BSC Academy

SBI-PO-001

$\begin{array}{c} 1.2\\ 6.3\\ 11.3\\ 16.2\\ 21.1\\ 26.3\\ 31.1\\ 36.4\\ 41.1\\ 46.2\\ 51.2\\ 56.2\\ 61.1\\ 66.3\\ 71.1\\ 76.2\\ 81.3\\ 86.2\\ 91.4\\ 96.5\end{array}$	$\begin{array}{c} 2.5\\ 7.3\\ 12.5\\ 17.1\\ 22.3\\ 27.5\\ 32.2\\ 37.1\\ 42.4\\ 47.5\\ 52.5\\ 57.3\\ 62.5\\ 67.4\\ 72.3\\ 77.2\\ 82.2\\ 87.4\\ 92.1\\ 97.4\end{array}$	3.3 8.3 13.2 18.3 23.1 28.3 33.5 38.3 43.1 48.2 53.5 58.3 63.3 68.4 73.4 78.2 83.1 88.1 93.2 98.4	$\begin{array}{c} 4.2\\ 9.1\\ 14.5\\ 19.2\\ 24.4\\ 29.1\\ 34.2\\ 39.3\\ 44.4\\ 49.4\\ 54.3\\ 59.2\\ 64.5\\ 69.4\\ 74.4\\ 79.1\\ 84.2\\ 89.3\\ 94.2\\ 99.3 \end{array}$	$5.2 \\ 10.2 \\ 15.1 \\ 20.4 \\ 25.4 \\ 30.2 \\ 35.5 \\ 40.2 \\ 45.1 \\ 50.3 \\ 55.5 \\ 60.4 \\ 65.1 \\ 70.2 \\ 75.5 \\ 80.3 \\ 85.3 \\ 90.5 \\ 95.1 \\ 100.4 $
101 2 ·	It is $\frac{58}{67} \times 100 =$	= 86 56%		
	$\begin{array}{c} \text{In is} & 67 \\ \text{Difference} = 37 \end{array}$		3	
103. 5;	% increase = $\frac{5}{60} \times 100 = 8.33\%$			
104. 4;	Ratio = $\frac{108}{126}$ =	$\frac{6}{7} = 6:7$		
105. 5;	Number of type sold in $2008 = 50$ Number of type sold in $2012 = 65$			
	$\therefore \% = \frac{65 - 50}{50} \times 100 = 30\%$			
106. 4;	To be maximum	n profit ratio	$\frac{E}{I}$ should	be minimum.
107. 4	So in 2011, it is 0.3.			
108. 2;	∵ For 2008 and	$d 2012, \frac{E}{I} =$	=0.8	
	So we can find the income = $\frac{60}{0.8}$ = 75 lakhs			
109. 2;	 ∴ In 2009, rati ∴ I=2E 	$o \frac{E}{I} = 0.5$		

110. 1; In 2009, profit is 100% as
$$\frac{E}{I} = 0.5 = \frac{5}{10}$$

% profit = 100%
In 2010, profit = $\frac{20}{80} \times 100 = 25\%$
∴ % decrease = $\frac{100 - 25}{100} \times 100 = 75\%$

111. 2;
$$\frac{0.9 - 0.75}{0.75} \times 100 = 20\%$$

112. 4; We can't find the answer by the given data.

113. 4;
$$\frac{\text{Import of A}}{\text{Export of A}} = 1.2$$
; Import of A = 60 lakhs

 $\frac{\text{Import of B}}{\text{Export of B}} = 0.9; \text{ Export of B} = 50 \text{ lakhs}$ $\therefore \text{ Import of B} = 0.9 \times 50 = 45 \text{ lakhs}$

$$\therefore \text{ Ratio} = \frac{60}{45} = \frac{4}{3}$$

114. 5

115. 1; For A (2011),
$$\frac{I}{E} = 0.8$$

 $\therefore E = \frac{80}{0.8} = 100 \text{ lakhs}$
For B (2010), $\frac{I}{E} = 0.6$
 $\therefore I = 0.6 \times 180 = 108 \text{ lakhs}$
 $\therefore \% = \frac{108 - 100}{100} \times 100 = 8\%$

116. 1; Profit =
$$80000 \times \frac{72}{360} \times 5000 \times \frac{3}{5} \times \frac{12}{100} = \text{Rs} 5760000$$

117. 3; Item I: Production cost of A

$$= 5000 \times 80000 \times \frac{90}{360} \times \frac{2}{5} = 4 \text{ crore}$$

Production cost of B

$$= 5000 \times +80000 \times \frac{108}{360} \times \frac{1}{3} = 4 \text{ crore}$$

So total = 4 + 4 = 8 crore

SBI-PO-001

ie profit is 100%.

