CHAPTER 1

- 1. Every known element has
 - A. the same type of atoms
 - B. a unique type of atom
 - C. the same number of atoms
 - D. several different types of atom
- 2. An atom consist of
 - A. one nucleus and only one electron
 - B. one nucleus and one or more electrons
 - C. protons, electrons, and neutrons
 - D. answer b or c
- 3. The nucleus of an atom is made up to
 - A. proton and neutrons
 - B. electrons and protons
 - C. electrons
 - D. electrons and protons
- **4.** The atomic number of silicon is
 - A. 8 B. **14** C. 4 D. 2
- 5. The atomic number of germanium is
 - A. **32** B. 4 C. 2 D. 8
- **6.** The valence shell in a silicon atom has the number designation of

۹.	1	В.	0
С.	3	D.	2

- 7. Valence electrons are
 - A. in the closet orbit to the nucleus
 - B. in various orbits around the nucleus
 - C. in the most distant orbit from the nucleus
 - D. not associated with a particular atom
- 8. A positive ion is formed when
 - A. there are more holes than electrons in the outer orbit
 - B. two atoms bond together
 - C. a valence electron breaks away from the atom
 - D. an atom gains extra valence electron
- **9.** The most widely used semiconductive material in electronic device is
 - A. silicon B. carbon
 - C. germanium D. copper
- 10. The energy band in which free electrons exist is the
 - A. first band B. conduction band
 - C. second band D. valence band
- **11.** Electron-holes pairs are produced by
 - A. ionization B. thermal energy
 - C. recombination D. doping
- **12.** Recombination is when
 - A. a crystal is formed
 - B. a positive and a negative ion bond together
 - C. an electron falls into a hole
 - D. a valence electron becomes a conduction electron

- 13. In a semiconductor crystal, the atoms are held together
 - by A. forces of attraction
 - B. the interaction of valence electrons
 - C. covalent bonds
 - D. answer a, b, c

14. Each atom in a silicon crystal has

A.no valence electrons because all are shared with others atoms

- B. eight valence electrons because all are with other atoms
- C. four valence electrons
- D.four conduction electrons
- 15. The current in a semiconductor is produced by
 - A. holes only
 - B. electrons only
 - C. both electrons and holes
 - D. negative ions
- **16.** In an intrinsic semiconductor
 - A. there are no free electrons
 - B. the free electrons are thermally produced
 - C. there are only holes
 - D. there are as many electrons as there are holes
 - E. answer b and d
- **17.** The difference between an insulator and a semiconductor is
- A. a wider energy gap between the valence band and the conduction band
 - B. the number of free electrons
 - C. the atomic structure
 - D. answers a, b and c
- 18. The process of adding an impurity to an intrinsic semiconductor is called
 - A. atomic modification B. **doping**
 - C. recombination D. ionization
- **19.** A trivalent impurity is added to silicon to create
 - A. germanium
 - B. an n-type semiconductor
 - C. a depletion region
 - D. a p-type semiconductor
- 20. The purpose of a pentavalent impurity is to
 - A. increase the number of free electrons
 - B. create minority carriers
 - C. reduce the conductivity of silicon
 - D. increase the number of holes
- **21.** The majority carriers in an n-type semiconductor are
 - A. holes
 - B. conduction electrons
 - C. valence electron
 - D. protons
- **22.** Holes in an n-type semiconductor are
 - A. minority carriers that are thermally produced
 - B. majority carriers that are thermally produced
 - C. minority carriers that are produced by doping
 - D. majority carriers that are produced by doping
- **23.** A pn junction is formed by
 - A. ionization
 - B. the boundary of a p-type and an n-type material
 - C. the recombination of electrons and holesD. the collision of a proton and a neutron

24. The depletion region is created by

- A. ionization B. diffusion
- C. recombination D. answer a, b and c
- 25. The depletion region is consist of
 - A. nothing but minority carriers
 - B. positive and negative ions
 - C. no majority carriers
 - D. answer b and c
- 26. The term bias means
 - A. a dc voltage is applied to control the operation of a device
 - B. neither a, b nor c
 - C. the ratio of majority carriers to minority carriers
 - D. the amount of current across a diode

27. To forward-bias a diode

- A. an external voltage is applied that is positive at the anode and negative at the cathode
- an external voltage applied that is negative at the Β. anode and positive at the cathode
- C. an external voltage is applied that is positive at the p region and negative at the n region
- D. answer a and c
- 28. When diode is forward-biased
 - A. the only current is hole current
 - B. the only current is produced by majority carriers
 - C. the current is produced by both holes and electrons
 - D. the only current is electron current

29. Although current is blocked in reverse bias

- A. there is some current due to majority carriers
- B. there is very small current due to minority carriers
- C. there is an avalanche current
- **30.** For a silicon diode, the value of the forward-bias voltage typically
 - A. must be greater than 0.3 V
 - Β. depends on the width of the depletion region
 - depends on the concentration of majority carriers C.
 - must be greater than 0.7 V D.
- 31. When forward-biased, a diode
 - A. block current
 - B. has a high resistance
 - C. conducts current
 - D. drops a large voltage
- 32. When a voltmeter is placed across a forward-biased diode, it will read a voltage approximately equal to
 - A. the diode barrier potential
 - B. the bias battery voltage
 - C. the total circuit voltage
 - D. 0V
- 33. A silicon diode is in series with 1.0 $k\Omega$ resistor and a 5 V battery. If the anode is connected to the positive battery terminal, the cathode voltage with respect to the negative battery terminal is

Α.	0.7 V	В.	5.7 V
C.	0.3 V	D.	4.3 V

34. The positive lead of an ohmmeter is connected to the anode of a diode and the negative lead is connected to the cathode. The diode is

Α.	reverse-biased	B. forward-biased
C.	open	D. faulty

- C. open
- F. answers b and d

CHAPTER 2

35. The average value of a half-wave rectified voltage with a peak value of 200 V is

Α.	127.3 V	В.	141 V
C.	0 V	D.	63.7 V

- 36. When a 60 Hz sinusoidal voltage is applied to the input of a half-wave rectifier, the output frequency is
 - A. 60 Hz B. 120 Hz C. 0 Hz D. 30 Hz
- **37.** The peak value of the input to a half-wave rectifier is 10 V. The approximate peak value of the output is

Α.	10.7 V	В.	9.3 V
C.	10 V	D.	3.18 V

38. For the circuit in Question in Question 3, the diode must be able to withstand a reverse voltage of

Α.	5 V	В.	10 V
C.	20 V	D.	3.18 V

39. The average value of a full-wave rectified voltage with a peak value of 75 V is A. 37.5 V B. 23.9 V

C.	53 V	D	. 47.8	v
с.	55 .		. 47.0	

40. When a 60 Hz sinusoidal voltage is applied to the input of a full-wave rectifier, the output frequency is

Α.	60 Hz	в.	120 Hz
C.	240 Hz	D.	0 Hz

41. The total secondary voltage in a center-tapped full-wave rectifier is 125 rms. Neglecting the diode drop, the rms output voltage is

