\frac{\mathrm{Q}_{2}}{800}-\frac{1}{400} & =0 \\
\Rightarrow & \mathrm{Q}_{2} & =0.4 \mathrm{~kJ} \\
\text { From heat balance, } \mathrm{Q}_{1}+\mathrm{Q}_{2} & =\mathrm{W}_{\mathrm{N}}+\mathrm{Q}_{3} \\
\Rightarrow & 2+0.4 & =\mathrm{W}_{\mathrm{N}}+1 \\
\Rightarrow & \mathrm{~W}_{\mathrm{N}} & =\mathbf{1 . 4} \mathbf{k J}
\end{array}
$$

Q. 3 For a fully developed flow of water in a pipe of dia. $=10 \mathrm{~cm}, \mathrm{~V}=0.1 \mathrm{~m} /$ sec. Kinematic viscosity $=10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$. Find Darcy friction factor

Solution:

$$
\mathrm{R}_{\mathrm{e}}=\frac{\mathrm{VD}}{v}=\frac{0.1 \times 0.1}{10^{-5}}=1000
$$

Darcy friction factor,

$$
\begin{aligned}
f & =\frac{64}{R_{e}}=\frac{64}{1000} \\
& =\mathbf{0 . 0 6 4}
\end{aligned}
$$

Q. 4 For completely submerged body with centre of gravity G, Centre of buoyancy B. Submerged body will be stable if
(a) G above B
(b) G below B
(c) G coincident with B
(d) Independent of G and B

Ans. (b)
B should be above G.
Q. 5 Water flow through pipe, whose inner dia. $=10 \mathrm{~mm}$ at the rate of $36 \mathrm{~kg} /$ hr at $25^{\circ} \mathrm{C}$. Viscosity at $25^{\circ} \mathrm{C}=0.001 \mathrm{~kg} / \mathrm{ms}$. Find Reynold's No.

Solution:

$$
\begin{aligned}
\mathrm{d} & =10 \mathrm{~mm}=0.01 \mathrm{~m} \\
\mathrm{~m} & =36 \mathrm{~kg} / \mathrm{hr}=\frac{36}{3600}=\frac{1}{100} \mathrm{~kg} / \mathrm{sec} \\
& =10^{-2} \mathrm{~kg} / \mathrm{sec} \\
\mu & =0.001 \mathrm{~kg} / \mathrm{m}-\mathrm{s} \\
\mathrm{R}_{\mathrm{e}} & =?
\end{aligned}
$$

made easy India's Best Institute for IES, GATE \& PSUs

$$
\begin{aligned}
\mathrm{R}_{\mathrm{e}} & =\frac{\rho \mathrm{Vd}}{\mu}=\frac{\rho \mathrm{d}}{\mu} \times \frac{\mathrm{Q}}{\mathrm{~A}} \quad\left(\mathrm{Q}=\text { flow rate } \mathrm{m}^{3} / \mathrm{sec}\right) \\
& =\frac{\rho \mathrm{Qd}}{\mu \times \frac{\pi}{4} \mathrm{~d}^{2}}=\frac{4 \rho \mathrm{Q}}{\pi \mathrm{~d} \mu} \\
\Rightarrow \quad \mathrm{R}_{\mathrm{e}} & =\frac{4 \mathrm{~m}}{\pi \mathrm{~d} \mu}=\frac{4 \times 10^{-2}}{\pi \times 0.01 \times 0.001} \\
& =1273.2
\end{aligned}
$$

Q. $6 \quad 1.5 \mathrm{~kg}$ of water in saturated liquid state at $2 \mathrm{bar}\left(\mathrm{v}_{\mathrm{f}}=0.00106, \mathrm{u}_{\mathrm{f}}=504 \mathrm{~kJ} /\right.$ $\mathrm{kg}, \mathrm{h}_{\mathrm{f}}=505 \mathrm{~kJ} / \mathrm{kg}$). Heat added at constant pressure till temperature becomes $400^{\circ} \mathrm{C}(\mathrm{v}=1.5, \mathrm{u}=2967, \mathrm{~h}=3277 \mathrm{~kJ} / \mathrm{kg})$. Find the heat added.

