JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY-2008

II B.TECH SUPPLIMENTARY EXAMINATIONS DESIGN AND ANALYSIS OF ALGORITHMS
 (COMPUTER SCIENCE\&ENGINEERING)

AUG/SEP 2008
TIME:3HOUR
MARK:80

ANSWER ANY FIVE QUESTIONS ALL QUESTIONS CARRY EQUAL MARKS.

MARK [16*5=80]

1. (a) Define omega notation. Explain the terms involved in it. Give an example.
(b) Show that $\mathrm{f}_{1}(\mathrm{n}) \times \mathrm{f}_{2}(\mathrm{n})=\mathrm{O}\left(\mathrm{g}_{1}(\mathrm{n}) \times \mathrm{g}_{2}(\mathrm{n})\right.$ wheref1 $(\mathrm{n})=\mathrm{o}\left(\mathrm{g}_{1}(\mathrm{n})\right.$ and $\mathrm{f}_{2}(\mathrm{n})=\mathrm{o}\left(\mathrm{g}_{2}(\mathrm{n})\right)$.
2. (a) Write and explain the control abstraction for Divide and conquer.
(b) Suggest refinements to mergesort to make it in-place.
3. (a) How many comparisons of edge weights will be done by the minimum spanning tree algorithm, in total, if the input is a complete undirected graph with n vertices and vi is the start vertex.
(b) Deisgn a linear-time algorithm for solving the single source shortest path algorithm for directed a cyclic graphs represented by their adjacency linked lists.
4. (a) Explain matrix chain multiplication with an example.
(b) Solve the following $\mathrm{o} / 1$ Knapsack problem using dynamic programming $\mathrm{P}=(11,21,31,33), \mathrm{W}=(2,11,22,15)$, $\mathrm{C}=40, \mathrm{n}=4$.
5. (a) Write a pseudocode for finding the strongly connected components of directed graph. Also analyze its time complexity.
(b) Explain the Inorder traversal of a tree with an example.
6. (a) Apply backtracking to solve the 3 -coloring problem for the graph of fig.
(b) Write an algorithm of n-queens problem.
7. (a) Explain live node, E-node and dead node with an example.
(b) Explain the method of reduction to solve TSP problem using Branch and Bound.
8. (a) Explain the classes of NP-hard and NP-complete.
(b) Describe clique decision problem and write the algorithm for the same.