Α.	117 V	В.	100 V
C.	62.5 V	D.	125 V

42. When the peak output voltage is 100 V, the PIV for each diode in a center-tapped full-wave rectifier is (neglecting the diode drop) A. 100 V B. 141 V

C. 200 V D. 50 V

- 43. When the rms output voltage of a bridge full wave rectifier is 20 V, the peak inverse voltage across the diodes is (neglecting the diode drop) B. 20 V A. 28.3 V
 - C. 40 V D. 56.6 V
- 44. The ideal dc output voltage of a capacitor-input filter is equal to
 - A. the average value of the rectified voltage
 - B. the rms value of the rectified voltage
 - C. the peak value of the rectified voltage
- 45. A certain power supply filter produces an output with a ripple of 100 mV peak-to-peak and a dc value of 20 V. The ripple factor is

Α.	0.005	В.	0.05
С.	0.02	D.	0.00005

46. A 60 V peak full-wave rectified voltage is applied to a capacitor-input filter. If f = 120 Hz. R_L = 10 k Ω and C = 10 μ F, the ripple voltage is

Α.	0.6 V	В.	5.0 V
C.	6 mV	D.	2.88 V

- 47. If the load resistance of a capacitor-filtered full-wave rectifier is reduced, the ripple voltage
 - A. is not affected B. increases
 - C. decreases D. has a different frequency
- **48.** Line regulation is determined by
 - A. zener current and load current
 - B. changes in load resistance and output voltage
 - C. load current
 - D. changes in output voltage and input voltage
- **49.** Load regulations is determined by
 - A. changes in zener current and load current
 - B. changes in load current and output voltage
 - C. changes in load current and input voltage
 - D. changes in load resistance and input voltage
- 50. A 10 V peak-to-peak sinusoidal voltage is applied across a silicon diode and series resistor. The maximum voltage across the diode is
 - A. 0.7 V B. 10 V
 - C. 9.3 V D. 5 V
 - E. 4.3 V
- 51. If the input voltage to a voltage tripler has an rms value of 12 V, the dc output voltage is approximately

Α.	36 V	В.	33.9 V
C.	32.4 V	D.	50.9 V

- 52. If one of the diode in a bridge full-wave rectifier opens, the output is
 - A. one-fourth the amplitude of the input voltage
 - B. 0 V
 - C. 120 Hz voltage
 - D. a half-wave rectified voltage
- 53. If you are checking a 60 Hz full-wave bridge rectifier and observe that the output has a 60 Hz ripple
 - A. the filter capacitor is leaky
 - B. the transformer secondary is shorted
 - C. there is an open diode
 - D. the circuit is working properly

CHAPTER 3

- 54. The cathode of zener diode in a voltage regulator is normally
 - A. more negative than the anode
 - B. more positive than the anode
 - at + 0.7 V C.
 - D. grounded
- 55. If a certain zener diode has a zener voltage of 3.6 V, it operates in
 - A. avalanche breakdown
 - B. zener breakdown
 - C. regulated breakdown
 - D. forward conduction
- 56. For a certain 12 V zener diode, a 10 mA change in zener current produces a 0.1 V change in zener voltage. The zener impedance for this current ranges is
 - Α. 0.1 Ω Β. 100 Ω
 - C. 10 Ω D. 1Ω
- **57.** The data sheet for a particular zener gives $V_z = 10 V$ at I_{zT} = 500 mA. Z_z for these conditions is
 - Α. 20 Ω 50 Ω Β.
 - C. 10 Ω D unknown

- 58. A no-load condition means that
 - A. the load has infinite resistance
 - B. the load has zero resistance
 - C. answer a and c
 - D. the output terminal are open
- 59. A varactor diode exhibits
 - A. a variable capacitance that depends on forward current
 - B. a variable capacitance that depends on reverse voltage
 - C. a constant capacitance over a range of reverse voltages
 - D. a variable resistance that depends on reverse voltage
- 60. An LED
 - A. emits light when forward-biased
 - B. emits light when reverse-biased
 - C. acts as a variable resistance
 - D. senses light when reverse-biased
- 61. Compared to a visible red LED, an infrared LED
 - A. produces light with longer wavelength
 - B. produces light when reverse-biased
 - produces light with shorter wavelengths C
 - D. produces only one color of light
- **62.** The internal resistance of a photodiode
 - A. increase with light intensity when forward-biased
 - B. decrease with light intensity when forward-biased
 - C. increases with light intensity when reverse-biased
 - D. decrease with light intensity when forward-biased
- 63. A diode that has a negative resistance characteristics is the
 - A. tunnel diode B. laser diode D. hot-carrier diode
 - C. schottky diode
- 64. An infrared LED is optically coupled to a photodiode. When the LED is turned off, the reading on an ammeter is series with the reverse-biased photodiode will
 - A. increase B. not change
 - C. fluctuate D. decrease
- 65. In order for a system to function properly, the various types of circuits that make up the system must be
 - A. properly biased B. properly connected
 - C. properly interfaced D. all of the above
 - E. answer a and b

CHAPTER 4

- 66. The three terminals of a bipolar junction transistor are called
 - A. input, output, ground C. p,n,p
 - B. base, emitter, collector D. n,p,n
- 67. In a pnp transistor, the p-region are
 - A. base and emitter
 - B base and collector
 - C. emitter and collector
- 68. For operation as an amplifier, the base of a npn transistor must be
 - A. 0 V
 - negative with respect to the emitter Β.
 - positive with respect to the collector C.
 - positive with respect to the emitter D.

- 69. The emitter current is always
 - A. greater than the base current
 - B. less than the collector current
 - C. greater than the collector current
 - D. answer a and c

A. 500

C. 100

70. The β_{DC} of a transistor is its

- A. internal resistance Β. power gain C. voltage gain
 - D. current gain
- **71.** If I_C is 50 times larger than I_B , then β_{DC} is
 - Β. 0.02 D. 50
- 72. The approximate voltage across the forward-biased base emitter junction of a silicon BJT is
 - A. 0.3 V B. 0.7 V C. 0 V D. V_{BB}
- 73. The bias condition for a transistor to be used as linear amplifier is called

Α.	reverse-reverse	B. forward-reverse
C.	collector bias	D. forward-forward

74. If the output of a transistor amplifier is 5 V rms and the input is 100 mV rms, the voltage gain is

Α.	50	Β.	500
C.	5	D.	100

75. When operated in cutoff and saturation, the transistor acts like

Α.	a switch	B. a linear amplifier
C.	a variable capacitor	D. a variable resistor

- **76.** In cutoff, V_{CE} is
 - A. 0 V B. minimum D. equal to V_{cc} С maximum E. answer a and b F. answer c and d
- **77.** In saturation, V_{CE} is
 - A. 0.7 V maximum
- equal to V_{cc} Β. minimum D.
- 78. To saturate a BJT,

C.

