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1. RESULTANT OF A FORCE SYSTEM

1.1 Introduction
Engineering Mechanics may be defined as science of force. It is a study of various effects 
force as it acts on a body. It is further divided into Statics and Dynamics. Statics is the study 
of effects of force on stationary bodies and Dynamics is the study of effects of force on 
moving bodies.

1.2 Force
Force is that physical quantity which changes or tends to change the state of the body on 
which it acts. This change in state may be w.r.t. motion of body or w.r.t. its form & 
dimensions (as in case of a deforming force). Force is a vector quantity for which 
magnitude, direction as well as line of action exist. If we change the line of action of force, 
its effect on the body is entirely different (Fig.1-A). For force, however, point of action is not 
an important aspect. Keeping magnitude, direction and line of action same, if we change the 
point of action of force, its effect on the body remains same (Fig.1-B).
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                                            Fig.1-A                                                                               
Fig.1-B

1.3 Theorem of Transmissibility of Force
The theorem states that if given force is applied at any point (physically connected with the 
body) along its line of action, its effect on the body remains unchanged so that, for the sake 
of analysis, given force may be transmitted
to any suitable point along its line of action.

                 F                                                                                       (F at A = F at B = F at C 
= F at D = F at E)
                                  A           B             C            D            E

                                                           Fig.1-C

1.4 Composition of Forces
It is a process of finding resultant of given forces. Resultant is that single force which has 
same effect, as the combined effect of all given forces.

1.4.1 Parallelogram Law
If two forces acting at a point are represented in magnitude and direction by two sides of a 
parallelogram, diagonal passing through the common point of action of two forces gives the 
resultant.
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                                                                                           [It should be noted that above 
expression for  is valid               
                                                                                              as it is, only when  is defined as 
the angle between  
                            1F                                                             R and 1F ].
                           
                             Fig.1-D

1.4.2 Triangle Law
If two given forces are represented in magnitude and direction by two sides of a triangle 
taken in an order, the third side taken in opposite order gives their resultant.
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1.4.3 Polygon Law
If several forces acting on a body are represented in magnitude and direction by sides of a 
polygon taken an order, the closing side of the polygon, taken in opposite order gives their 
resultant.

1.5 Resolution of Force
It is a process of splitting a given force into several forces (called Components) such that the 
combined effect of these components is same as that of the original force. Every component 
is a part of original force effective in a particular direction. Thus, a force is resolved to 
explore its effect in that direction. Two mutually perpendicular components of a force are 
called as rectangular components.
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                          Further, FX = Fcos
   O                                             X                    FY = Fsin
                               FX                              
                 Fig.1-F

Note that the expressions FX = Fcos and FY = Fsin are applicable only when angle  is 
expressed w.r.t. X-axis. If angle  is expressed w.r.t Y-axis, these expressions will be FX = 
Fsin and FY = Fcos. In short, angle  w.r.t. whichever direction, X or Y, is known, that 
directional component is cosine component and the other component is sine component. If 
the original force terminates into a point, then the components are shown terminating into 
that
point. If the given force originates from a point, then the components are shown originating 
from that point.

1.6 Classification of Force Systems
(a) Coplanar Force System: All the forces in the system lie in one plane.
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(b) Non-coplanar Force System: All the forces in the system do not lie in one plane but are 
scattered in space.
(c) Concurrent System: Lines of action of all forces pass through a common point.
(d) Like-parallel System: Lines of action of all forces are parallel to each other and all forces 
have same directions.
(e) Unlike-parallel System: Lines of action of all forces are parallel to each other but some 
forces have direction                     
     opposite of the remaining ones.
(f) General / Non-concurrent, non-parallel System: Lines of action of forces in the system are 
neither concurrent
    nor parallel.

1.7 Method of finding Resultant of Concurrent Force System
Step I: Resolving all the given forces into X and Y components.
Step II: Taking independent vector summations FX (sum of force components along X) and 
FY (sum of force components along Y) assuming a suitable sign convention, say,  () : 
+ve, () : -ve, () : +ve, () : -ve.

Step III: Finding magnitude of resultant    22

  YX FFR  and direction of resultant 

defined by angle 
w.r.t. X axis as, tan = FY / FX. Line of action of resultant of concurrent system naturally 
passes through the
common point of action of all the forces in the system.

1.8 Moment of a Force
Force quantity is associated with translational motion of the body.
But under specific conditions, force may produce rotational motion,           P
which is an entirely different type of motion. This ability of force to                                          
M
produce rotation in the body is called as moment of force. The
magnitude of moment is called as torque or moment itself and                                                
d
is calculated as the product of magnitude of force and moment arm.
i.e. Moment @ point P: M = F  d (↺)       F
The point P about which the moment of force is being considered is                     
called as moment center and the perpendicular distance d between
moment center and line of action of force is called as moment arm.                                         
Fig.1-G

1.9 Couple
Two equal and opposite forces (magnitudes equal, lines of action parallel
and directions opposite) separated by a fixed distance constitute a couple.

    F
The ability of a couple to rotate a body is called its moment and the

          
magnitude of this moment is called torque or moment itself. Torque is           
P       
calculated as product of magnitude of the force in the couple and the          
d
distance separating the two forces.
Torque of couple @ point P:  = F  d (↺).       F

                  Fig.1-H
1.9.1 Properties of Couple                  
(a) A couple produces pure rotation in the body without any translation.
(b) A couple can be balanced by an equal and opposite couple only.
(c) Moment of given couple is a constant quantity in magnitude and sense, irrespective of 
the choice of moment 
     center. A given couple will have same rotational effect about any point in the plane.

Moment of couple @ P = Fd (↻)
Moment of couple @ Q =  (Moment of each force @ Q)                                      Q
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        = Fy + [-F(d+y)]                                                                                  
y

        = - Fd 
        = Fd(↻)                                                     F

[assuming sign convention (↺) : +ve and  (↻) : -ve]                                             P             
d

 Moment of couple @ P = Moment of couple @ Q.                                                           
                                                                                                                                                    
F

                                                                                                                                       
Fig.1-I

1.10 Varignon’s Theorem
It states that moment of resultant of a force system about any point in the plane is equal to 
vector sum of moments of all the forces and couples in that system about the same point. In 
other words, the combined rotational effect of all the forces and couples in the system is 
fully represented by the rotational effect of the resultant alone about the same moment 
center.

1.11 Resultant of Parallel Force System
Step I: Vector sum of all the given forces assuming a suitable sign convention. This will give 
magnitude and direction of the resultant.
Step II: Assuming the found resultant at an unknown position x from the chosen moment 
center and then applying Varignon’s Theorem to calculate x, which gives position of line of 
action of resultant.

1.12 Equivalent Force Systems
Two force systems, one derived from the other, which are different apparently, but which 
have absolutely same
effects on the body are called as Equivalent systems. Using concept of equivalent system, it 
is possible to determine effect of a force at a point not on its line of action or effect of entire 
given force system at any particular point. In Fig.1-J, force systems FS-1 and FS-2 are 
equivalent systems.

 F         A  F                     A        A

 FS-1 d                  FS-2
     B                F                  B    F      F                       B

                        M = Fd
                                           

                                                                                 Fig.1-J
1.13 Resultant of General Force System
Step I: Resolving the given forces into X and Y components at their points of action.
Step II: Independent vector summations FX and FY assuming a suitable sign convention 
() : +ve, () : -ve, () : +ve, () : -ve.

Step III: Finding magnitude of resultant    22

  YX FFR  and direction of resultant 

defined by

angle  w.r.t. X axis as, 




X

Y

F

F
tan . 