Solution:

From the First law of thermodynamics

$$
\begin{aligned}
\mathrm{dq} & =\mathrm{du}+\mathrm{Pdv} \\
& =\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)+\mathrm{P}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) \\
& =(2967-504)+2 \times 10^{2}(1.5-0.00106) \\
& =2762.78 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

For 1.5 kg of water

$$
\begin{aligned}
Q & =2762.78 \times 1.5 \\
& =4144.182 \mathrm{~kJ}
\end{aligned}
$$

Q. 7 For an Otto cycle, given, pressure at inlet $=0.1 \mathrm{MPa}$, temperature at inlet $=308^{\circ} \mathrm{K}, \gamma=1.4, \mathrm{R}=288.8 \mathrm{~J} / \mathrm{kgK}$. Compression ratio $=8$. Maximum temperature $=2660^{\circ} \mathrm{K}$. Find the heat supplied.

Solution:

made easy India's Best Institute for IES, GATE \& PSUs

$$
\text { Given: } \quad \begin{align*}
\mathrm{P}_{1} & =0.1 \mathrm{MPa} \\
\mathrm{~T}_{1} & =308^{\circ} \mathrm{K} \\
\gamma & =1.4 \\
\mathrm{R} & =288.8 \mathrm{~J} / \mathrm{kgK} \\
\mathrm{r} & =8 \\
\mathrm{~T}_{3} & =2660^{\circ} \mathrm{K} \\
\mathrm{Q}_{\mathrm{S}} & =\mathrm{mC}_{\mathrm{v}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \tag{i}\\
\mathrm{C}_{\mathrm{v}} & =\frac{\mathrm{R}}{\gamma-1}=\frac{288.8}{0.4} \\
& =722 \mathrm{~J} / \mathrm{kgK} \\
& \\
\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}} & =\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}=(8)^{0.4} \\
\mathrm{~T}_{2} & =308 \times(8)^{0.4} \\
\Rightarrow \quad & =707.6^{\circ} \mathrm{K} \\
& \\
\mathrm{Q}_{\mathrm{S}} & =1 \times 722(2660-707.6) \\
& =1409.6 \mathrm{~kJ} / \mathrm{kg}
\end{align*}
$$

End of Solution
Q. 8 Given x is random variable, $\mathrm{P}(\mathrm{x})$ is probability density

x	1	2	3
$\mathrm{P}(\mathrm{x})$	0.3	0.6	0.1

Find standard deviation.
(a) 0.18
(b) 0.36
(c) 0.54
(d) 0.6

Ans. (d)
Mean,

$$
\begin{aligned}
\overline{\mathrm{x}} & =\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}} \\
& =\frac{1 \times 0.3+2 \times 0.6+3 \times 0.1}{0.3+0.6+0.1}=1.8
\end{aligned}
$$

Standard deviation

$$
\begin{aligned}
\sigma_{\mathrm{x}} & =\sqrt{\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}}{\mathrm{~N}}-\overline{\mathrm{x}}^{2}} \\
& =\sqrt{\frac{0.3 \times 1^{2}+0.6 \times 2^{2}+0.1 \times 3^{2}}{1}-1.8^{2}} \\
& =\mathbf{0 . 6}
\end{aligned}
$$

Q. $9 \quad y=f(x)$ is the solution of $\frac{d^{2} y}{{d x^{2}}_{2}}=0$. Boundary conditions are, $y=5, x=10$.

$$
\frac{d y}{d x}=2 \text { at } x=10 . \text { Find } f(15)=?
$$

Solution:

$$
\begin{aligned}
& \frac{d^{2} y}{d^{2}}=0 \\
& \Rightarrow \quad \frac{d y}{d x}=C_{1} \\
& \text { At } \\
& x=10, \frac{d y}{d x}=2 \\
& \text { So, } \\
& \mathrm{C}_{1}=2 \\
& \text { Hence, } \quad \frac{d y}{d x}=2 \\
& \Rightarrow \quad \mathrm{y}=2 \mathrm{x}+\mathrm{C}_{2} \\
& \text { At } \quad \mathrm{x}=10, \mathrm{y}=5 \\
& \text { So } \quad 5=2 \times 10+\mathrm{C}_{2} \\
& \Rightarrow \quad \mathrm{C}_{2}=-15 \\
& \text { Hence, } \\
& y=2 x-15 \\
& \mathrm{f}(15)=\left.\mathrm{y}\right|_{\mathrm{x}=15} \\
& =2 \times 15-15 \\
& =15
\end{aligned}
$$