- A. $I_B > I_{C(sat)}/\beta_{DC}$
- Β. $I_{B} = I_{C(sat)}$
- C. V_{cc} must be at least 10 V
- D. the emitter must be grounded
- 79. Once in saturation, a further increase in base current will A. not affected the collector current
 - B. cause the collector current to decrease
 - C. cause the collector current to increase
 - D. turn the transistor off
- 80. If the base-emitter junction is open, the collector voltage

15			
Α.	floating	В.	V _{cc}
C.	0 V	D.	0.2 V

CHAPTER 5

ic

- 81. The maximum value of collector current in a biased transistor is
 - A. $\beta_{DC}I_B$ B. I_{C(sat)} C. greater than I_E D. $I_E - I_B$

- 82. Ideally, a dc load line is s straight line drawn on the collector characteristics curves between
 - A. the Q-point and saturation
 - V_{CE(cut off)} and I_{C(sat)} Β.
 - the Q-point and cut-off C.
 - D. $I_B = 0$ and $I_B = I_C / \beta_{DC}$
- 83. If a sinusoidal voltage is applied to the base of a biased npn transistor and the resulting sinusoidal collector voltage is clipped near zero volts, the transistor is
 - A. being driven into saturation
 - B. being driven into cut off
 - C. operating nonlinearly
 - D. answer a and c
 - E. answer b and c
- 84. The input resistance at the base of a biased transistor depends mainly on

Α.	β _{DC}	В.	β_{DC} and R_{E}
C.	R _B	D.	R _F

- 85. In a voltage-divider biased transistor circuit such as Figure 5 –13, $R_{IN(base)}$ can generally be neglected in calculation when
 - A. R_{IN(base)} > 10 R₂ B. $R_1 \ll R_2$ C. $R_{IN(base)} > R_2$ D. R₂ > 10 R_{IN(base)}
- **86.** In a certain voltage-divider biased npn transistor, V_{B} is 2.95 V. The dc emitter voltage is approximately A. 2.95 V B. 2.25 V
 - C. 0.7 V D. 3.65 V
- **87.** Voltage-divider bias
 - A. can be essentially independent of β_{DC}
 - B. is not widely used
 - C. cannot be independent of β_{DC}

D. requires fewer components than all the other methods

- 88. The disadvantage of base bias is that
 - A. it produces low gain
 - B. it is very complex
 - C. it produces high leakage current
 - D. it is too beta dependent
- 89. Emitter bias is
 - A. essentially independent of β_{DC}
 - B. very dependent of β_{DC}
 - provides a stable bias point C.
 - D. answer a and c
- 90. In an emitter bias circuit, R_{E} = 2.7 k Ω and V_{EE} = 15 V. The emitter current
 - A. is 180 mA B. is 2.7 mA C. is 5.3 mA D. cannot be determined
- **91.** Collector-feedback bias is
 - A. based on the principle of negative feedback
 - B. based on beta multiplication
 - C. based on the principle of positive feedback
 - D. not very stable
- 92. In a voltage-divider biased npn transistor, if the upper voltage-divider resistor (the one connected to V_{cc} opens,
 - A. the transistor burns out
 - B. the transistor goes into saturation
 - the transistor goes into cutoff C.
 - D. the supply voltage is too high

- **93.** In a voltage-divider biased npn transistor, if the lower voltage-divider resistor (the one connected to V_{cc}) opens.
 - A. the collector current will decrease
 - B. the transistor may be driven into saturation
 - C. the transistor is not affected
 - D. the transistor may be driven into cutoff
- **94.** In a voltage-divider biased pnp transistor, there is no base current, but the base voltage is approximately correct. The most likely problem(s) is
 - A. a bias resistor is open
 - B. the collector resistor is open
 - C. the base-emitter junction is open
 - D. the emitter resistor is open
 - E. answer a and c
 - F. answer c and d

CHAPTER 6

96.

- **95.** A small-signal amplifier
 - A. is always a common-emitter amplifier
 - B. always has an output signal in the mV range
 - C. uses only a small portion of its load line
 - D. goes into saturation once on each input cycle

The	e parameter h _{fe} corresponds to		
Α.	β _{AC}	В.	β_{DC}
C.	r' _c	D.	r' _e

97. If the dc emitter current in a certain transistor amplifier is 3 mA, the approximate value of r'_{e} is

Α.	3 Ω	В.	3 kΩ
C.	0.33 kΩ	D.	8.33 Ω

- **98.** A certain common-emitter amplifier has a voltage gain of 100. If the emitter bypass capacitor is removed,
 - A. the voltage gain will decrease
 - B. the voltage gain will increase
 - C. the circuit will become unstable
 - D. the Q-point will shift
- **99.** For a common-collector amplifier, $R_E = 100 \Omega$, $r'_e = 10 \Omega$, and $\beta_{AC} = 150$. The ac input resistance at the base is

Α.	16.5 Ω	В.	15 kΩ
C	110.0	П	1500.0

- C. 110 Ω D. 1500 Ω
- **100.** If a 10 mV signal is applied to the base of the emitterfollower circuit in Question 5, the output signal is approximately

Α.	1.5 mV	В.	10 mV
C.	100 mV	D.	150 mV

- **101.**For a common-emitter amplifier, $R_c = 1.0 \text{ k}\Omega$, $R_E = 390 \Omega$, and $\beta_{ac} = 75$. Assuming the R_E is completely bypassed at the operating frequency, the voltage gain is
 - A.2.56B.66.7C.2.47D.75
- **102.** In the circuit of Question 7, if the frequency is reduced to the point where $X_{C(bypass)} = R_E$, the voltage gain
 - A. remains the sameB. is lessC. is greaterD.
- **103.**In a certain emitter-follower circuit, the current gain is 50. The power gain is approximately

C.	1	D.answer a and b
Α.	50 A _V	B. 50

- 104. In a darlington pair configuration, each transistor has an
 - ac beta of 125. If R_E is 560 Ω , the input resistance is
 - A. 560 Ω B. 70 Ω
 - C. 140 kΩ D. **8.75 MΩ**
- 105. The input resistance of a common-base amplifier is
 - A. the same as a CC
 - B. the same as a CE
 - C. very low
 - D. very high

106. In a common-emitter amplifier with voltage-divider bias, $R_{in(base)} = 68 \text{ k}\Omega$, $R_1 = 33 \text{ k}\Omega$, and $R_2 = 15 \text{ k}\Omega$. The total input resistance is

- A.
 22.2 kΩ
 B.
 68 kΩ
- C. **8.95 kΩ** D. 12.3 kΩ

107. A CE amplifier is driving a 10 k Ω load. If R_c = 2.2 k Ω and r'_e = 10 Ω , the voltage gain is approximately

A. **180** B. 220

C.
C.

108.The overall gain found in Question 14 can be expressed in decibels as

Α.	47.0 dB	В.	35.6 dB
C.	94.1 dB	D.	69.8 dB

CHAPTER 7

109.The JFET is

- A. a unipolar device
- B. a voltage-controlled device
- C. a current-controlled device
- D. answer a and c
- E. answer a and b
- 110. The channel of a JFET is between the
 - A. drain and source B. gate and drain
 - C. input and output D. gate and source

111.A JFET always operates with

- A. the gate connected to the source
- B. the gate-to-source pn junction forward-biased
- C. the gate-to-source pn junction reverse-biased
- D. the drain connected to ground