Step IV: Assuming the found resultant at an unknown distance x from the chosen moment 
center and then applying Varignon’s Theorem to calculate x, which gives position of line of 
action of resultant.

1.14 Distributed Loads
Force acting over an extremely small area is called as Point load or Concentrated load. 
Practically, however, loads are not always acting at a point but they may be acting over a 
finite area. Such loads are called as distributed loads. Since our present study is restricted 
to coplanar systems, we shall consider distributed loads acting over a finite length.
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1.14.1 Uniformly Distributed Load (u.d.l.)                                                                          
 m/s
When total given load is made to act, by distributing it uniformly,                                            
over a finite length, it is called as Uniformly Distributed Load. 
Magnitude of u.d.l. is represented by its intensity  i.e. the                                              ℓ m
amount of load acting per unit length of the loading span. To                                                   

analyze a u.d.l., it is converted into resultant point load as                                                   R 
= ℓ
shown in Fig.1-K. Magnitude of resultant is calculated as                                                    
R = intensity  span, its line of action passing through the 
centroid of the loading rectangle. ℓ/2            ℓ/2
                                                                                                                                       
Fig.1-K

1.14.2 Uniformly Varying Load (u.v.l.)                                               m/s
When the total load is made to act in such a way that variation 
in the loading is uniform or constant over a finite length, it is 
called as Uniformly Varying Load. Magnitude of u.v.l. is 
represented by its intensity . To analyse a u.v.l., it is                                                     ℓ m
converted into a resultant point load with magnitude                                                                

R = ½ (intensity  span), line of action passing through the                                         R = ½ 
(ℓ)
centroid of loading triangle as shown in Fig.1-L.

                                                                                                                                ℓ/3   
2ℓ/3
                                                                                                                                       
Fig.1-L
1.14.3 Trapezoidal Loading
This is a particular case of u.v.l. in which the variation in the 
load is from some intensity 1 to some other intensity 2 .                    2 - 1

A convenient way of analyzing a trapezoidal loading is to 

convert it into a combination of one u.d.l. and one u.v.l.                              1                           
and then finding their resultants, thereby converting a                                

trapezoidal load into two resultant point loads. This is shown
in Fig.1-M.                    ℓ m
                                                                                                                                       
Fig.1-M

   

2. EQUILIBRIUM

2.1 Introduction
Equilibrium simply means balance. The forces acting in a system have such magnitudes, 
directions and lines of action, that they completely nullify each other’s effect, leaving no 
resultant force to translate the body, neither a resultant couple moment to rotate it. In 
Statics, such a force balance necessarily implies a complete state of rest of the body.

5

5



Prof. Sameer Sawarkar’s Engineering Mechanics Notes

2.2 Analytical Conditions of Equilibrium
Parallel and General force systems may reduce to a resultant force or a resultant couple 
moment. For equilibrium, resultant force as well as resultant couple moment, both should be 
zero. This gives us three necessary & sufficient conditions of equilibrium for Parallel and 
General force systems as indicated in the table below. Concurrent force system, however, 
can never reduce to a couple. As all the forces in Concurrent system pass through one point, 
couple forming is impossible. So a Concurrent system may reduce to a resultant force only. 
For equilibrium, this resultant force should be zero, which gives two necessary and sufficient 
conditions of equilibrium (see the table).

Force System Resultant Calculation Equilibrium Conditions

Concurrent 
System

Resultant 
Force

   22

  YX FFR
FX = 0
FY = 0

Parallel System
&

General System

Resultant Force    22

  YX FFR
FX = 0
FY = 0

Resultant Couple 
Moment RM = M @ any point M @ any point = 0

2.3 Normal Reaction
When two bodies are in physical contact with each other, there     B

      
may exist a give and take of force between the two bodies. This            

        R4

give and take between the two bodies across the point of contact  A
 R3

is called as Reaction between the two bodies. When the bodies in                                        R3 

contact are assumed to be ideally smooth (frictionless), this     R1         R1     
reaction acts along the common normal to the two surfaces at the 
point of contact and is called as Normal Reaction.                                                           R2           

2.4 Free – Body – Diagram (FBD)                                                                                   R2       

Fig.2-A
Equilibrium principle states that when the entire arrangement is in 
equilibrium, every element, every constituent of that arrangement 

       R3

is in equilibrium. Thus, to analyze any equilibrium case, we first                                         WA

isolate each body from the whole arrangement and consider 
equilibrium of each body separately. The diagram showing an                          R1

isolated body with all the forces acting on that body from external 
(i.e. forces received by that body and not applied by it) is called as                                          
A
Free-Body-Diagram (FBD). Fig.2-A shows reactions at points of                                       R2

contact between bodies A and B and Fig.2-B shows FBD of A.                                               
                                

Fig.2-B
2.5 Lami’s Theorem
It states that when three concurrent forces are in equilibrium, magnitude of each force is 
directly proportional to the sine of the angle between the other two forces. 
i.e. F1  sin, F2  sin, F3  sin                                                            F1

or K
FFF


 sinsinsin

321 (constant)                    

It should be remembered that angle between
two forces is defined only when either their  
heads or tails are matching.                                                     F2                                          F3

          Fig.2-C

6

6



Prof. Sameer Sawarkar’s Engineering Mechanics Notes

2.6 Two – Force System
A force system consisting of only two forces is called as Two-Force system. A 2-Force system 
will be in equilibrium if and only if, the two forces are equal, opposite and have same line of 
action. This is clear from Fig.2-D.

F

F                                         
F

     F2                                                   d
  F1

    F

                 FX  0, FY  0                             FX = 0, FY = 0, M  0                     FX = 0, 
FY = 0, M = 0
                     (Translation)                                              (Rotation)                                           
(Equilibrium)

          Fig.2-D

2.7 Two – Force Member
A linear member subjected effectively to only two forces                             A                           
B
acting at its ends is called as a 2-Force member. Consider 
a linear member subjected to force systems concurrent at                        FS-1                         
FS-2
its two ends as shown. Each system will have a single 
resultant force so that the member is subjected to only two                      
forces (resultants), which makes it a 2-Force member. Now          R        A                                
B       R   
for equilibrium of this 2-Force member, it is essential that 
these two resultants should be equal, opposite and have 
same line of action. Thus a 2-Force member in equilibrium             R         

      R
is subjected to two forces, which act along the longitudinal                                     FINT      C    
FINT

axis of the member. Such forces deform the 2-Force member                 A                                
B
only longitudinally (i.e. there is no bending of the member), 
which results into simple longitudinal stresses, either   R  

    R
compressive or tensile. These internal forces are equal and                                  FINT       T      
FINT

opposite to the external deforming action and are indicated as                A                              
B
shown. Thus, when a 2-Force member is in compression, its 
internal forces are pointing outwards and when the member is                                      Fig.2-
E
in tension, the internal forces are pointing inwards.

2.8 Three – Force System
A force system consisting of only three forces is called as a         F1                                          
F2

Three-Force System. For equilibrium of a 3-Force system, 
the system has to be a Concurrent or a Parallel system.                        P 
A 3-Force General system can never remain in equilibrium. 
Consider the 3-Force General system shown in Fig.2-F.
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Using transmissibility, F1 and F2 are drawn at P. R is their 
resultant. Thus 3-Force system is reduced to a 2-Force                                    F3

system of R and F3. Now this system cannot be in equilibrium 
if R and F3 have different lines of action. In short, in case of a 
3-Force General system, any one force can never balance 
resultant of remaining two forces. Hence a 3-Force General system              R
can never be in equilibrium.       P

     
     F3

  Fig.2-F
2.9 Types of Joints
A member may be connected to another member in different ways. The connection between 
two members is called as Joint. Through the medium of connection, there is a give & take of 
forces between the two members, which is called as Reaction at the Joint.