118. 1; Profit = Profit of E on Item I + Profit of D of Item II

$$= 5000 \times 80000 \left[\left(\frac{36}{360} \times \frac{4}{5} \times \frac{30}{100} \right) + \left(\frac{54}{360} \times \frac{2}{5} \times \frac{25}{100} \right) \right]$$

= 1.56 crore

119. 4; Ratio = $\frac{5000 \times 80000 \times \frac{90}{360} \times \frac{3}{5}}{5000 \times 80000 \times \frac{36}{360} \times \frac{4}{5}} = \frac{45}{24} = 15:8$

120. 2; Production cost of Item II of Company E

$$= 5000 \times 80000 \times \frac{36}{360} \times \frac{1}{5} = 8000000$$

Production cost of Item I of Company A

$$= 5000 \times 80000 \times \frac{90}{360} \times \frac{2}{5} = 40000000$$

$$\therefore \% = \frac{8000000}{40000000} \times 100 = 20\%$$

121. 2; Expenditure =
$$\frac{\text{Income} \times 100}{100 + 60} = \frac{40 \times 100}{160}$$

= Rs 25 lakhs

122. 5; Income =
$$57 \times \left(\frac{100 + 40}{100}\right)$$
 = Rs 79.8 lakhs

123. 5

124. 2; % profit =
$$\frac{\text{Profit}}{\text{Expenditure}} \times 100$$

$$\therefore \text{ Expenditure} = \frac{100 \times 9}{30} = \text{Rs } 30 \text{ lakhs}$$

$$\therefore \text{ income} = 30 + 9 = \text{Rs } 39 \text{ lakhs}$$

125. 3; Required ratio =
$$\frac{100+60}{100+40} = \frac{160}{140} = \frac{8}{7} = 8:7$$

126.4

127. 2; In Computer Science total students is 240 and girls are 90.

$$\therefore \% = \frac{3}{8} \times 100 = 37.5\%$$

128. 5; Number of boys = 993, Number of girls = 807 \therefore Difference = 993 - 807 = 186

129. 4; Required
$$\% = \frac{5-3}{3} \times 100 = 66\frac{2}{3}\%$$

130. 3; Ratio = $\frac{186}{192} = \frac{31}{32} = 31:32$
131. 2

132. 1; Ratio =
$$\frac{40}{8} = \frac{5}{1} = 5:1$$

133. 4 134. 2

135. 5; Total population = 80 lakhs Number of people in government job = 8 lakhs

$$\therefore \% = \frac{8 \times 100}{80} = 10\%$$

136.4; Number of items sold by Unit B in 2009 = 6355200 Number of items sold by Unit D in 2009 = 17763200 Total = 24118400

137. 1; Required percentage =
$$\frac{131 \times \frac{1.5}{100}}{169 \times \frac{1.8}{100}} \times 100 = 65\%$$

138. 3; Highest in year 2013.

139. 2

140. 5

	Male		Female	
	Adult	Children	Adult	Children
Kapoor	5	3	3	1
Khanna	5	5	3	2

146. 2;
$${}^{10}C_{10} \times {}^{6}C_{2} = 1 \times \frac{6 \times 5}{2} = 15$$

147. 1; ${}^{8}C_{2} \times {}^{4}C_{2} \times {}^{8}C_{2} \times {}^{7}C_{2} = 98784$
148. 1; ${}^{3}C_{2} \times {}^{8}C_{2} \times {}^{6}C_{2} = 1260$
149. 4; $\frac{1}{4} \times \frac{1}{7} = \frac{1}{28}$
150. 3; $\frac{{}^{8}C_{1} \times {}^{10}C_{2}}{{}^{18}C_{3}} = \frac{8 \times 45 \times 6}{17 \times 17 \times 16} = \frac{15}{34}$

SBI-PO-001

BSC *Academy*

(151-155):

Anna is great social activist o	f India 🔿	bee lee i	nee	
yee jee pee tee (i)				
India is great country \rightarrow pee lee yee dee .				
corruption free country \rightarrow oe	e dee vee	(iii)		
Anna is old \rightarrow jee lee fee (iv)				
remove corruption India \rightarrow ve	ee pee loc) (V)		
From (ii) and (iii), country	\rightarrow dee	(vi)		
From (iii) and (v), corruption	\rightarrow vee	(vii)		
From (iii), (vi) and (vii), free	\rightarrow oee	(viii)		
From (ii) and (v), India	\rightarrow pee	(ix)		
From (ii) and (iv), is \rightarrow lee				
From (ii), (vi), (ix) and (x)				
great \rightarrow yee	(xi)			
From (v), (vii) and (ix)				
remove $\rightarrow loo$		(xii)		
From (i), (iv) and (x)				
Anna \rightarrow jee	(xii)			
From (iv), (x) and (xii)				
$old \rightarrow fee$				
Again, from (i)				
social \rightarrow nee, bee or tee				
activist \rightarrow bee, nee or tee				
of \rightarrow tee, nee or bee				
2 152 4 152 2 154 5	155 /			

- 151.3 152.4 153.2 154.5 155.4
- 156.5; All the groups of letters contain vowels in small letters and consonants in capital letters. Except option [5].
- 157.5; All the groups have letters followed by numbers which are their positions in alphabetical series. Except [5]. Because the position of 'P' in alphabetical series is 16.