112.For $V_{GS} = 0$ V, the drain current becomes constant when V_{DS} exceeds

- A. 0V B. V_p
- C. V_{DD} D. cutoff

113. The constant-current area of a FET lies between

- A. pinch-off and breakdown B. 0 and I_{DSS}
 - C. cutoff and saturation D. cutoff and pinch-off

114.I_{DSS} is

- A. the drain current at cutoff
- B. the maximum possible drain current
- C. the drain current with the source shorted
- D. the midpoint drain current

115.Drain current in the constant-current area increases when

- A. the drain-to-source voltage decreases
- B. the gate-to-source bias voltage increases
- C. the gate-to-source bias voltage decreases
- D. the drain-to-source voltage increases

116. In a certain FET circuit, $V_{GS} = 0^{-1}$ and $R_D = 470 \Omega$. If R_D is decrease A. 1 mA C. 19.5 mA	V, V _{DD} = 15 Y ed to 330 Ω B. D.	V, I _{DSS} = 15 mA, I _{DSS} is 10.5 mA 15 mA	129. In a cert V, and g bypassed A. 450
			C. 4.5
117.At cutoff, the JFET channel is	doplotion ro	sion	120 Ideally, t
B. at its wide points	depietion re	gion	A. a cu
C. extremely narrow			B. a re
D. reverse-biased			C. a cu
			D. a (
118. A certain JFET data sheet gives	$S V_{GS(off)} = -2$	4 V. The pinch-	tern
Off voltage, V_p ,	B	is _1 \/	121 The val
C depends on V _{cc}	D. D	is + 4 V	depende
	υ.	13 . 4 .	A. tran
119. The JFET in Question 10			B. dcs
A. is an n channel	B. is a	p channel	C. exte
C. can be either	D.		D. ansv
	A -+ \/ 4		122 A
120. For a certain JFET, I _{GSS} = 10 n/	A at $V_{GS} = 1$	0 v. The Input	132.A certair
	В	1000 MO	Δthe
C. 100 MΩ	D.	1000 mΩ	B. the
			C. the
121. For a certain p-channel JFET, V _c	_{GS(off)} = 8 V. T	he value of V _{GS}	D. the
for an approximately midpoint	bias is		
A. 2.34 V	В.	0 V	133.A CS am
C. 4 V	D.	1.25 V	Ω , If g _m
	a a i a lu c la a a a c		voltage
A of the power rating	nainiy becat	ise	A. 1.85
B. the JFET has a pn junction			C. 25 V
C. MOSFETs do not have a ph	ysical chanr	nel	134. If the lo
D. the MOSFET has two gates	;		output v
			A. stay
123. A certain D-MOSFET is biased a specifies I_{DSS} = 20 mA and $V_{GS(o)}$	at V _{GS} = 0 V _{off)} = - 5 V. Tl	. Its data sheet ne value of the	C. incr
drain current			135.A certair
A. IS U A $(a, b) = (a, b)$	B. cannot	be determined	has a tra
C. IS 20 IIIA	D.		A. 1 C 0.98
L 24. An n-channel D-MOSFET with p	ositive V _{os} i	s operating in	0.50
A. the depletion mode	B.	cutoff	136. The data
C. the enhancement mode	D.	saturation	specifies
			to grou
L25. A certain p-channel E-MOSFET	has a $V_{GS(th)}$	= - 2 V. If V _{GS} =	approxir
0 V, the drain current is	_		A. 50 N
A. 0A	B.	maximum	C. 40 N
C. I _{DSS}	D.	D(on)	137 The com
26. A TMOSEET is a special type of			and CD o
A. JFET	В.	D-MOSFET	A. muc
C. answer a and c	D.	E-MOSFET	B. muc
			C. muc
CHAPTER 8			D. muc

127.In a common-source amplifier, the output voltage is 180°

- out of phase with the input
- A. in phase with the input
- B. taken at the source
- C. taken at the drain
- D. answer a and c
- F. answer a and d
- 128.In a certain common-source (CS) amplifier, V_{DS} = 3.2 V rms and V_{GS} = 280 mV rms. The voltage gain is

Α.	1	В.	11.4
C.	8.75	D.	3.2

ain CS amplifier, $R_D = 1.0 \text{ k}\Omega$, $R_S = 560 \Omega$, $V_{DD} = 10$ m_m = 4500 μ S. If the source resistor is completely d, the voltage gain is

- B. 45 D. 2.52

the equivalent circuit of a FET contains

- irrent source in series with a resistance
 - sistance between drain and source terminals
 - irrent source between gate and source terminals
 - current source between drain and source ninals
- ue of the current source in Question 4 is ent on the
 - sconductance and gate-to-source voltage
 - upply voltage
 - ernal drain resistance
 - wer b and c
- n common-source amplifier has a voltage gain of e source bypass capacitor is removed,
 - voltage gain will increase
 - transconductance will increases
 - voltage gain will decreases
 - Q-point will shift
- plifier has a load resistance of 10 k Ω and R_D = 820 = 5 mS and V_{in} = 500 mV, the output signal is
 -) V B. 2.05 V D. 0.5 V
- oad resistance in Question 7 is removed, the oltage will
 - B. decrease the same D. be zero ease
- n common-drain (CD) amplifier with $R_s = 1.0 \text{ k}\Omega$ nsconductance of 6000 μS. The voltage gain is B. 0.86
 - D. 6
- a sheet for the transistor used in a CD amplifier I_{GSS} = 5 nA at V_{GS} = 10 V. If the resistor from ate nd, R_G , is 50 M Ω , the total input resistance is nately. NΩ B. 200 MΩ
 - D. 20.5 MΩ NO

mon-gate (CG) amplifier differs from both the CS configuration in that it has a

- ch higher voltage gain
- ch lower voltage gain
- ch higher input resistance
- ch lower input resistance
- 138.If you are looking for both good voltage gain and high input resistance, you must use a
 - A. CS amplifier В. CD amplifier C. CG amplifier D
- 139. For small-signal operation, an n-channel JFET must be biased at

Α.	$V_{GS} = 0 V$	В.	$V_{GS} = V_{GS(off)}$
C.	- V _{GS(off)} <v<sub>GS<0V</v<sub>	D.	$V_{GS} = V_{GS(off)}$
-	<u> </u>		

E. $0V < V_{GS} < +V_{GS(off)}$

- **140.**Two FET amplifier are cascaded. The first stage has a voltage gain of 5 and the second stage has a voltage gain of 7. The overall voltage gain is
 - A. **35**
 - B. 12
 - C. dependent on the second stage loading
- **141.**If there is an internal open between the drain and source in a CS amplifier, the drain voltage is equal to
 - A. 0V B. V_{DD}
 - C. a value less than normal D. V_{GS}