2.9.1 Cantilever Joint
The joint is so made that there is complete fixity of the member on one side with another 
member, other end freely hanging. To any horizontal action FX, joint offers horizontal 
reaction HA, to any vertical action FY, joint offers vertical 
reaction VA and to any couple moment action , joint offers
moment reaction MA, thereby resisting completely any  FY

translation and rotation in the member. Thus, a cantilever           HA                              A                                  

FX

joint offers all the three reactions viz. HA, VA and MA  (Fig.2-G).                         
                                                                                                             MA

           VA            Fig.2-G
2.9.2 Hinge Joint
The joint consists of a hinge element fixed to a member and 
a cylindrical pin for connection with the other member. To any 
applied action FX and FY, hinge joint can offer equal and 
opposite reactions HA and VA, thereby completely resisting   FY

any kind of translation. But if a couple moment is applied to      A
                 FX

the member, there will be free rotation of the member about            HA                     
the smooth frictionless pin of the hinge joint. As the hinge 
joint is incapable of resisting rotation of the member, we say 
that moment reaction MA is absent and it offers only two                              VA

reactions viz. HA and VA (Fig.2-H).       Fig.2-H

2.9.3 Roller Joint
The same hinge when mounted over rollers makes it a roller joint. 
As seen earlier, due to the frictionless pin, moment reaction MA is  FY

absent. Further, due to rollers, reaction HA is absent and the joint      A
 FX

is incapable of resisting tangential translation of member over the                       
surface of the other member. Thus a roller joint offers only one                
reaction VA or RA, which is the usual normal reaction between 
frictionless wheels and the supporting surface.

 RA       Fig.2-I
2.10 Equilibrant
Equilibrant is that single force, which when added to the given force system, brings the 
unbalanced system into equilibrium. As the equilibrant nullifies the net effect of all forces, in 
other words, as it balances the resultant of the given force system, it is equal, opposite and 
along the line of action of resultant of the force system.
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    

3. ANALYSIS OF STRUCTURES

3.1 Introduction
Structure is an arrangement of members, joints and supports assembled to carry loads 
coming at various elevations to earth safely. Multistoried buildings, manufacturing plants, 
bridges, roadways, railways and airports are all examples of structure.
(a) Member: The element of structure, which is actively involved in the process of force 
transfer e.g. slab, beam,  
     column, etc. is called as member.
(b) Joint: Connection between two members is called as joint, e.g. hinge joint, roller joint, 
cantilever joint, etc.
(c) Support: Connection between entire structure and earth i.e. foundation is called as 
support.

3.2 Beam      Loads
Beam is a linear member of structure, which receives loads 
in transverse direction from slab. Due to the transverse loading,      Slab
beam undergoes bending and develops complicated internal                      
Beam
stresses, partly tensile and partly compressive. This is unlike a 
2-Force member, which never bends but undergoes longitudinal 
deformation and develops simple longitudinal stresses, either 
tensile or compressive. Beams are usually horizontal.     Column

Column

                                                                                                                                       
Fig.3-A
3.3 Determinate & Indeterminate Beams

(a) Determinate Beam: A beam that can be analyzed for its support reactions by concept 
of equilibrium alone is called as Statically Determinate beam. Number of unknown 
support reactions for a determinate beam is 
not more than 3.

(b) Indeterminate Beam: If number of unknown support reactions is greater than 3, all 
the reactions cannot be 
found by concept of equilibrium, in which, we have but only three equations. Such a 
beam is called as Statically Indeterminate beam. Such beams do exist but advanced 
methods are required to analyze such beams.
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3.4 Compound Beam
A beam made up of two or more beams connected to each other using internal hinges or 
pins is called as Compound beam.  To analyze a compound beam, FBD of each constituent 
beam is considered and all the support reactions are found. Like a hinge joint, an internal 
hinge is also capable of offering two reactions HP and VP, which are found during analysis of 
isolated constituent beams. 

3.5 Truss
Truss is a framed structure made up of members,                                     F1                         F2                    

F3

joints and supports assembled to carry the loads      B            C      D
to earth safely. A truss like structure is particularly                                                                   
F4

required in bridges or in roof supporting system of 
large auditorium because a truss may run over long 
column-less span, giving a safe and economical 
design. A truss is so designed that all the joints are           A                 H                 G               
F                       E
necessarily internal hinges or pins and the loads from                                                      
slab are made to act only at the joints i.e. no                                                          F5

member of the truss directly receives the load 
transversely. As the loads are acting only at the ends Fig.3-B
of the members, each member of truss is a 2-Force member, 
which does not undergo any bending, but deforms only longitudinally and develops simple 
tensile or compressive stresses. While analyzing the truss, self weight of the member is 
ignored.

3.6 Analysis of Truss
It involves finding support reactions and nature and magnitude of member internal forces. 
Support reactions can be found by simply considering equilibrium of entire truss under the 
action of external known forces and unknown reactions. Member internal forces can be 
found by either method of joints or method of sections, which are again extended 
applications of equilibrium methods only. 

3.6.1 Method of Joints
In method of joints, each joint of truss is isolated, its FBD is drawn and its equilibrium is 
considered. FBD of any joint shows the external loads acting at that joint and internal forces 
of the members meeting at that joint. Every such FBD is a Concurrent force system in 
equilibrium, which can be solved for two unknown member forces. 
3.6.2 Method of Sections
In method of sections, a suitable section is considered and truss is imagined to be cut into 
two parts by that section. Any one part is isolated, its FBD is drawn and its equilibrium is 
considered. The FBD of isolated part shows all the external loads acting on that part and the 
internal forces of the members cut by the imagined section. Every such FBD is a General 
force system in equilibrium, which can be analyzed for three unknown member forces. 
Following rules are to be followed while imagining a section in this method;
(1) Section should cut those members for which we desire to find internal forces.
(2) Section should start from outside and end on outside of the truss.
(3) As far as possible, section should cut at the most three members.

3.7 Stability Configuration for Simply Supported Truss
A truss supported using one hinge support and one roller support is called as Simply 
Supported Truss.
If ‘j’ represents number of joints and ‘m’ represents number of members, then

(1) When m = 2j – 3, truss is stable and determinate i.e. all internal member forces can 
be found by equilibrium methods alone. Such a truss is called as a Perfect Frame.

(2) When m > 2j – 3, truss is stable, in fact over-safe but is indeterminate i.e. all the 
member internal forces cannot be found by simple equilibrium methods. It is called as 
Redundant frame. Such trusses do exist but advanced methods are required for their 
analysis.
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(3) When m < 2j – 3, truss is unstable and unsafe. It is not a structure at all and is, in 
fact, a mechanism. It is called as Imperfect frame of Deficient frame.

3.8 Cantilever Truss  
It is possible to design a safe and determinate truss with both the supports as hinge 
supports and stability configuration m = 2j – 4. Such a truss is called as Cantilever Truss. If 
m  2j – 4, the cantilever truss is unstable and if m  2j – 4, it is indeterminate.

3.9 Methods of Inspection for Zero Force Member
A member that carries no force is called as Zero-Force Member. Following are inspection 
methods to identify a zero-force member without any actual calculations;

(1) If there are only three members meeting at a joint, two of them collinear and no 
external force acts at that particular joint, then the two collinear members develop 
equal internal force and the non-collinear third member is a zero-force member.

(2) If only two members meet at a joint with no external force at that joint, then both the 
members are zero-force members.