Q. 10 Value of $\lim _{x \rightarrow 0} \frac{x-\sin x}{1-\cos x}$ is
(a) 0
(b) 1
(c) 3
(d) Not defined

Ans. (a)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x-\sin x}{1-\cos x} & (0 / 0 \text { form, applying 'L' Hospital rule) } \\
= & \lim _{x \rightarrow 0} \frac{d x(x-\sin x)}{\frac{d}{d x}(1-\cos x)} \\
= & \left.\lim _{x \rightarrow 0} \frac{1-\cos x}{0+\sin x} \quad \text { (0/0 form }\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\sin x}{\cos x} \\
& =0
\end{aligned}
$$

Q. 11 The argument of the complex no. $\frac{1+i}{1-i}$, where $i=\sqrt{-1}$ is

Solution:

$$
\begin{aligned}
\frac{1+\mathrm{i}}{1-\mathrm{i}} \times \frac{1+\mathrm{i}}{1+\mathrm{i}} & =\frac{(1+\mathrm{i})^{2}}{1-\mathrm{i}^{2}}=\frac{1+\mathrm{i}^{2}+2 \mathrm{i}}{1+1} \\
& =\mathrm{i}=0+\mathrm{i} \\
\text { Argument } \quad \theta & =\tan ^{-1}\left(\frac{\mathrm{y}}{\mathrm{x}}\right) \\
& =\tan ^{-1}\left(\frac{1}{0}\right) \\
& =\tan ^{-1}(\infty) \\
& =\frac{\pi}{2}
\end{aligned}
$$

Q. 12 The state of stress of a point is given by $\sigma_{x}=-6 \mathrm{MPa}, \sigma_{\mathrm{y}}=4 \mathrm{MPa}$ and $\tau_{\mathrm{xy}}=-8 \mathrm{MPa}$. The maximum tensile stress (in MPa) at that point is

Solution:

$$
\begin{aligned}
\sigma_{1} & =\frac{\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}}{2}+\sqrt{\left(\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2}\right)^{2}+\tau_{\mathrm{xy}}^{2}} \\
& =\frac{-6+4}{2}+\sqrt{\left(\frac{-6-4}{2}\right)^{2}+(-8)^{2}} \\
& =-1+\sqrt{25+64} \\
& =8.4339 \mathrm{MPa}
\end{aligned}
$$

Q. 13 For a job in manufacturing process, arrival rate is 5 per shift of 8 hrs following Poisson's distribution. Service rate for the job is 40 min . Find the ideal time (in hr) of the job
(a) $\frac{1}{4}$
(b) $\frac{7}{5}$
(c) $\frac{14}{3}$
(d) $\frac{2}{3}$

Ans. (d)
Arrival rate, $\quad \lambda=\frac{5}{8}$ jobs per hour
Service rate, $\quad \mu=\frac{60}{40}=\frac{3}{2}$ jobs per hour
Fraction of time job is idle

$$
=1-\frac{\lambda}{\mu}=1-\frac{5}{8} \times \frac{2}{3}=\frac{7}{12}
$$

$\therefore \quad$ Idle time $=$ Expected waiting time in the system \times Probability of idleness

$$
\begin{aligned}
& =\frac{1}{\mu-\lambda} \times \frac{7}{12}=\frac{1}{\frac{3}{2}-\frac{5}{8}} \times \frac{7}{12}=\frac{1}{\frac{12-5}{8} \times \frac{12}{7}} \\
& =\frac{1}{\frac{7}{8} \times \frac{12}{7}}=\frac{8}{12}=\frac{2}{3}
\end{aligned}
$$

Q. 14 Water jet strikes a stationary vertical plate with a volume flow rate of 0.05 $\mathrm{m}^{3} / \mathrm{sec}$ and exerts a force of 1000 N on the plate. Find out the dia. of jet

Solution:

$$
\text { Given, } \quad \begin{aligned}
\mathrm{Q} & =0.05 \mathrm{~m}^{3} / \mathrm{sec} \\
\mathrm{~F}_{\mathrm{N}} & =1000 \mathrm{~N} \\
\mathrm{~d} & =? \\
\mathrm{~F}_{\mathrm{n}} & =\rho A \mathrm{~V}^{2} \\
& =\rho \mathrm{A} \times\left(\frac{\mathrm{Q}}{\mathrm{~A}}\right)^{2} \\
& =\frac{\rho \mathrm{Q}^{2}}{\mathrm{~A}}=\frac{4 \rho \mathrm{Q}^{2}}{\pi \mathrm{~d}^{2}} \\
\Rightarrow \quad & \\
& \\
& \\
& \\
& \\
& =\frac{4 \times 1000 \times 0.05^{2}}{\pi \mathrm{~d}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad d & =0.0564 \mathrm{~m} \\
& =56.4 \mathrm{~mm}
\end{aligned}
$$