CHAPTER 9

- 142.An amplifier that operates in the linear region at all times is
 - A. Class A B. Class AB
 - C. Class B D. Class C
- **143.**A certain class A power amplifier delivers 5 W to a load with an input signal power of 100 mW. The power gain is
 - A. 100 B. **50**
 - C. 250 D. 5
- **144.**The peak current a class A power amplifier can deliver to a load depends on the
 - A. maximum rating of the power supply
 - B. quiescent current
 - C. current in the bias resistor
 - D. size of the heat sink
- **145.**For maximum output, a class A power amplifier must be maintain a value of quiescent current that is
 - A. one-half the peak load current
 - B. twice the peak load current
 - C. at least as large as the peak load current
 - D. just above the cutoff value

146.A certain class A power amplifier has V_{CEQ} = 12 V and I_{CQ} =

- 1 A. The maximum signal power output is
- A. 6 W B. 12 W
- C. 1 W D. 0.707 W
- **147.**The efficiency of a power amplifier is the ratio of the power delivered to the load to the
 - A. input signal power
 - B. power dissipated in the last stage
 - C. power from the dc power supply
 - D. none of these answer
- 148. The maximum efficiency of a class A power amplifier is

Α.	25%	В.	50%
C.	79%	D.	98%

149.The transistor is a class B amplifier are biased

А.	Into cutom	в.	in saturatio	on
С.	at midpoint of the load line	D.	right	at

cutoff

150	D. Cro	ssover distortion is a problem for			
	Α.	class A amplifiers	В.	class	
am	plifie	ers			

C. class B amplifiers D. all of these amplifiers

- **151.**A BJT class B push-pull amplifier with no transformer coupling uses
 - A. two npn transistors B. two pnp transistors
 - C. complementary symmetry transistors
 - D. none of these

- **152.**A current mirror in a push-pull amplifier should give an I_{CQ} that is
 - A. equal to the current in the bias resistors and diodes
 - B. twice the current in the bias resistors and diodes
 - C. half the current in the bias resistors and diodes
 - D. zero
- 153. The maximum efficiency of a class B push-pull amplifier is

Α.	25%	Β.	50%
~		-	000/

- C. **79%** D. 98%
- **154.**The output of a certain two-supply class B push pull amplifier has a V_{CC} of 20 V. If the load resistance is 50 Ω , the value of I_{C(sat)} is
 - A. 5 mA B. **0.4 A**
 - C. 4 mA D. 40 mA

155.The maximum efficiency of a class AB amplifier is

- A. higher than a class B
- B. the same as class B
- C. about the same as a class A
- D. slightly less than a class B

156. The power dissipation of a class C amplifier is normally

- A. very low B. very high
- C. the same as a class B D. the same as a class A
- **157.**The efficiency of a class C amplifier is
 - A. less than class A
 - B. less than class B
 - C. less than class AB
 - D. greater than classes A, B, or AB

158.The transistor in a class C amplifier conducts for

- A. more than 180° of the input cycle
- B. one-half of the input cycle
- C. a very small percentage of the input cycle
- D. all of the input cycle

CHAPTER 10

- **159.**The low-frequency response of an amplifier is determined in part by
 - A. the voltage gain
 - B. the type of transistor
 - C. the supply voltage
 - D. the coupling capacitors
- **160.**The high-frequency response of an amplifier is determined in part by
 - A. the gain-bandwidth product
 - B. the bypass capacitor
 - C. the internal transistor capacitances
 - D. the roll-off

161. The bandwidth of an amplifier is determined by

- A. the midrange gain
- B. the critical frequencies
- C. the roll-off rate

AR

- D. the input capacitance
- **162.**The gain of a certain amplifier decrease by 6 dB when the frequency is reduced from 1 kHz to 10 Hz. The roll-off is
 - A. 3 dB/decade
 - B. 6 dB/decade
 - C. 3 dB/octave
 - D. 6 dB/octave

- **163.**The gain of a particular amplifier at a given frequency decreases by 6 dB when the frequency is doubled. The roll-off is
 - A. 12 dB/decade
 - B. 20 dB/decade
 - C. 6 dB/octave
 - D. answer b and c
- **164.**The miller input capacitance of an amplifier is dependent, in part, on
 - A. the input coupling capacitor
 - B. the voltage gain
 - C. the bypass capacitor
 - D. none of these

165.An amplifier has the following critical frequencies: 1.2 kHz, 950 Hz, 8 kHz, and 8.5 kHz. The bandwidth is

- A. 7550 Hz B. 7300 Hz
- C. 6800 Hz D. 7050 Hz

166.Ideally, the midrange gain of an amplifier

- A. increase with frequency
- B. decrease with frequency
- C. remains constant with frequency
- D. depends on the coupling capacitors
- **167.**The frequency at which an amplifier's gain is 1 is called the
 - A. unity-gain frequency
 - B. midrange frequency
 - C. corner frequency
 - D. break frequency
- **168.**When the voltage gain of an amplifier is increased, the bandwidth
 - A. is not affected
 - B. increases
 - C. decreases
 - D. becomes distorted
- **169.** If the f_r of the transistor used in a certain amplifier is 75 MHz and the bandwidth is 10 MHz, the voltage gain must be

Α.	750	в.	7.5
C.	10	D.	1

170.In the midrange of an amplifier's bandwidth, the peak output voltage is 6 V. At the lower critical frequency, the peak output voltage is

Α.	3 V	В.	3.82 V
C.	8.48 V	D.	4.24 V

- **171.**At the upper critical frequency, the peak output voltage of a certain amplifier is 10 V. The peak voltage in the midrange of the amplifier is
 - A.
 7.07 V
 B.
 6.37 V

 C.
 14.14 V
 D.
 10 V
- **172.** In the step response of a noninverting amplifier, a longer rise time means

Α.	a narrower bandwidth	B. a lower f _{cl}
C.	a higher f _{cu}	D. answer a and b

173.The lower critical frequency of a direct-coupled amplifier with no bypass capacitor is

Α.	variable	B. 0 Hz
C.	dependent on the bias	D. none of these

CHAPTER 11

- 174.a thyristor has
 - A. two pn junctions
 - B. three pn junctions
 - C. four pn junctions
 - D. only two terminals

175.Common types of thyristors includes

- A. BJTs and SCRs
- B. UJTs and PUTs
- C. FETs and triacs D. **diacs and triacs**
- **176.**A 4-layer didoe turns on when the anode to cathode voltage exceeds
 - A. 0.7 V
 - B. the gate voltage
 - C. the forward-breakover voltage
 - D. the forward-blocking voltage
- 177. Once it conducting, a 4-layer diode can be turned off by
 - A. reducing the current below a certain value
 - B. disconnecting the anode voltage
 - C. answer a and b
 - D. neither answer a nor b
- 178. An SCR differs from 4-layer diode because
 - A. it has a gate terminal
 - B. it is not thyristor
 - C. it does not have four layers
 - D. it cannot be turned on and off

179. An SCR can be turned off by

- A. forced commutation
- B. a negative pulse on the gate
- C. anode current interruption
- D. answer a, b and c
- D. answer a and c

180. In the forward-blocking region, the SCR is

- A. reverse-biases
- B. in the off state
- C. in the on state
- D. at the point of breakdown
- **181.**The specified value of holding current for an SCR means that
 - A. the device will turn on when the anode current exceeds this value
 - B. the device will turn off when the anode current falls below this value
 - C. the device may be damaged if the anode current exceeds this value
 - D. the gate current must be equal or exceeds this value to turn the device on