3.10 Frames
Frames are also structures with similar engineering 
applications as those of a truss, but frames are more            C

 F2

complex in design than a truss. Unlike truss members, 
frame members may be bent up bars. Further, a frame 

  D
member may be directly acted upon by transverse loads      
and couple moments from slab, so that it undergoes            F1

bending like a beam and develops complicated internal 
forces. Thus analysis for internal force of frame member 

  E
is beyond the scope of equilibrium. Frames can be
analyzed by equilibrium methods for support reactions                          B            M
and pin joint reactions. To find unknown pin reactions, 
FBD of each member is drawn and equilibrium of each 
member is considered. This step is called as dismembering             A

  F
of frame. A systematic analysis easily gives answers to
all unknown support reactions and pin reactions.                             Fig.3-C

    

4. FRICTION

4.1 Introduction
The opposition offered by two surfaces in physical contact, to any tendency of relative 
tangential motion or actual tangential motion between them, is termed as friction. Force of 
friction is simply a tangential reaction between two bodies across the contact. Being a 
reaction, it is naturally a self-adjusting force i.e. it changes its direction and up to a certain 
extent, its magnitude, according to the change in applied force trying to cause the relative 
motion. Mechanical interlocking of the irregularities over two surfaces in contact is believed 
to be the major cause of frictional opposition.

4.2 Types of Friction
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(a) Static Friction: When two bodies in contact are not actually undergoing any relative 
slide but due to external force, there is a tendency developed of such a relative 
motion, the friction between two surfaces opposing this tendency is called as Static 
Friction. 

(b) Dynamic Friction: When one body is actually sliding over the other body, the 
opposition offered by two surfaces in contact is called as Dynamic or Kinetic or Sliding 
Friction. 

4.3 Behavior of Frictional Force                                             F                                     
A graph of applied force v/s frictional force is plotted.                                                          
limiting         
As the applied force is gradually increased, frictional                                                                           

equilibrium          

force also increases up to a certain limit called as                FLIM                                             
Limiting Frictional Force. This is the maximum frictional                        static friction               
force that can be developed between given two surfaces.                                                         
Body is on the verge of sliding over the supporting surface                                                       
kinetic friction
and is said to be in the state of limiting equilibrium or of
impending motion. If external force is further increased, 
the frictional opposition suddenly reduces and body actually 
starts sliding over the support. Here onwards, the frictional                    equilibrium                
motion
opposition more or less remains constant.                                0                                               
P
                                                            Fig.4-A
4.4 Newton’s Laws of Friction 

(a) Limiting frictional force is proportional to the normal reaction between two surfaces in 
contact.
i.e. FLIM  N  FLIM = SN, or FLIM /N = µs  where S is a constant, called as Coefficient of 

static friction.
(b) When one body is actually sliding over another body, kinetic frictional force is 

proportional to the normal reaction between two bodies.
i.e. FK  N  FK = KN, or FK /N = µK  where K is a constant, called as Coefficient of 

kinetic friction.

4.5 Angle of Friction            W
Resultant of normal reaction N and frictional force F is 
called as Total Reaction R. Angle ø made by total 
reaction R with common normal to the two surfaces in                P
limiting equilibrium is called as Angle of Friction.
We have;         FLIM

tan ø  = FLIM/N = µs  or  ø = tan-1(µs ).
       ø
N         R

                                                                                                                  Fig.4-B
4.6 Angle of Repose
It is the angle made by an inclined plane with horizontal for which, the body kept on that 
plane is on the verge of sliding down, under the action of its own weight. Angle of repose is 
numerically equal to angle of friction i.e.  = ø.

                                                                                W

                                                                          
                                                                          ø    
                                                                               R
                                                                                                                     
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                                                                                   Fig.4-C
4.7 Belt Friction
Let us imagine that weight W is to be pulled up using a belt passing                                        
T1

over a pulley or drum as shown. As we gradually start increasing            
P
force applied to the other end of the belt, belt develops a tendency           

                
to slide relative to the pulley surface to which, both the surfaces in                                       
contact oppose by friction. Thus to actually lift weight W, we have to                                      
overcome not just W itself, but also this force of friction. If P is 
the force applied at the other end of the belt when the belt is about 
to slide over the pulley and W is about to be lifted, we observe that                 T2

P  W. If T1 and T2 are the tensions in the parts of the belt passing                          
over pulley as shown, T1 = P and T2 = W. Then it automatically
follows that, T1  T2. T1 and T2 are, respectively, called as                                 W
Tight-side tension and Slack-side tension. In case of a flat belt, they
are related to each other as;                                                                                                
Fig.4-D  

         
e

T

T


2

1  

In case of a V-belt and Rope, they are related to each other as;

          
 ece

T

T cos

2

1 

where  is the coefficient of static friction between belt and pulley,   is the contact angle or 
lap angle and  is the semi-angle of the groove in case of a V-belt or Rope.

In general, tension in the part of belt that is about to leave the pulley is more than the part 
of belt, which is about to enter the pulley.

4.8 Power Transmission Using Belts
Using belt or rope drives, it is possible to transmit power generated at a wheel (called as 
driver pulley) to a far away wheel (called as follower or driven pulley).

                          T2

                                                                                                 
                                                                                                                FC

                          T1

                Driver Pulley                         Driven Pulley                              Driven Pulley

                                         Fig.4-E                                                                 Fig.4-F

Let R be the radius of the driven pulley. 
Moment acting about the center of pulley M =  (T1 - T2)R.
If the pulley turns through angle , workdone W = M = (T1 - T2)R.

 
dt

d
RTT

dt

dW
Power


21 

   vTTRTTPower 2121    
Here,  is the angular speed of the driven wheel and v is linear speed of the belt ( such that 
v = R).

When the belt moves around the driven pulley, due to inertia force (also known as 
centrifugal force), additional tension is induced in the belt element, which is called as 
centrifugal tension (Fig.4-F). 
It may be proved that, this centrifugal tension is; 
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g

wv
TC

2

 , where w  Weight of belt per unit length or (
g

w
) is the mass of belt per unit 

length. 
Thus maximum tension, the given belt element can withstand will be, Tperm or Tmax = T1 + TC.

It may further be proved that for maximum power transmission, 
3
perm

C

T
T  .

    
5. CENTROID, CG & MOMENT OF INERTIA

5.1 Introduction
To analyze a distributed force system, it is convenient to find its resultant, so that effectively 
all the forces may be assumed to be concentrated at a point. Similarly, distributed 
quantities like length, area, volume, mass and weight may be assumed to be concentrated 
at a point for the ease in the analysis. Such a point in case of length, area and volume is 
called as Centroid, in case of mass, is called as Center of Mass and in case of weight force, is 
called as Center of Gravity. 

5.2 Calculation of Centroid Coordinates
Following are the expressions using which centroid of any given irregular shape may be 
found.  These expressions have been derived from Varignon’s Theorem.

Centroid of a solid w.r.t to its volume is calculated as;









v

vx

vvv

xvxvxv
X

n

nn

.....

.....

21

2211 ,  









v

vy

vvv

yvyvyv
Y

n

nn

.....

.....

21

2211

where v1,v2,…..,vn are the volumes of regular solid parts (into which given irregular solid is 
divided) for which centroid coordinates (x1,y1), (x2,y2),…..,(xn,yn) are known. 

Similarly, centroid of a plane irregular lamina may be found using expression;






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

a

ax

aaa

xaxaxa
X

n

nn

.....

.....