Q. 15 Which is a CFC refrigerant
(a) R744
(b) R290
(c) R502
(d) R718

Ans. (c)

R 744	-
R290	$-\mathrm{CO}_{2}$
R502	$-\mathrm{C}_{3} \mathrm{H}_{8}$ (Propane)
R718	$-\quad \mathrm{CHClF}_{3}+\mathrm{CClF}_{2} \mathrm{CF}_{3}$
Water	

End of Solution
Q. 16 Given $\left(\begin{array}{ccc}1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2\end{array}\right)=-12$. Find determinant of $\left(\begin{array}{ccc}2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4\end{array}\right)=$?

Solution:

$$
\begin{aligned}
\left(\begin{array}{ccc}
2 & 6 & 0 \\
4 & 12 & 8 \\
-2 & 0 & 4
\end{array}\right) & =2^{\mathrm{n}} \times-12 \\
& =2^{3} \times-12 \\
& =-\mathbf{9 6}
\end{aligned}
$$

Q. 17 Why it is difficult to weld Aluminium
(a) low MP of Aluminium
(b) High thermal conductivity
(c) Softness
(d) Specific heat capacity is low

Ans. (a)

End of Solution
Q. 18 A pair of spur gear with module 5 mm and a centre distance of 450 mm is used for a speed reduction of $5: 1$. No. of teeth on pinion is

Solution:

$$
\begin{align*}
& \text { Given, } \quad \mathrm{m}=5 \\
& \text { Centre distance }(\mathrm{n})=450 \mathrm{~mm} \\
& \text { Speed reduction }=5: 1 \\
& \text { i.e., } \\
& \frac{\mathrm{Z}_{\mathrm{G}}}{\mathrm{Z}_{\mathrm{P}}}=\frac{5}{1} \\
& \Rightarrow \quad \mathrm{Z}_{\mathrm{G}}=5 \mathrm{Z}_{\mathrm{P}} \tag{i}\\
& \mathrm{x}=\mathrm{r}_{1}+\mathrm{r}_{2} \\
& =\frac{\mathrm{d}_{1}+\mathrm{d}_{2}}{2} \\
& =\frac{\mathrm{mZ}_{\mathrm{g}}+\mathrm{mZ}_{\mathrm{P}}}{2} \\
& \Rightarrow \quad 450=\frac{5 \times \mathrm{Z}_{\mathrm{G}}+5 \times \mathrm{Z}_{\mathrm{P}}}{2} \\
& \Rightarrow \quad Z_{G}+Z_{P}=180 \\
& \Rightarrow \quad 5 Z_{\mathrm{P}}+\mathrm{Z}_{\mathrm{P}}=180 \text { (from eq. (i)) } \\
& \Rightarrow \quad Z_{\mathrm{P}}=30
\end{align*}
$$

Q. 19 Mass P is attached with an inextensible string as shown in figure. Mass of $\mathrm{P}=100 \mathrm{~kg}$. mass of $\mathrm{S}=150 \mathrm{~kg} . \mu$ for all surfaces $=0.4$. Find $\mathrm{F}(\mathrm{in} \mathrm{kN})$ required for movement of S .

(a) 0.69
(b) 0.88
(c) 0.98
(d) 1.37

Ans. (d)

$$
\begin{aligned}
\mathrm{F} & =\mu \mathrm{R}_{1}+\mu \mathrm{R}_{2} \\
\mathrm{~F} & =\mu\left(\mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{P}}\right)+\mu \mathrm{W}_{\mathrm{P}} \\
& =[0.4(150+100)+0.4 \times 100] \times 9.81 \\
& =1373.4 \mathrm{~N} \\
& =1.37 \mathrm{kN}
\end{aligned}
$$

made easy India's Best Institute for IES, GATE \& PSUs
Q. 20 A wheel is rolling without slipping on a plane surface with the centre velocity of V. What will be velocity of the point of contact
(a) Velocity $\mathrm{V} \perp$ to the surface
(b) V in the direction of motion
(c) V in the opposite direction of motion
(d) Zero

Ans. (d)

Velocity of point of contact $=0$.
Q. 21 A rod of length 250 mm in fixed in between two immovable plates. It is heated upto $250^{\circ} \mathrm{C}$. Given coefficient of thermal expansion, $\alpha=1 \times 10^{-5} /{ }^{\circ} \mathrm{C}$, and $\mathrm{E}=200 \mathrm{GPa}$. Stress developed (in MPa) in the beam is