182. The diac is

- A. a thyristor
- B. a bilateral, two terminal device
- C. like two parallel 4-layer diode in reverse directions
- D. answer a, b and c

183. The triac is

- A. like a bi-directional SCR
- B. a four-terminal device
- C. not a thyristor
- D. answer a and b

184. The SCS differs from the SCR because

- A. it does not have a gate terminal
- B. its holding current is less
- C. it can handle much higher currents
- D. it has two gate terminals

185. The SCS can be turned on by

- A. an anode voltage that exceeds forward-breakover voltage
- B. a positive pulse on the anode gate
- C. a negative pulse on the anode gate
- D. either b or c

186. The SCS can be turned off by

- A. a negative pulse on the cathode gate and a positive pulse on the anode gate
- B. reducing the anode current to below the holding value
- C. answer a and b
- D. a positive pulse on the cathode gate and a negative pulse on the anode gate

187. Which of the following is not a characteristic of the UJT?

- A. intrinsic standoff ratio
- B. negative resistance
- C. peak-point voltage
- D. bilateral conduction

188. The PUT is

- A. much like the UJT
- B. not a thyristor
- C. triggered on and off by the gate-to-anode voltage
- D. not a four-layer device

189.In a phototransistor, base current is

- A. set by bias voltage
- B. directly proportional to light
- C. inversely proportional to light
- D. not a factor

CHAPTER 12

190. An integrated circuit (IC) op-amp has

- A. two inputs and two outputs
- B. one input and one-output
- C. two inputs and one output
- **191.**Which of the following characteristics does not necessarily apply to an op-amp?
 - A. high gain B. low power
 - C. high input impedance D. low output impedance

192.A differential amplifier

- A. is part of an op-amp
- B. has one input and one output
- C. has two outputs
- D. answer a and c
- **193.**When an op-amp is operated in the single-ended mode, the output is grounded
 - A. one input is grounded and a signal is applied to the other
 - B. both inputs are connected together
 - C. the output is not inverted

194.In the differential mode,

- A. opposite polarity signals are applied to the inputs
- B. the gain is 1
- C. the output are different amplitudes
- D. only one supply voltage us used

195.In the common mode,

- A. both inputs are grounded
- B. the output are connected together
- C. an identical signal appears on both inputs
- D. the output signals are in-phase

196.Common-mode gain is

Α.	very high
C.	always unity

D. unpredictable

B. very low

- **197.** If $A_{v(d)}$ = 3500 and A_{cm} = 0.35, the CMRR is
 - A. 1225 B. 10,000
 - C. 80 dB D. answers b and c
- **198.**With zero volts on both inputs, an op-amp ideally should have an output equal to
 - A. the positive supply voltage
 - B. the negative supply voltage
 - C. zero
 - D. the CMRR
- **199.**Of the valued listed, the most realistic value for openloop gain of an op-amp is
 - A. **1** B. 2000
 - C. 80 db D. 100,000
- 200. A certain op-amp has a bias current of 50µA and 49.3µA. The input offset current is

Α.	700 nA	В.	99.3µA
C.	49.7μΑ	D. I	none of these

201.The output of a particular op-amp increases 8 V in 12 $\mu s.$ The slew rate is

A.	96 V/µs	B. 0.67 V/ μs
C.	1.5 V/μs	D. none of the above

202. The purpose of offset nulling is to

- A. reduce gain
- B. equalize the input signals
- C. zero the output error voltage
- 203. For an op-amp with negative feedback, the output is
 - A. equal to the input
 - B. increased
 - C. fed back to the inverting input
 - D. fed back to the noninverting input

204. The use of negative feedback

- A. reduces the voltage gain of an op-amp
- B. makes the op-amp oscillate
- C. makes linear operation possible
- D. answer a and c

C. is not affected

205.Negative feedback

- A. increases the input and output impedances
- B. increases the input impedance and the bandwidth
- C. decreases the output impedance and the bandwidth
- D. does not affect impedances of bandwidth

206.A certain inverting amplifier has an R_i of 0.1 $k\Omega$ and an R_f of 100 $k\Omega.$ The closed loop gain is

- A. 100,000 B. 1000
- C. **101** D. 100
- **207.**If the feedback resistor in Question 17 is open, the voltage gain is
 - A. increases B. decreases

D. depends on R_i

- **208.**A certain inverting amplifier has a closed-loop gain of 25. The op-amp has an open-loop gain of 100,000. if another op-amp with an open loop gain of 200,000 is substituted in the configuration, the closed-loop gain
 - A. doubles B. drops to 12.5
 - C. remains at 25 D. increases slightly

209. A voltage follower

- A. has a gain of 1 B. is noninverting
- C. has no feedback resistor D. has all of these
- **210.**The bandwidth of an ac amplifier having a lower critical frequency of 1 kHz and an upper critical frequency of 10 kHz is
 - A.
 1 kHz
 B.
 9 kHz

 C.
 10 kHz
 D.
 11 kHz
- **211.**The bandwidth of a dc amplifier having an upper critical frequency of 100 kHz is
 - A. **100 kHz** B. unknown
 - C. infinity D. 0 kHz

212. The midrange open-loop of an op amp

- A. extends from lower critical frequency to the upper critical frequency
- B. extends from 0 Hz to the upper critical frequency
- C. rolls off at 20 db/decade beginning at 0 Hz
- D. answers a and c
- **213.**The frequency at which the open-loop gain is equal to 1 is called
 - A. the upper critical frequency
 - B. the cutoff frequency
 - C. the notch frequency
 - D. the unity-gain frequency

214.Phase shift through an op-amp is caused by

- A. the internal RC circuits
- B. the external RC circuits
- C. the gain roll-off
- D. negative feedback

215. Each RC circuit in an op-amp

- A. causes the gain to roll off at 6 dB/octave
- B. causes the gain to roll off at 20 db/octave
- C. reduces the midrange gain by 3 dB
- D. answer a and b
- **216.**When negative feedback is used, the gain-bandwidth product of an op-amp
 - A. increases B. decreases
 - C. stays the same D. fluctuates
- **217.** If a certain op-amp has a midrange open-loop gain of 200,000 and a unity gain frequency of 5 MHz, the gain-bandwidth product is
 - A. 200,000 Hz
 - B. 1 x 10¹² Hz
 - C. 5,000,000 Hz
 - D. not determinable from the information
- **218.** If a certain op-amp has a closed-loop gain of 20 and an upper critical frequency of 10 MHz, the gain-bandwidth product is
 - A. 200 MHz B. 10 MHz
 - C. the unity-gain frequency D. answer a and c

CHAPTER 13

- **219.**In a zero-level detector, the output changes state when the input
 - A. is positive B. is negative
 - C. crosses zero D. has a zero rate of change

220. The zero-level detector is one application of a

- A.comparatorB. differentiatorC.summing amplifierD.diode
- **221.**Noise on the input of a comparator can cause the output to
 - A. hang up in one state
 - B. go to zero
 - C. change back and forth erratically between two states
 - D. produce the amplified noise signal