21
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
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

a

ay

aaa

yayaya
Y

n

nn
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21

2211

where a1,a2,…..,an are the areas of regular geometric figures (into which given irregular 
lamina is divided) for which centroid coordinates (x1,y1), (x2,y2),…..,(xn,yn) are known. 

Centroid of a linear element like wire, bent into some shape may be found using expression;










l

lx

lll

xlxlxl
X

n

nn

.....

.....

21

2211 ,  









l

ly

lll

ylylyl
Y

n

nn

.....

.....

21

2211

where l1,l2,…..,ln are the lengths of such regular line elements for which centroid coordinates 
(x1,y1), (x2,y2),….,
(xn,yn) are known.

5.3 Area Moment of Inertia 
In the section design of beams, columns, shafts and other machine parts, an expression of 
the form ∑ar2 or ∫r2da frequently occurs which is called as Second Moment of Area or 
Moment of Inertia w.r.t. Area. It is denoted by I. Strength of the section depends upon M.I. 
and choosing a section with appropriate M.I. ensures a safe as well as economical design.

  
   Z

5.4 Perpendicular Axes Theorem 
M.I. of a lamina about an axis perpendicular to its plane 
is equal to sum of its M.I. about two mutually perpendicular    P
axes, in the plane of lamina and concurrent with the axis 
perpendicular to the plane of lamina i.e. IZ = IX + IY                

                                X                                                             
Y
                                                                              Fig.5-A
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5.5 Parallel Axes Theorem 
M.I. of a lamina about any axis is equal to sum of its                                  A
M.I. about a parallel axis through its centroid and 
product of area of lamina and square of the distance             G
between two parallel axes i.e. IP = IG + Ah2.        h

              P
                                                                                                                                   
Fig.5-B

Sr.N
o.
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5
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6. RECTILINEAR MOTION

6.1 Introduction
Dynamics is the study of various effects of force on moving bodies. It is divided into 
Kinematics and Kinetics.
Kinematics is a study of pure geometry of motion, without taking into account mass of the 
moving body, forces acting on the body and energy of the system. Kinetics is an advanced 
study of motion, taking into account mass of the body, forces acting on the body and energy 
of the system. 

6.2 Particle Dynamics & Rigid Body Dynamics
Dynamics is further divided into Particle Dynamics and Rigid Body Dynamics. When a body 
undergoes pure translational motion, its overall dimensions and mass distribution may be 
ignored and the entire mass may be assumed to be concentrated at a point. Moving body is 
idealized as a moving point mass and is called as particle.
When motion of a body involves rotational motion, its mass distribution cannot be ignored. 
Body cannot be idealized as a point mass or particle and has to be considered as a rigid 
body. In short, study of translational motion comes under particle dynamics and study of 
motion involving rotations comes under rigid body dynamics.

6.3 Motion 
Whenever a body changes its position w.r.t. an observer, the observer has experience or 
feeling of motion of that body. Motion is a relative term and has to be defined w.r.t. some 
observer.

6.3.1 Translational Motion
A body is said to be in pure translation when all the constituents of the body undergo equal 
displacements. When path traced by the body is a straight line, it is said to be in Rectilinear 
Translation (Fig.8-A). When the body traces 
a curve, it is said to be in Curvilinear Translation (Fig.8-B)
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         A  A1    A      A1

         B  B1      B      B1

         C  C1    C      C1

Fig.6-A        Fig.6-B

6.3.2 Rotational Motion 
A body is said to be in pure rotation when all the constituents of the body trace concentric 
circles, the centers of which lie on a common axis of rotation. The axis of rotation may pass 
through the body or may be outside the body.

      P

         A       A1

     B                     B1

  
            C   C1

   Fig.6-C

6.4 Kinematics of Rectilinear Motion 
Consider a particle moving along a straight line. Let at time instant t, the particle be at point 
A (position x) and at a latter instant t+t, at point B (position x+x), both time and position 
measured from origin O (t = 0, x = 0).

         v                                   
vv 

O (x=0, t=0) A (x, t) B (x+x, t+t)

Fig.6-D

Displacement over journey AB = change in position in a specific direction = (x+x) – (x)
 Displacement =  x () or + x . Distance traveled over journey AB = x (scalar).
Average velocity of particle is defined as the ratio of displacement and the time interval 
over which the displacement takes place. Similarly average speed is the ratio of distance 
traveled to the required time interval.
Displacement x takes place in time interval t  so that, 

Average velocity over journey AB; 
t

x
vavg




 , Average speed over journey AB; vavg = 

t

x




.

 Instantaneous velocity may then be found as 
dt

xd

t

x

t

Lim
vinst 








0

Thus, if position )(tfx   is known, its first ordered derivative w.r.t. time gives instantaneous 
velocity.
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Let v and  vv   be the instantaneous velocities of particle at points A and B. 
Change in velocity over journey AB = v . This change takes place over time interval t so 

that average acceleration of particle over journey AB; 
t

v
aavg




  

 Instantaneous acceleration;
dt

vd

t

v

t

Lim
ainst 








0
 

Thus, if velocity )(tfv   is known, its first ordered derivative w.r.t. time gives instantaneous 
acceleration.

6.5 Types of Rectilinear Motion
A particle may undergo rectilinear motion in three different ways; viz. a = 0 i.e. Uniform 
Motion, a = K(constant) i.e. Uniformly Accelerated Motion and a = f(t) i.e. Variable 
Acceleration Motion.

6.5.1 Uniform Motion 
As acceleration of particle is zero, its speed remains constant throughout the motion. We 
have only one equation of analysis; distance = speed  time i.e. s = ut.

6.5.2 Uniformly Accelerated Motion
When acceleration ‘a’ of the particle is constant, the motion is said to be Uniformly 
Accelerated Motion. Such a motion may be analyzed using three kinematical equations;

v = u + at, 
        v2=u2 + 2as, 
        s = ut + ½ at2. 

These are vector equations, in which, u  initial velocity, v  final velocity, s  displacement 
and t  time interval. 
A particular case of uniformly accelerated motion is Gravity Motion in which, acceleration a 
= g = 9.81m/s2(↓). 

6.5.3 Variable Acceleration Motion
In this type of motion, acceleration of particle changes as the time progresses. Acceleration 
is known as a = f(t) or f(v) or f(x). Using integration and known initial conditions of the 
motion, it is possible to derive the functions; velocity 
v = g(t) and position x = ø(t), so that motion of particle is fully known. 

6.6 Motion Curves (a-t, v-t, x-t Curves) 
A graph showing instantaneous acceleration of particle v/s time is called as a-t curve. Area 
under a-t curve in the interval t = t1 to t = t2 represents change in velocity of particle over 
that interval. Similarly a graph showing instantaneous velocity v/s time is called as v-t curve. 
Slope of tangent to v-t curve at any point represents acceleration of particle at that instant. 
Also, area under v-t curve, in the interval t = t1 to t = t2 gives change in position i.e. 
displacement of particle over that interval. A graph showing position of particle v/s time is 
called as x-t curve. Slope of tangent at any point to x-t curve gives instantaneous velocity of 
the particle.

6.7 Absolute Motion & Relative Motion
Motion of a particle defined w.r.t. a stationary observer i.e. the motion, as experienced by 
an observer who is stationary at a fixed position on ground, is called as Absolute motion of 
that particle. Motion of a particle defined w.r.t. a moving observer i.e. motion of particle, as 
experienced or felt by an observer who himself is in some kind of motion is called as 
Relative motion of the particle w.r.t. that observer.
Let A and B be two particles in some kinds of motion as shown. Vectors Ar  and Br  are the 
position vectors of A and B w.r.t. a fixed X-O-Y frame of reference and are called as absolute 
positions of A and B. Now let us define a vector AB , which represents position of B relative 
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to A (i.e. position of B as observed by an observer associated with moving particle A). It is 
denoted by ABr .
Using le law, we can write,                                                Y

BABA rrr                                                                                               B

ABAB rrr                                                                                     

Differentiating w.r.t. time, we have,                                                                        ABr

dt

rd

dt

rd

dt

rd
ABAB

                                                                     Br                                 A

ABAB vvv  .