158.5; From I.
$$A (-)$$
 Female $(-)$
 ψ (+) $X - Y (+)$ Male (+)
 ψ C

So, A is not cousin of C.

From II. D(-) ψ (+)A - B(+) - C

So, A is brother of C, not cousin.

From III. D(-)

$$\psi$$

(+)A - Q(+)
 ψ
(+)R - C

From the above tree, it is clear that A is not cousin of C. A is uncle of C.

From IV. (+) C - P(+) \bigvee Q(-) - AC is upped of A not coust

C is uncle of A, not cousin.

159.3; A(+) $(+) Q - T(+)_{Father}$ (+)O - RT should be father of O. So 'x' will come in place of question mark. $T_{\overline{brother}} U_{\overline{brother}} V$ 160.2; Check for I. So, T is brother of V. $(+)^{T} \stackrel{\cup}{\checkmark} (-)$ Check for II. So, T is maternal uncle of V. There is no need to check further. 162.5 161.1 164.1 163.4 165.4 (166-170): E С В F \downarrow \downarrow \downarrow \downarrow Lane West East ↑ ↑ ↑ ↑ G Η А D Tallest B-E-F-A-H-G-C-D Shortest 169.5 170.4 166.2 168.2 167.1 171.2 172.5 173.3 174.4 175.4 176.2; **From I:** V_T C_R_ (a) or V_CT_R_(b) or, _V_C T _ R (c) or, $V_T \bar{C} R$ (d) From II: IC (a) Ο Υ..... (b) Neither IR nor RI (c) From III. IRO or ROI I (a) is ruled out by II (a) I (d) is ruled out by II (a), (c) I (c) is ruled out by II (c) Thus, from I (b) and II (a) (b) VICTORY Hence, VICTORY is the word. From I and II: Thus, word is VICTORY 177.5; From I: rainy season is too beautiful \rightarrow lo ke pe zo go ... (a) climate too cool \rightarrow ke al me ... (b) \therefore too \rightarrow ke From II: winter season is chilling \rightarrow zo go ye te ... (a) winter chilling \rightarrow te ye ... (b) \rightarrow 'te' or 'ye' winter \rightarrow 'ye' or 'te' chilling **From III:** enjoy the weather \rightarrow be ce da weather are beautiful \rightarrow da fe pe : weather \rightarrow da

From I (a) and II (a):

	rainy season is too beautiful	\rightarrow lo ke pe zo
go		

winter season is chilling \rightarrow zo go ye te

season \rightarrow 'go' or 'zo'

is \rightarrow 'zo' or 'go'

Thus, the question cannot be answered even with the help of I, II and III

178.2; From I.

- 179.1; From I. 14th, 15th, 16th or 18th August. From II. According to Anjali brother, her father's
- is on 16th, 17th in month of August. birthday From III. Anjali's father's birthday falls on even date. From II and III.

Father's birthday is 16th August.

180.2; From I. Monday – $O(\times)$ Tuesday - P

From II. Saturday – Q

Tuesday – M

From III. Play N is organised on the next day of O.

- From I, II and III.
- Monday R Tuesday – M

Wednesday - P

Thursday - O

Saturday - Q

Thus, N was staged on Friday. All are sufficient to answer the question.

181.5

182. 4; It is given that rice cultivated in Punjab of premium quality is what the government is trying to export. This implies quality gets preference in export.

183.4	184.2	185.2	186.1	187.1
188.1	189.4	190.2	191.5	192.5
193.3	194.2	195.4		

- 196.2; The whole figure rotates by 90° ACW. The shaded ball moves inside after two steps and comes out in the next. The circle and plus move inside and outside in each step.
- 197.1; The half-shaded square rotates by 90° CW in each step while 1, 4, 3, 4, 1 ... parts of the other square get shaded in subsequent steps. The arc rotates by 90° CW in each step. The whole figure rotates by 90° ACW.
- 198.3; The ACW-end element remains static. The second from CW end shifts one side CW. The other three move one-and-a-half sides ACW while the second from the ACW end is replaced by a new one in alternate steps.
- 199. 3; The arrow rotates by 45° ACW, 45° ACW, 90° CW, 45° ACW, ... in subsequent steps and moves two steps ACW. The semilunar element moves diagonally. For others follow if 1 = 4, 2 = 5 then 3 = 6rule.
- 200. 2; In alternate steps a bar and an arrowhead is added while the existing arrows get inverted vertically and laterally.