Solution:

$$
\text { Given, } \quad \begin{aligned}
l & =250 \mathrm{~mm} \\
\Delta \mathrm{t} & =250^{\circ} \mathrm{C} \\
\alpha & =1 \times 10^{-5} /{ }^{\circ} \mathrm{C} \\
\mathrm{E} & =200 \mathrm{GPa} \\
\sigma & =? \\
\sigma & =\mathrm{E} . \alpha . \Delta \mathrm{t} \\
& =200 \times 10^{3} \times 1 \times 10^{-5} \times 250 \\
& =500 \mathrm{MPa}
\end{aligned}
$$

Q. 22 If Taylor's tool life exponent ' n ' is 0.2 and the tool change time is 1.5 minute. Then the tool life (in minute) for maximum production rate

Solution:

Given,
$\mathrm{n}=0.2$
Tool change time,
$\mathrm{T}_{\mathrm{C}}=1.5$ minute
Tool life $=$? (For max. production rate)
Tool life $=T_{M P}=\left\{\left(\frac{1}{n-1}\right) \mathrm{T}_{\mathrm{C}}\right\}$

$$
\begin{aligned}
& =\left(\frac{1}{0.2}-1\right) \times 1.5 \\
& =6 \text { minute }
\end{aligned}
$$

Q. 23 Given initial length ' L_{0} ' subjected to drawing process.
$\mathrm{L}(\mathrm{t})=\mathrm{L}_{0}\left(1+\mathrm{t}^{2}\right)$, (t is in minute)
Find true strain $\left(\varepsilon_{\mathrm{T}}\right)$ in $\min ^{-1}=$?, at the end of ' 1 ' minute.

Solution:

$$
\begin{aligned}
\mathrm{L}(\mathrm{t}) & =\mathrm{L}_{0}\left(1+\mathrm{t}^{2}\right) \\
\varepsilon_{\mathrm{T}} & =\int \mathrm{d} \varepsilon=\int \frac{\mathrm{dL}}{\mathrm{~L}} \\
\mathrm{~L} & =\mathrm{L}_{0}\left(1+\mathrm{t}^{2}\right) \\
\mathrm{dL} & =\mathrm{L}_{0} \times 2 \mathrm{t} d \mathrm{t} \\
\varepsilon_{\mathrm{T}} & =\int_{0}^{1} \frac{2 \mathrm{tL}_{0} \mathrm{dt}}{\mathrm{~L}_{0}\left(1+\mathrm{t}^{2}\right)}=\int_{0}^{1} \frac{2 \mathrm{tdt}}{\left(1+\mathrm{t}^{2}\right)}
\end{aligned}
$$

Now, Let $\left(1+t^{2}\right)=z$
$\Rightarrow \quad 2 \mathrm{t} \mathrm{dt}=\mathrm{dz}$
at $\quad \mathrm{t}=0, \mathrm{z}=1$
at $\quad \mathrm{t}=1, \mathrm{z}=2$

$$
\begin{aligned}
\therefore \quad \varepsilon_{\mathrm{T}} & =\int_{1}^{2} \frac{\mathrm{dz}}{\mathrm{z}}=\left.\log _{\mathrm{e}}(\mathrm{z})\right|_{1} ^{2} \\
& =\log _{\mathrm{e}} 2-\log _{\mathrm{e}} 1 \\
& =\mathbf{0 . 6 9 3} \mathrm{min}^{-1}
\end{aligned}
$$

Q. 24

Mass of the beam is ' m ' and spring stiffness is ' k '. A hinge is attached with the beam as shown above. What will be the natural frequency of the system.
(a) $\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$
(b) $\sqrt{\frac{\mathrm{k}}{2 \mathrm{~m}}}$
(c) $\sqrt{\frac{2 \mathrm{k}}{\mathrm{m}}}$
(d) $\sqrt{\frac{5 \mathrm{k}}{\mathrm{m}}}$

Ans. (d)

$$
\begin{aligned}
\theta & =\frac{\mathrm{y}_{\mathrm{A}}}{(\mathrm{~L} / 3)}=\frac{\mathrm{y}_{\mathrm{B}}}{(2 \mathrm{~L} / 3)} \\
\mathrm{I}_{0} & =\mathrm{I}_{\mathrm{c}}+\mathrm{m}\left(\frac{2 \mathrm{~L}}{3}-\frac{\mathrm{L}}{2}\right)^{2} \\
\mathrm{I}_{0} & =\frac{\mathrm{mL}^{2}}{12}+\frac{\mathrm{mL}^{2}}{36} \\
\mathrm{I}_{0} & =\frac{\mathrm{mL}^{2}}{9}
\end{aligned}
$$

