EMATICS:	Max.Marks: 70
SECTIO	NI
Single Correct A	nswer Type

This section contains 10 multiple choice questions. Each question has four choices A), B), C) and D) out of which ONLY ONE is correct. Let f(x) be a real valued function satisfying

MATH

 $af(x) + bf(-x) = px^2 + ax + r$. Where a and b are distinct real numbers and p, q and r are non-zero real numbers. Then f(x) = 0 will have real solution when

when
$$A) \left(\frac{a+b}{a-b}\right)^2 \le \frac{a^2}{4pr}$$

$$B) \left(\frac{a+b}{a-b}\right)^2 \le \frac{4pr}{q^2}$$

c)
$$\left(\frac{a+b}{a-b}\right)^2 \ge \frac{q^2}{4pr}$$

D) $\left(\frac{a+b}{a-b}\right)^2 \ge \frac{4pr}{q^2}$
A line $L = \sqrt{3}x - y + 2 - \sqrt{3} = 0$ is a

42. A line
$$L = \sqrt{3}x - y + 2 - \sqrt{3} = 0$$
 is rotated through an angle 60° about A(1, 2) in counter clockwise direction. Let L_1 be new position of L and $B(\alpha, \beta)$ be a point on L_1 which is at a distance of 5 units from A. If C(h, k) is a point such that area of

clockwise direction. Let
$$L_1$$
 be new position of L and $B(\alpha, \beta)$ be a point on L_1 which is at a distance of 5 units from A. If $C(h, k)$ is a point such that area of ΔABC is $\frac{5}{4}$ sq. units then maximum value of $\sqrt{3}h + k$ is equal to $A(h, k) = \frac{1}{4}h$

B) $\sqrt{3}(\sqrt{3}+1)$

c) $\sqrt{3}(\sqrt{3}-1)$

D) $\sqrt{3}(\sqrt{3}+2)$

A)
$$\left(\frac{a+b}{a-b}\right)^2 \le \frac{a^2}{4pr}$$

B) $\left(\frac{a+b}{a-b}\right)^2 \le \frac{4pr}{q^2}$

C) $\left(\frac{a+b}{a-b}\right)^2 \ge \frac{q^2}{4pr}$

C) $\frac{1}{2} - \frac{1}{20121}$ D) 20111-20121

B) $1 - \frac{1}{20121}$

The sum = 3 + 4

A) 20121

A)30

44

45.

47.

C)
$$\frac{1}{2}$$
 $\frac{1}{2011!}$ D) $\frac{1}{2011!}$ 2012!
A truck is to be driven 300 km on a highway at a constant speed of x kmph. Speed rules of the highway require that $30 \le x \le 60$. The fuel costs Rs. 10 per

liter and is consumed at the rate of $2 + \frac{x^2}{600}$ liters per hour. The wages of the driver are Rs.200 per hour. The most economical speed to drive the truck, in kmph.

C) 30\\\ 33 D) $20\sqrt{33}$

B)60

If
$$a = 1 + \frac{x^3}{\underline{13}} + \frac{x^6}{\underline{16}} + \frac{x^9}{\underline{19}} + \dots, b = x + \frac{x^4}{\underline{14}} + \frac{x^7}{\underline{17}} + \dots$$

$$and c = \frac{x^2}{\underline{12}} + \frac{x^8}{\underline{15}} + \frac{x^8}{\underline{18}} + \dots, then a^3 + b^3 + c^3 - 3abc = A)0$$

Let $f: R \to R$ be a positive non-decreasing function with $\lim_{x \to \infty} \frac{f\left(\frac{x-x^3}{6}\right)}{f(x)} = 1$, then $\lim_{x \to \infty} \frac{f(\sin x)}{f(x)} = 1$

A) 1 B)
$$\pi/2$$
 C) 1/6 D) $\pi/36$ Which of the following statements is/are true?