222. The effect the noise can be reduced by

- A. lowering the supply voltage
- B. using positive feedback
- C. using negative feedback
- D. using hysteresis
- E. answer b and d

223.A comparator with hysteresis

- A. has one trigger point
- B. has two trigger points
- C. has a variable trigger point
- D. is like a magnetic circuit

224.In a comparator with hysteresis

- A. a bias voltage is applied between the two inputs
- B. only one supply voltage is used
- C. a portion of the output is feedback to the inverting input
- D. a portion of the output is feedback to the noninverting input
- 225. Using the output bounding in a comparator
 - A. makes faster
 - B. keeps the output positive
 - C. limits the output levels
 - D. stabilizes the output

226.A summing amplifier can have

- A. only one input
- B. only two inputs
- C. any number of inputs
- 227.If the voltage gain for each input of a summing amplifier with a 4.7 $k\Omega$ feedback resistor is unity, the input resistor must have a value of
 - A. 4.7 kΩ
 - B. $4.7 \ k\Omega$ divided by number of inputs
 - C. 4.7 k Ω times the number of inputs

 $\boldsymbol{228}. An$ average amplifier has five inputs. The ratio $R_f I R_i$ must

- be A. 5 B. **0.2**
- C. 1

229. In a scaling adder, the input resistors are

- A. all the same value
- B. all of different values
- C. each proportional to the weight of its input
- D. related by a factor of two

230. In an integrator, the feedback element is a

- A. resistor B. capacitor
- C. zener diode D. voltage divider
- 231. For a step input, the output of an integrator is
 - A. a pulse B. a triangular waveform C. a spike D. a ramp
- 232. The rate of change of an integrator's output voltage in response to a step input is set by
 - A. the RC time constant
 - B. the amplitude of the step input
 - C. the current through the capacitor
 - D. all of these
- 233.In a differentiator, the feedback element is
 - A. resistor B. capacitor
 - C. zener diode D. voltage divider
- 234. The output of a differentiator is proportional to
 - A. the RC time constant
 - B. the rate at which the input is changing
 - C. the amplitude of the input
 - D. answer a and b
- 235. When you apply a triangular waveform to the input of a differentiator, the output is
 - A. a dc level
 - B. an inverted triangular waveform
 - C. a square waveform
 - D. the first harmonic of the triangular waveform

CHAPTER 14

- 236. To make a basic instrumentation amplifier, it takes
 - A. one op-amp with a certain feedback arrangement
 - B. two op-amps and seven resistors
 - C. three op-amps and seven capacitors
 - D. three op-amps and seven resistors
- 237. Typically, an instrumentation amplifier has an external resistor used for
 - A. establishing the input impedance
 - B. setting the voltage gain
 - C. setting the current gain
 - D. interfacing with an instrument

238. Instrumentation amplifiers are used primarily in

- A. high-noise environments
- B. medical equipment
- C. test instruments
- D. filter circuits
- 239. Isolation amplifiers are used primarily in remote, isolated locations systems that isolate a single signal from many different signals
 - A. applications where there are high voltages and sensitive
 - B. equipment
 - C. applications where human safety is a concern
 - D. answer c and d

240. The three parts of a basic isolation amplifier are

- A. amplifier, filter, and power
- B. input, output, and coupling
- C. input, output, and power
- D. gain, attenuation, and offset

241. The stage of most isolation amplifiers are connected by

- A. copper strips B. transformers
- C. microwave links D. current loops
- 242. The characteristics that allows an isolation amplifier to amplify small signal voltages in the presence of much greater noise voltages is its
 - A. CMRR
 - B. high gain
 - C. high input impedance
 - D. magnetic coupling between input and output
- 243. The term OTA means
 - A. operational transistor amplifier
 - B. operational transformer amplifier
 - C. operational transconductance amplifier
 - D. output transducer amplifier
- 244. In an OTA, the transconductance is controlled by
 - A. the dc supply voltage
 - B. the input signal voltage
 - C. the manufacturing process
 - D. a bias current
- 245. The voltage gain of an OTA circuit is set by
 - A. a feedback resistor
 - B. the transconductance only
 - C. the transconductance and the load resistor
 - D. the bias current and supply voltage

246.An OTA is basically a

- A. voltage-to-current amplifier
- B. current-to-voltage amplifier
- C. current-to-current amplifier
- D. voltage-to-voltage amplifier

247. The operation of a logarithmic amplifier is based on

- A. the nonlinear operation of an op-amp
- B. the logarithmic characteristics of a pn junction

C. the reverse breakdown characteristics of a pn junction

D. the logarithmic charge and discharge of an RC circuit

248.If the input to a log amplifier is x, the output is proportional to

À.	e ^x	В.	ln x
C.	log ₁₀ ^x	D.	2.3 log ₁₀ ^x
Ε.	answer a and c	F.a	inswer b and d

249.If the input to an antilog amplifier is x, the output is proportional to

Α.	e ^{inx}	В.	e [×]
C.	In x	D.	e⁻×

250. The logarithm of the product of two numbers is equal to the

- A. sum of the two numbers
- B. sum of the logarithms of each of the numbers
- C. ratio of the logarithm of the numbers

251. If you subtract In y from In x, you get

A.	ln x/ln y	В.	(In x)(In y)
C.	ln(x/y)	D.	In(y/x)

CHAPTER 15

- 252. The term pole in filter terminology refers to
 - A. a high-gain op-amp B. one complete active filter
 - C. a single RC circuit
- D. the feedback circuit

- **253.** A single resistor and a single capacitor can be connected to form a filter with a roll-off rate of
 - A. 20 dB/decade
 - B. 40 dB/decade
 - C. 6 dB/octave
 - D. answer a and c

254.A band-pass response has

- A. two critical frequencies
- B. one critical frequency
- C. a flat curve in the passband
- D. a wide bandwidth

255. The lower frequency passed by a low-pass filter is

- A. 1 Hz B. 0 Hz
- C. 10 Hz D. dependent on the critical frequency

256. The quality factor (Q) of a band-pass filter depends on

- A. the critical frequencies
- B. only the bandwidth
- C. the center frequency and the bandwidth
- D. only the center frequency

257.The damping factor of an active filter determines

- A. the voltage gain
- B. the critical frequency
- C. the response characteristics
- D. the roll-off rate

258.A maximally flat frequency response is known as

- A. chebyshev B. butterworth
- C. Bessel D. colpitts

259.The damping factor of a filter is set by

- A. the negative feedback circuit
- B. the positive feedback circuit
- C. the frequency-selective circuit
- D. the gain of the op-amp

260. The number of poles in a filter affect the

- A. voltage gain
- B. bandwidthD. roll-off rate

decreases

B.