Taking $\Sigma \mathrm{M}_{0}=0$

$$
\begin{array}{rlrl}
& \Rightarrow & \left(\mathrm{ky}_{\mathrm{A}} \times \frac{\mathrm{L}}{3}\right)+\left(\mathrm{ky}_{\mathrm{B}} \times \frac{2 \mathrm{~L}}{3}\right)+\mathrm{I}_{0} \ddot{\theta} & =0 \\
& \Rightarrow & \mathrm{k} \theta\left(\frac{\mathrm{~L}}{3}\right)^{2}+\mathrm{k} \theta\left(\frac{2 \mathrm{~L}}{3}\right)^{2}+\frac{\mathrm{mL}^{2}}{9} \ddot{\theta} & =0 \\
\Rightarrow & & \left(\frac{\mathrm{~mL}^{2}}{9}\right) \ddot{\theta}+\left(\frac{5 \mathrm{~kL}^{2}}{9}\right) \theta & =0 \\
\Rightarrow & \ddot{\theta}+\frac{5 \mathrm{k}}{\mathrm{~m}} \theta & =0 \\
\Rightarrow & \ddot{\theta}+\omega_{\mathrm{n}}^{2} \theta & =0 \\
\therefore & \omega_{\mathrm{n}} & =\sqrt{\frac{5 \mathrm{k}}{\mathrm{~m}}}
\end{array}
$$

Q. 25 Consider the following:
I. Mating gear is a higher pair
II. Revolute pair is lower pair
made easy India's Best Institute for IES, GATE \& PSUs
(a) Both are correct
(b) I is correct, II is incorrect
(c) I is incorrect, II is correct
(d) Both are incorrect

Ans. (a)
Q. 26 Which one of the following is odd one out
(a) WEKO
(b) IQWA
(c) FNTX
(d) NVBD

Ans. (d)
Q. $2712,35,81,173,357$, \qquad ? _.

Solution:

$$
\begin{aligned}
12 \times 2+11 & =35 \\
35 \times 2+11 & =81 \\
81 \times 2+11 & =173 \\
173 \times 2+11 & =357 \\
357 \times 2+11 & =725
\end{aligned}
$$

Q. 28 In housing society, half of familiars have a single child per family, while the remaining half have two children per family. The probability that a child picked at random has a sibling is \qquad —.

Solution: (0.6667)
End of Solution
Q. 29280 m long train travelling with a uniform speed crosses a platform in 60 sec. and crosses a person standing on the platform in 20 sec . Then find the length of the platform.

Solution:

$$
\begin{array}{rlrl}
& \text { Platform length } & =\mathrm{x} \\
\text { Train length } & =280 \mathrm{~m} \\
\therefore & \frac{\mathrm{x}+280}{60} & =\frac{280}{20} \\
\text { or } & \mathrm{x} & =\mathbf{5 6 0} \mathbf{m}
\end{array}
$$

Q. 30 (i) All the women are entrepreneur.
(ii) Source of the women are doctors.

Then by using above statements, which of the following statement is inferred?
(a) All the doctors are entrepreneurs
(b) Some doctor are entrepreneurs
（c）All the entrepreneurs are doctors
（d）Some entrepreneurs are doctors
Ans．（d）

Q． 31 A flight \qquad as soon as it＇s report was filed
（a）is take－off
（b）was take－off
（c）will take－off
（d）has been taken－off

Ans．（d）

Q． 32 In a chart given below，the imports and exports of a product is million dollers are given according to the year basis．In which，deficit is defined as excess of imports over exports．Then find the year in which deficits is equal to 1 ／ $5^{\text {th }}$ of the exports．

（a） 2004
（b） 2005
（c） 2006
（d） 2007

Ans．（c）

Q． 33 A person having three coins，first coin have both sides head，second coin and third coin having one head and one tail．If one coin is picked up randomly and tossed then the probability that it shows head having tail is
（a） $1 / 3$
（b） $2 / 3$
（c） $1 / 4$
（d） $1 / 2$

Ans．（a）

[^0]: Benefits

 - Better Teaching Environment
 - Extra teaching hours
 - In-depth coverage of subjects