Differentiating once again w.r.t. time, we get,                                                      Ar

ABAB aaa                                                               O                                                            
X
                                                                                                                           Fig.6-

E

    

7. CURVILINEAR MOTION

7.1 Introduction
Whenever a particle travels along some curve other than a           N
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straight line, it is said to be in curvilinear motion. For any curve,                           A
it is possible define center of curvature C and radius of              
curvature  for an elemental segment, by drawing normals             s  

C
at the ends of that segment as shown (Fig.7-A).                      

     
                                                                                                                              B
                                                                                                                 N

                                                                                                                                   
Fig.7-A

7.2 Kinematics of Curvilinear Motion
Consider a particle tracing a curve. Let it be at point P at                                  P(t)
instant t and at Q at a latter instant t+t. Let 1r  and 2r be 
the position vectors of points P and Q w.r.t. some fixed                                               r     
Q(t+t)
origin. Displacement of particle over journey PQ will be                          1r

     
given by vector PQ . Using triangle law, we have,            2r                   

avgv

21 rPQr   rrrPQ  12 (say).
Thus, change in position vector gives displacement in
curvilinear motion. O
                                                                                                                                  
Fig.7-B
This displacement takes place over time interval t 
so that we have;  P(t)   1v   A

Average velocity over journey PQ, 
t

r
vavg




 .                v          

Q(t+t)

avgv  will have same direction as that of r (Fig.7-B).       2v        B            

2v
Instantaneous velocity may then be found as;                       

dt

rd

t

r

t

Lim
vinst 
















0
.    avga

Thus, if position )(tfr  is known, its first ordered             O
derivative w.r.t. time gives instantaneous velocity.             Fig.7-C
As t  0, point Q approaches point P along the curve
and almost coincides with P in limiting case. PQ , which
is a chord of the curve, tends to become tangent to the
curve at P.  Velocity avgv , which always lies along PQ     P(t)      1v

    A  
and which is now called as instv  is thus tangential to the 

     B  
curve at every point.      2v       

 
Let 1v and 2v be the velocities of particle at points P(t) 

     insta

and Q(t+t). V
ector 2v is moved parallel to itself and drawn                                     Fig.7-D 
from point P and vector AB is developed. 

Using triangle law, we have; 21 vABv 
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vvvAB  12  i.e. change in velocity of particle over journey PQ. This change takes 
place over time interval t so that average acceleration of particle over journey PQ will be; 

t

v
aavg




 . 

Again, avga  will have same direction as that of v (Fig.7-C). 

Instantaneous acceleration may then be found as; 
dt

vd

t

v

t

Lim
ainst 
















0

Thus, if velocity )(tfv  is known, its first ordered derivative w.r.t. time gives instantaneous 
acceleration.
As t  0, difference between 2v and 1v reduces and in limiting case, 2v  is almost identical 
to 1v . If we plot both the velocity vectors from common originating point P and develop AB
= v , we observe that its direction is towards the concavity of the curve. avga , which always 

lies along v and which is now called as insta  , is thus 
always inclined inwards i.e. towards concavity of the curve (Fig.7-D).
7.3 Normal & Tangential Components of Acceleration
Instantaneous acceleration, which is an inwardly inclined vector,                               Ta
may be resolved into two components, along tangent and along 
normal to the curve at any point. We have;                 P     

TN aaa                               insta

   22
TN aaa   and 

T

N

a

a
tan .

It may be proved that, magnitude of normal acceleration;            Na



2v
aN  , where v is the instantaneous speed of the particle             Fig.7-E

and  is the radius of curvature at that point.

Magnitude of tangential acceleration, 
dt

dv
aT   , i.e. the time rate at which speed of the 

particle changes, irrespective of the direction aspect of the velocity vector. Thus, in 
curvilinear motion, if speed v = f(t) is known, its first ordered derivative w.r.t. time gives 
magnitude of tangential acceleration aT.

7.4 Kinematical Equations in Curvilinear Motion
When magnitude of tangential acceleration aT is constant, kinematical equations in scalar 
form may be used to analyze curvilinear motion. These equations may be written as; 

v = u + (aT)t,
v2 = u2 + 2(aT)s,
s = ut + ½ (aT)t2 

In these equations, u ≡ initial speed, v ≡ final speed, t ≡ time interval, aT ≡ magnitude of 
tangential acceleration (which is constant), s ≡ distance traveled i.e. curve length traced by 
particle.

7.5 Radius of Curvature
For a particle moving in curvilinear motion in X-Y plane, if equation of path y = f(x) is known, 
then radius of curvature of path at any point may be calculated as;

2

2

2
3

2

1

dx

yd

dx

dy
























If horizontal and vertical positions are known as functions of time, i.e. x = f(t) and y = f(t), 
then it can be proved that,
radius of curvature at any instant;  

 
YXYX

YX

vaav

vv






2
3

22

 , where  
dt

dx
vX  , 

2

2

dt

xd
aX  , 

dt

dy
vY  , 

2

2

dt

yd
aY  .
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    

8. PROJECTILE MOTION

8.1 Introduction 
Any particle projected in air in inclined manner (e.g. a ball struck by a bat, a stone thrown or 
a bullet fired) is called as Projectile. The typical motion it undergoes is called its Projectile 
Motion. Initial velocity ‘u’ imparted to a projectile while projecting is called as Velocity of 
Projection. Angle ‘’ made by this velocity with horizontal is called as Angle of Projection.

  Y

 uY          u   H

                                       
                                                 A (t = T)          
                   (t = 0) O              uX                           

X
                                                                                            R

                                                                                      Fig.8-A

8.2 Component Motion 
Projectile motion is best analyzed as component motion. Projection velocity u is resolved 
into two components, 
ux = ucos and uy = usin. Actual curvilinear motion of projectile is imagined as a 
combination of two simultaneous motions, along X and along Y. Neglecting air resistance, 
component ux is assumed to remain constant throughout the motion. Thus X directional 
motion of projectile is uniform motion with constant speed. Vertical component uy is 
subjected to downwards gravitational acceleration so that it reduces during ascend, at the 
rate 9.81m/s2, becomes zero at the maxima of path and increases at the same rate while 
descending. Thus Y directional motion of projectile is completely governed by gravity and is 
simply gravity motion. Composition of uniform motion along X and uniformly accelerated 
(gravity) motion along Y gives the actual projectile motion. 

8.3 Equation of Path 
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The typical path traced by projectile is called as Trajectory. It may be proved that equation 
of this trajectory is;




22

2

cos2
tan

u

gx
xy  . 

Quantities u and , being the initial parameters, are constants so that this equation is of the 
form y = ax2 + bx + c, which represents a parabola. Hence trajectory of a projectile is 
always parabolic.

Analyzing projectile motion as component motion, following standard results can be proved;

(1) Time of Flight (time interval for which projectile remains in air), 
g

u
T

sin2
 .

(2) Horizontal Range (distance between point of projection and point of striking), 

g

u
R

2sin2

 . 

(3) Maximum Height (distance of maxima of trajectory from X axis), 
g

u
H

2

sin22 


We can further prove that, for a given velocity of projection u,
(1) Horizontal range is maximum at angle of projection  = 45 and the corresponding 

g

u
R

2

max 

(2) For two complementary angles of projection  and (90- ), horizontal range R is 
same.