C. center frequency D. roll-

261.Sallen-Key filters are

- A. single-pole circuit
- B. second-order filters
- C. butterworth filters
- D. band-pass filters

262.When filters are cascaded, the roll-off rate

- A. increases
- C. does not change
- **263.**When the low-pass and a high-pass filter are cascaded to get a band-pass filter, the critical frequency of the low-pass filter must be
 - A. equal to the critical frequency of the high-pass filter
 - B. less than the critical frequency of the high-pass filter
 - C. greater than critical frequency of the high-pass filter

264.A state-variable filter consist of

- A. one op-amp with multiple-feedback paths
- B. a summing amplifier and two integrators
- C. a summing amplifier and two differentiators
- D. three butterworth stages

- 265. When the gain of a filter is minimum at its center
 - frequency, it is A. a band-pass filter
 - B. a band-stop filter
 - C. a notch filter
 - D. answer b and c

CHAPTER 16

266. An oscillator differs from an amplifier because

- A. it has more gain
- B. it requires no input signal
- C. it requires no dc supply
- D. it always has the same output

267. Wien-bridge oscillators are based on

- A. positive feedback
- B. negative feedback
- C. the piezoelectric effect
- D. high gain

268.One condition for oscillation is

- A. a phase shift around the feedback loop of 180°
- B. a gain around the feedback loop of one-third
- C. a phase shift around the feedback loop of $\mathbf{0}^\circ$
- D. a gain around the feedback loop of less than 1 $\,$
- **269.**A second condition for oscillation is
 - A. no gain around the feedback loop
 - B. a gain of 1 around the feedback loop
 - C. the attenuation of the feedback circuit must be one-third
 - D. the feedback circuit must be capacitive
- **270.**In a certain oscillator, $A_v = 50$. The attenuation of the feedback circuit must be

Α.	1	В.	0.01
C.	10	D.	0.02

- **271.**For an oscillator to properly start, the gain around the feedback loop must initially be
 - A. 1 B. less than 1
 - C. greater than 1 D. equal to B
- **272.**In a Wien-bridge oscillator, if the resistance in the positive
 - A. feedback circuit are decreased, the frequency
 - B. decreases
 - C. increases
 - D. remains the same

273.The Wien-bridge oscillator's positive feedback circuit is

- A. an RL circuit B. an LC circuit
- C. a voltage divider D. a lead-lag circuit

274. A phase-shift oscillator has

Α.	three RC circuits	B. three LC circuits
C.	a T-type circuit	D. a π-type circuits

275. Colpitts, Clapp, and Hartley are names refer to

- A. types of RC oscillation
- B. inventors of the transistor
- C. types of LC oscillators
- D. types of filters

A. a crystal oscillator

C. an Armstrong oscillator

276.An oscillator whose frequency is charged by a variable dc voltage is known as

B. a VCO

D. a piezoelectric device

277.The main feature of a crystal oscillator is

- A. economy B. reliability
 - D. high frequency

D. trigger

278. The operation of a relaxation oscillator is based on

- A. the charging and discharging of a capacitor
- B. a highly selective resonant circuit
- C. a very stable supply voltage
- D. low power consumption
- **279.**Which of the following is not an input or output of the 555 timer?
 - A. threshold B. control voltage
 - C. clock
 - E. discharged F. reset

CHAPTER 17

C. stability

- **280.**In amplitude modulation, the pattern produced by the peaks of the carrier signal is called the
 - A. index B. envelope
 - C. audio signal D. upper-side frequency
- **281.**Which of the following is not a part of an AM superheterodyne receiver?
 - A. mixer B. IF amplifier
 - C. DC restorer D. detector
 - E. audio amplifier F. local oscillator
- **282.**In an AM receiver, the local oscillator always produces a frequency that is above the incoming RF by
 - A.
 10.7 kHz
 B.
 455 MHz

 C.
 10.7 MHz
 D.
 455 kHz
- 283. An FM receiver has an IF frequency that is
 - A. in the 88 MHz to 108 MHz range
 - B. in the 540 kHz to 1640 kHz range
 - C. 455 kHz
 - D. greater than the IF in an AM receiver
- 284. The detector or discriminator in an AM or an FM receiver
 - A. detects the difference frequency from mixer
 - B. changes the RF to IF
 - C. recovers the audio signal
 - D. maintains a constant IF amplitude
- **285.**In order to handle all combinations of input voltage polarities, a multiplier must have
 - A. four-quadrant capability
 - B. three-quadrant capability
 - C. four inputs
 - D. dual-supply voltages

286.The internal attenuation of a multiplier is called the

- A. transconductanceB. scalefactorC. reduction factorD.
- **287.**When the two inputs of a multiplier are connected together, the device operates as a
 - A. voltage doubler
 - B. square root circuit
 - C. squaring circuit
 - D. averaging circuit

288. Amplitude modulation is basically a

- A. summing of two signals
- B. multiplication of two signals
- C. subtraction of two signals
- D. nonlinear process

- **289.**The frequency spectrum of a balanced modulator contains
 - A. a sum frequency
 - B. a difference frequency
 - C. a carrier frequency
 - D. answer a, b, and c
 - E. answers a and b
 - F. answers b and c

290.The IF in a receiver is the

- Sum of the local oscillator frequency and the RF carrier frequency local oscillator frequency
- B. difference of the local oscillator frequency and the carrier RF frequency
- C. difference of the carrier frequency and the audio frequency
- **291.**When a receiver is tuned from one RF frequency to another, the IF changes by an amount equal to the LO (local oscillator) frequency
 - A. the IF stays the same
 - B. the LO frequency changes by an amount equal to the audio frequency
 - C. both LO and the IF frequencies change

292. The output of the AM detector goes directly to the

- A. IF amplifier B. mixer
- C. audio amplifier D. speaker
- **293.**If the control voltage to a VCO increases, the output frequency
 - A. decreases
 - B. does not change
 - C. increases

294. A PLL maintains lock by comparing

- A. the phase of two signals
- B. the frequency of two signals
- C. the amplitude of two signals

Chapter 18

295.In the case of line regulation,

- A. when the temperature varies, the output voltage stays constant
- B. when the output voltage changes, the load current stays constant
- C. when the input voltage changes, the output voltage stays constant
- D. when the load changes, the output voltage stays constant

296.All of the following are parts of a basic voltage regulator except

- A. control element B. sampling circuit
 - voltage-follower D. error detector
- E. reference voltage

C.

297. The basic series regulator, V_{out} is determined by

- A. the control element B. the sample circuit
- C. the reference voltage D. answers b and c

298. The main purpose of current limiting in a regulator is

- A. protection of the regulator from excessive current
- B. protection of the load from excessive current
- C. to keep the power supply transformer from burning up
- D. to maintain a constant output voltage

- 299. In a linear regulator, the control transistor is conducting
 - A. a small part of the time
 - B. half the time
 - C. all of the time
 - D. only when the load current is excessive
- **300.**In a switching regulator, the control transistor is conducting
 - A. part of the time
 - B. all of the time
 - C. only when the input voltage exceeds a set limit
 - D. only when there is an overload

301. The LM317 is an example of an IC

- A. three-terminal negative voltage regulator
- B. fixed positive voltage regulator
- C. switching regulator
- D. linear regulator
- E. variable positive voltage regulator
- F. answers b and d only
- G. answers d and e only

302. An external pass transistor is used for

- A. increasing the output voltage
- B. improving the regulation
- C. increasing the current that the regulator can handle
- D. short circuit protection