A) The no. of zeroes of $2^x - x^2 - 1 = 0$ is 3

D) The no. of zeroes of $2^x \ln 2 - 2x = 0$ is 1

B) The no. of zeroes of $2^x \ln 2 - 2x = 0$ is 3 C) The no. of zeroes of $2^x - x^2 - 1 = 0$ is 2

If the equation $z^2 + z + \alpha = 0$ has a purely imaginary root and α lies on the circle |z| = 1 then the imaginary part of that root, is (are) A) $+\sqrt{2}$ B) 0

C)
$$\pm \sqrt{2 - \sqrt{2}}$$
 D) $\pm \sqrt{\frac{\sqrt{5} - 1}{2}}$
The reciprocal of the distance between two points, one

on each of the lines $\frac{x-2}{2} = \frac{y-4}{2} = \frac{z-5}{5}$ and

 $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ A) cannot be less than 9

$$\frac{1}{2} = \frac{3}{3} = \frac{4}{4}$$
A) cannot be less than 9
B) having minimum value $5\sqrt{3}$

C) cannot be greater than $\sqrt{78}$ D) cannot be $2\sqrt{19}$

B and B is a proper subset of A where
$$A \subseteq X$$
, is

50.

48.

C)
$$4^n - 3^n$$
 D) $3^n - 2^n$

SECTION II Multiple Correct Answer(s) Type

This section contains 5 multiple choice questions. Each question has four choices A), B), C) and D) out of which ONE or MORE are correct.

Let $a = a_1 i + a_2 j + a_3 k$, $b = b_1 i + b_2 j + b_3 k$ 51. and $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$ be three non zero vectors

such that c is perpendicular to both the vectors \vec{a} and \vec{b} . If the angle between

$$\vec{a}$$
 and \vec{b} is $\frac{\pi}{6}$ and $|\vec{a}|, |\vec{b}|, |\vec{c}|$, are

the roots of $x^3 - 11x^2 + 38x - 40 = 0$ then value

of
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 is B)-10

C)-20 D)20

Let
$$f(x) = \begin{cases} \int_0^x \int_0^x (x+|1-t|) dt, & \text{if } x > 2\\ 5x+1, & \text{if } x \le 2 \end{cases}$$
 then

A) f(x) is not continuous at x=2

B)
$$f(x)$$
 is continuous but not differentiable at x=2

C) f(x) is differentiable everywhere

D) the right derivative of f(x) at x=2 does not exist Consider the matrix equation

 $X^2 = I$, I being 2×2 matrix, 'X' is a real matrix (all the elements being real). Which of the following is / are correct? A)The equation has exactly two solutions

B) The equation has infinitely many Solution

C)
$$x = \begin{bmatrix} \sqrt{2} - \sqrt{3} & 4\sqrt{2} \\ \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} & \sqrt{3} - \sqrt{2} \end{bmatrix}$$
 is a possible

Solution

53.

D)
$$x = \begin{bmatrix} \sqrt{3} - \sqrt{2} & \sqrt{\frac{3}{2}} - 1 \\ 4 & \sqrt{2} - \sqrt{3} \end{bmatrix}$$
 is a possible

Solution

54.

Two real numbers x and y are selected at random. Given that $0 \le x \le 1, 0 \le y \le 1$. Let A be the event

that
$$y^2 \le x$$
 and B be the event that $x^2 \le y$. Then A) $P(A \cap B) = \frac{1}{2}$

B)A and B are exhaustive events

C)A and B are mutually exclusive D)A and B are independent events

 $-4 \le f(1) \le -1, -1 \le f(2) \le 5$ then which of the following statements is/are true A) $f(3)_{max} = 19$ B) $f(3)_{min} = -2$ c) $f(3)_{max} = 20$ D) f(3) = -1

such

that

SECTION III

 $f(x) = kx^2 - m$

55. If

59.

Integer Answer Type This section contains 5 questions. The answer to each question is single digit integer, ranging from 0 to 9 (both

inclusive).

The solution set of $3x^{\log_3^4} + 4^{\log_3^2} = 64$ is

56. 57. Let A be a 2×3 matrix whereas B be a 3×2 matrix.

If det(AB) = 4, then the value of det(BA) is

If $\int_{1}^{2} \left(1 + x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx = 1$, then $\frac{4}{3} e^{-5/2} I =$ 58.

and satisfying the equation

Let f(x) be a polynomial with leading coefficient unity

(x-16) f(2x) = 16 (x-1) f(x), then $\frac{f(0)}{128}$

Non-zero vectors $\vec{a}, \vec{b}, \vec{c}$ satisfy $\vec{a}.\vec{b} = 0$

60 $(\vec{b} - \vec{a}) \cdot (\vec{b} + \vec{c}) = 0$ and $2|\vec{b} + \vec{c}| = |\vec{b} - \vec{a}|$. If

 $\vec{a} = \mu b + 4\vec{c}$, then the value of μ is