It may be noted that all the above standard results are applicable only when point of 
projection and point of striking are on the same plane. When they are not, detailed analysis 
as component motion has to be carried out.

    

9. KINETICS OF PARTICLES

9.1 Newton’s Second Law
Newton’s Second Law states that acceleration produced in a particle due to an external 
effective force is such that its magnitude is proportional to magnitude of force and direction 
same as that of the force. 

 Fa , which may also be written as,   aF  

  maF  or vectorially,   amF . 
While analyzing rectilinear motion, it is convenient to assume one of the reference axes, say 
X, in the direction of acceleration, so that the Newton’s II Law statement may be written in 
component form as;

XX maF   and   0YF (as there is no acceleration in Y direction).

In case of curvilinear motion, acceleration may be resolved into normal and tangential 
components so that the Newton’s II Law in component form may be expressed as;



2v
mmaF

NN   and  
dt

dv
mmaF TT

9.2 D’Alembert’s Principle
From Newton’s II law, we have,   amF , which can be written as  0amF . For this 
equation to be dimensionally correct, quantity am must have same nature as that of the 
force  F . Thus, we observe that, LHS of this equation is vector sum of two forces ( F ) & 
( am ) and RHS is zero, which implies equilibrium. But particle is actually accelerating. 
Hence D’Alembert has suggested that a vector ( am ), called as Inertia Vector, may be 
added to given force system acting on the particle and the system may be brought into 
apparent equilibrium, called as Dynamic Equilibrium. Analysis of an accelerating particle 
may then be carried out like equilibrium analysis, using equations ∑Fx (including inertia 
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vector) = 0 and ∑Fy (including inertia vector) = 0.  D’Alembert’s Principle is just an 
alternative way of expressing Newton’s II Law.

9.3.1 Work by a Constant Force 
Whenever there is displacement in the particle under the action 
of external force, work is said to be done by force on the particle. 
When force F  and displacement S  are in the same direction,                           F

S
work is calculated as product of magnitude of force and magnitude 
of displacement i.e. W = FS. In a more general case when vectors F          
F
and S subtend angle θ with each other, work is calculated as
W = FScosθ  (Fig.9-A).               θ
W is +ve for 0  θ < 90,                                                      
S
W is –ve for 90 < θ  180,   Fig.9-A     
W is zero for θ = 90.   

              L
9.3.2 Work by a Variable Force      
Consider a spring deformed through x1. Let the externally 
applied force be gradually increased so that there is                     A         B
total final deformation of x2 in the spring. It is observed 
that the magnitude of internal force f is proportional to                  x1

deformation x at any instant in the spring.
xf                                                                            f f        

kxf  , where k is called as spring constant or
stiffness of the material.                          A         B
Let there be an elemental deformation dx in the spring
over and above x. Elemental work dW by internal force                 x    
dx          
over elemental deformation dx will be;
dW = - f dx = - (kx)dx.                                                                                                                
x2 – x1

 Total work by elastic force over deformation x1 to x2

(or over additional deformation x2 – x1) will be;             A
       B

 
2

1

2

1

x

x

x

x

E kxdxdWW                                                                                                                     

x2

 2
1

2
22

1 xxkWE                                                                                                Fig.9-

B
Thus, during deformation, workdone by elastic forces is negative.
If the same spring restitutes from x2 to x1, work by elastic forces will be;

 
1

2

1

2

x

x

x

x

E kxdxdWW

 2
1

2
22

1 xxkWE 

Thus, during restitution, workdone by elastic forces is positive.
In case, the spring is originally in its natural state (deformation x1 = 0) and then deforms 
through x (x2 = x) or restitutes through x to its natural state, the above expressions will 
change to;

2

2
1 kxWE  . . . during deformation and

2

2
1 kxWE  . . . during restitution.

9.4 Work-Energy Principle
Total work by all the forces acting on a particle is equal to change in kinetic energy of the 
particle.
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  22

2

1

2

1
mumvW , where u and v are initial and final speeds of the particle.

9.5 Potential Energy
If a particle of mass m is above a chosen datum level by height h, the function mgh is 
defined as Gravity Potential Energy of the particle. When particle is at datum level itself, h = 
0 and hence, gravity potential energy, PEG = 0. 
If an elastic material or spring has a deformation of x, the function ½ kx2 is called as Elastic 
Potential Energy of the system. When the spring is in natural state, deformation x = 0 and 
hence elastic potential energy, PEE = 0.

9.6 Conservative & Non-conservative Forces 
Gravity force and elastic restoring force are called as Conservative forces because when 
only these two forces are working during the motion, total mechanical energy (KE + PE) of 
the particle remains constant. All other forces like frictional force, air resistance, etc are 
called as Non-conservative forces, since mechanical energy is not conserved when these 
forces are working, but a part of it gets converted into other forms like heat, light, sound, 
etc.

9.7 Power
The time rate at which the work is accomplished is called as Power. 

Power = 
 

vF
dt

ds
F

dt

sFd

dt

dW
.

.


Thus Power may be calculated as product of magnitude of force exerted by engine and the 
speed it develops in the particle.

9.8 Impulse - Momentum Principle
Impulse is a vector quantity, which is product of force and time interval for which it acts. 
Linear momentum is also a vector, which is product of mass of particle and its instantaneous 
velocity. The Impulse – Momentum Principle states that total impulse of an external force on 
a particle is equal to change in its linear momentum. We have;

umvmdtF
t

t


2

1

Instead of a single particle, if a system of particles with masses m1, m2,…..mn , moving with 
initial velocities nuuu ,...,, 21  is acted upon by an external force F  so that their final velocities 

are nvvv ,...,, 21 , then the above equation changes to;

   umvmdtF
t

t

2

1

If impulse of external force is zero and yet the velocities of the particles change (this is 
possible when the cause of the change in velocity lies within the system),

0
2

1


t

t

dtF and the above equation reduces to   vmum , which is one of the very 

important principles
 in Physics, the momentum conservation principle.

9.9 Principle of Conservation of Momentum
It states that, in absence of impulse of an external force, linear momentum of the entire 
system of particles remains constant.

nnnn vmvmvmumumum  .......... 22112211 .
9.10 Impact 
Impact is the collision between two particles in which, actual interval of physical contact is 
extremely short, but over that short duration, a very large give-and-take of force takes place 
between two colliding particles. A common normal drawn to the two colliding surfaces at the 
point of contact is called as line of impact. When center of mass of each colliding particle 
lies on the line of impact, the impact is called as Central Impact, otherwise Eccentric Impact. 
Central impact is further classified into Direct Central Impact and Oblique Central Impact.  
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9.10.1 Direct Central Impact 
When in a central impact, velocities of both colliding particles, before collision and after 
collision, lie on the line of impact, it is said to be a Direct Central Impact (Fig.9-C).

 T

v1          v2

    N (Line of Impact)
        m1   m2 

   u1        u2

                                                                        Fig.9-C

Consider two particles with masses m1 and m2, moving with velocities 1u  and 2u . If they 
undergo a direct central impact, over short duration of collision, they are observed to travel 
with a common velocity. Let 1v  and 2v  be their velocities just after impact. During collision, 
particles exert large forces over each other, but as far as system of two colliding particles is 
concerned, external impulse is absent. Hence linear momentum of the entire system is 
conserved during the impact.

22112211 vmvmumum 

If actual impact is closely observed, we find that impact duration t is divided into two 
intervals, period of deformation t1, in which, colliding particles exert large forces on each 
other and undergo deformation, followed by period of restitution t2, in which, forces 
exerted by particles reduce, particles try to regain their original size & shape and separation 
occurs. The ratio of impulse of internal force during restitution to that during deformation is 
a constant and is defined as Coefficient of Restitution, denoted by e. 

We have;








11

22

tF

tF
e . 

It can be further proved that, 
21

12

uu

vv
e




 .

9.10.2 Oblique Central Impact
When velocities of the colliding particles before and after impact do not lie along the line of 
impact, the impact is said to be Oblique Central Impact. To analyze an oblique impact, 
velocities 1u , 2u , 1v and 2v are resolved into components, along normal and tangent (Fig.9-
D). Actual oblique impact is imagined to be a combination of two simultaneous impacts, 
along normal and along tangent. Considering part-impact along normal and ignoring all 
vectors along tangent, we observe that this part-impact is exactly identical to a direct 
central impact (Fig.9-E). 

              v1
T         v2

T

         v1            v2

          v1
N           v2

N                   v1
N        v2

N

     m1      m2   m1   m2                     
N

       u1
N  u2

N           u1
N 

         u2
N

         u1  u1
T                      u2

T              u2

                                     
                                        Fig.9-D                                                                             
Fig.9-E
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Impact along normal may, thus, be analyzed using equations;

NNNN vmvmumum 22112211   and NN

NN

uu

vv
e

21

12






Now considering part-impact along tangent and ignoring all vectors along normal (Fig.9-F), 
conservation of momentum principle in tangential direction for the entire system may be 
written as;

TTTT vmvmumum 22112211 

Consider FBD of any one particle, say of m1 (Fig.9-G). If Tu1 > Tu2 , over short duration of 
impact, m1 will try to slide tangentially over m2 and the two surfaces will develop frictional 
opposition to this relative sliding. Using Impulse-Momentum Principle for m1 alone, we can 
write;

TT
t

t

umvmdtF 111

2

1



However, we assume the colliding particles to be ideally smooth, so that the frictional forces 
are absent. 

TTTT uvumvm 111111  .
Similarly, by considering FBD of m2 and ignoring friction, it may be proved that,

TTTT uvumvm 222222  . 
Thus we see that, in tangential impact, momentum of not only the entire system, but of 
each individual colliding particle is conserved. 

     v1
T  T    v2

T             v1
T

           m1                     m2                                m1             F

      u1
T   u2

T u1
T

   
                                             Fig.9-F Fig.9-G

9.11.1 Perfectly Plastic Impact 
When in an impact, two particles coalesce and onwards travel together with a common 
velocity, the impact is said to be Perfectly Plastic Impact. In perfectly plastic impact, there is 
a tremendous loss in KE of the system. Stages of restitution and separation do not exist and 
the colliding particles undergo permanent deformations. 
Final velocities, vvv  21 (say). The momentum conservation principle may be written as;

vmmumum )( 212211 

and coefficient of restitution e = 0.

9.11.2 Perfectly Elastic Impact 
When during an impact, not only the linear momentum but also KE of the system is 
conserved, it is said to be a Perfectly Elastic Impact. In perfectly elastic impact, we have;

22112211 vmvmumum   (conservation of momentum)
2
22

2
11

2
22

2
11 2

1
2

1
2

1
2

1 vmvmumum   (conservation of KE)

Solving these two equations, we get, 2112 uuvv   i.e. e = 1. 
This is a theoretical idea and not observed practically.

9.11.3 Semi-Elastic / Semi-Plastic Impact 
More frequently observed collisions are of this type in which 0 < e < 1. Linear momentum is 
conserved during this impact but KE of this system is partly lost. Colliding particles undergo 
very small amount of permanent deformation and most of the original size and shape is 
regained during the stage of restitution.
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    

10. KINEMATICS OF RIGID BODIES

10.1 Translational Motion
A rigid slab is said to be in pure translation, when any imaginary straight line A-B-C on its 
surface remains parallel to itself throughout the motion. When the slab moves along a 
straight-line path, it is said to be in rectilinear translation (Fig.6-A). When this path is a 
curve, it is said to be in curvilinear translation (Fig.6-B). In translational motion, all 
constituents of the body undergo same displacements over any interval of time and have 
same instantaneous velocities and accelerations, i.e. 111 CCBBAA  , CBA vvv  , 

CBA aaa  .

            A      A1    A      A1

            B      B1      B      B1

            C      C1    C      C1

Fig.6-A (repeated)           Fig.6-B (repeated)

10.2 Rotational Motion 
A rigid slab is said to be undergoing pure rotational motion when its constituents trace 
concentric circles with a common center (Fig.10-A). This center may lie within or without the 
slab and it is a perfectly stationary point. Linear velocity of every constituent is such that its 
direction is perpendicular to the radius drawn from the center of rotation to that point i.e. if 
P is the center and A, B, C, etc. are constituents, then PCvPBvPAvv CBAP  ,,,0 , 
etc.

      P

         A          A1

                vA              
                                                       B                                                               B1

             
                            vB       

                                                 C                                                                           C1

                                                                                                        
                                                                                                   vC

   Fig.10-A

10.3 Relations between Angular Quantities of Rigid Body & Linear Quantities of 
its Constituent
Consider a rigid slab undergoing rotational motion about
a fixed point O. Let radius OP turns through an angle θ
in time t. We have;     v
Curve length s = r θ
Differentiating w.r.t. time,    P1
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dt

d
r

dt

ds 
     r                     s

 v = rω                           θ
where v is the linear speed of point P and ω is 
the angular speed of slab.   O
Differentiating again w.r.t. time,            ω                  P

dt

d
r

dt

dv 
  Fig.10-B

 aT = r  
where aT is the tangential acceleration of point P and 
 is angular acceleration of slab.                 aT

Normal acceleration of point P will be;              a           P1

2
2

r
r

v
aN     

It is to be remembered that all these relations are scalar        aN

relations. 
      P

  O
                      

                                                                                                       
Fig.10-C

10.4 General Plane Motion 
When a rigid body moves in such a way that its motion is neither purely translational nor 
purely rotational, it is said to be in General Plane Motion, e.g. sliding of a rod against wall 
and floor (Fig.10-D), rolling of a wheel over stationary surface (Fig.10-E), etc.  It is possible 
to analyze every general plane motion as a combination of pure translation and pure 
rotation as shown.

     A             A             A’      A’

   R

     A1                                                =                        T        +     A1

            B      B1         B B1          B1

      Fig.10-D
T

                          A      A      A’
   

R

         G         G1    G  G1

 A1            A1

     Fig.10-E

10.5 Instantaneous Center of Rotation (ICR) 
Analyzing GPM as a combination of pure translation and pure rotation proves to be lengthy 
& time consuming. There is, however, a very efficient method to find velocity of any 
constituent of the body at any given instant. For a body in GPM, it is possible to locate, at 
every instant, one such point I in the plane such that, I itself is stationary and all the 
constituents of the body A, B, C, . . . etc. have velocities in the directions perpendicular to 
the segments drawn from I to those points, i.e. 0Iv  and ICvIBvIAv CBA  ,, . . . etc, 
which is a condition observed in pure rotational motion. Thus body in actual GPM, appears to 
be undergoing pure rotation about point I at the defined instant. Point I is called as 
Instantaneous Center of Rotation (ICR). ICR may or may not be a constituent of the body. 
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Further, position of point I itself is not fixed and keeps changing every instant as the body 
moves. Thus, GPM of any body may be analyzed as pure rotational motion of the body at the 
given instant about ICR.

    
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