CBSE AIPMT EXAMINATON-2009

Full Paper

Physics

1. In the nuclear decay given below:
 sequence are:
1) γ, β, α
2) β, γ, α
3) α, β, γ
4) β, α, γ
2. A thin circular ring of mass M and radius R is rotating in a horizontal plane about an axis vertical to its plane with a constant angular velocity If two objects each of mass m be attached gently to the opposite ends of a diameter of the ring, the ring will then rotate with an angular velocity:
1) $\omega M /(M+2 m)$
2) $(\omega(M+2 m)) / M$
3) $\omega M(M+m)$ OWnloaded from $\mathbf{A}-Z$ Shilksha.com
4) $(\omega(M-2 m)) /(M+2 m)$
3. In thermodynamic processes which of the following statements is not true?
1) In an isochoric process pressure remains constant
2) In an isothermal process the temperature remains constant
3) In an adiabatic process $P V_{Y}=$ constant
4) In an adiabatic process the system is insulated from the surroundings
4. The number of photo electrons emitted for light of a frequency v (higher than the threshold frequency v) is proportional to:
1) Threshold frequency (vo)
2) Intensity of light
3) Frequency of light (v)
4) $v-v o$
5. A simple pendulum performs simple harmonic motion about $\mathrm{x}=0$ with an amplitude a and time period T. The speed of pendulum at $x=a / 2$ will be :
1) $\pi a / T$
2) $(3 \pi 2 a) / T$
3) $(\pi a \sqrt{ }(3)) / T$
4) $(\pi a \sqrt{ }(3)) / 2 T$
6. See the electric circuit shown in this Figure. Which of the following equations is a correct equation for it?

1) $\varepsilon 2-\mathrm{i} 2 \mathrm{r} 2-\varepsilon 1-\mathrm{i} 1 \mathrm{r} 1=0$
2) $-\varepsilon 2-(i 1+i 2) R+i 2 r 2=0$
3) $\varepsilon 1-(i 1+i 2) R+i 1 r 1=0$
4) $\varepsilon 1-(\mathrm{i} 1+\mathrm{i} 2) \mathrm{R}-\mathrm{i} 1 \mathrm{r} 1=0$
7. A body, under the action of a force
$\overrightarrow{\mathrm{F}}=6 \hat{\imath}-8 \hat{\jmath}+10$, açquires an acceleration of $1 \mathrm{~m} / \mathrm{s} 2$. The mass of this body must be:
1) 10 kg
2) 20 kg

Downloaded from A-ZSShiksha.com
3) $10 \sqrt{ } 2 \mathrm{~kg}$
4) $2 \sqrt{ } 10 \mathrm{~kg}$
8. The symbolic representation of four logic gates are given below:
(i)

(ii)

(iii)

(iv)

The logic symbols for OR, NOT and NAND gates are respectively:

1) (iv), (i), (iii)
2) (iv), (ii), (i)
3) (i), (iii), (iv)
4) (iii), (iv), (ii)
9. If işthe force acting on a particle having position vector
\vec{r} and $\vec{\tau}$ be the torque of this
force about the origin, then:
1) $\vec{r} \cdot \vec{\tau}>0$ and $\vec{F} \cdot \vec{\tau}<0$
2) $\vec{r} \cdot \vec{\tau}=0$ and $\vec{F} \cdot \vec{\tau}=0$
3) $\vec{r} \cdot \vec{\tau}=0$ and $\vec{F} \cdot \vec{\tau} \neq 0$
4) $\vec{r} \cdot \vec{\tau} \neq 0$ and $\vec{F} \cdot \vec{\tau}=0$
10. The two ends of a rod of length L and a uniform cross-sectional area A are kept at two temperatures $T 1$ and $T 2(T 1>T 2)$. The rate of heat transfer, ($d Q / d t$) through the rod in a steady state is given by:
1) $d Q / d t=(k(T 1-T 2)) / L A$
2) $d Q / d t=k L A(T 1-T 2)$
3) $d Q / d t=(k A(T 1-T 2)) / L$
4) $\mathrm{dQ} / \mathrm{dt}=(\mathrm{kL}(\mathrm{T} 1-\mathrm{T} 2)) / \mathrm{A}$
11. A p-n photodiode is fabricated from a semiconductor with a band gap of 2.5 eV . It can detect a signal of wavelength:
1) 4000 nm
2) 6000 nm
3) $4000 \AA$
4) $6000 \AA$
12. If the dimensions of a physical quantity are given by MaLbTc , then the physical quantity will be:
1) Velocity if $a=1, b=0, c=-1$ from $A=T \Delta S$ hiksha.com
2) Acceleration if $a=1, b=1, c=-2$
3) Force if $a=0, b=-1, c=-2$
4) Pressure if $a=1, b=-1, c=-2$
13. A transistor is operated in common-emitter configuration at $\mathrm{Vc}=2 \mathrm{~V}$ such that a change in the base current from $100 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ produces a change in the collector current from 5 mA to 10 mA . The current gain is:
1) 100
2) 150
3) 50
4) 75
14. The mass of a lift is 2000 kg . When the tension in the supporting cable is 28000 N , then its acceleration is:
1) $4 \mathrm{~ms}-2$ upwards.
2) $4 \mathrm{~ms}-2$ downwards.
3) $14 \mathrm{~ms}-2$ upwards.
4) $30 \mathrm{~ms}-2$ downwards.
15. Four identical thin rods each of mass M and length I, form a square frame. Moment of inertia of this frame about an axis through the centre of the square and perpendicular to its plane is :
1) $(2 / 3) \mathrm{Ml} 2$
2) $(13 / 3) \mathrm{Ml} 2$
3) $(1 / 3) \mathrm{Ml} 2$
4) $(4 / 3) \mathrm{Ml} 2$
16. Each of the two strings of length 51.6 cm and 49.1 cm are tensioned separately by 20 N force. Mass per unit length of both the strings is same and equal to $1 \mathrm{~g} / \mathrm{m}$. When both the strings vibrate simultaneously the number of beats is:
1) 7
2) 8
3) 3
4) 5
17. The number of beta particles emitted by a radioactive substance is twice the number of alpha particles emitted by it. The resulting daughter is an:
1) isomer of parent
2) isotone of parent
3) isotope of parent
4) isobar of parent
18. The Figure shows a plot of photo current versus anode potential for a photo sensitive surface for three different radiations. Which one of the following is a correct statement?

1) curves (a) and (b) represent incident radiations of same frequency but of different intensities.
2) curves (b) and (c) represent incident radiations of different frequencies and different intensities.
3) curves (b) and (c) represent incident radiations of same frequency having same intensity.
4) curves (a) and (b) represent incident radiations of different frequencies and different intensities.
19. The Figure shows elliptical orbit of a planet m about the sum S. The shaded area SCD is twice the shaded area SAB. If $t 1$ is the time for the planet of move from C to D and $t 2$ is the time to move from A to B then:

1) $t 1=4 t 2$
2) $\mathrm{t} 1=2 \mathrm{t} 2$
3) $t 1=t 2$
4) $t 1>t 2$
20. A black body at $227^{\circ} \mathrm{C}$ radiates heat at the rate of $7 \mathrm{Cals} / \mathrm{cm} 2 \mathrm{~s}$. At a temperature of $727^{\circ} \mathrm{C}$, the rate of heat radiated in the same units will be:
1) 50
2) 112
3) 80
4) 60
21. The driver of a car travelling with speed $30 \mathrm{~m} / \mathrm{sec}$ towards a hill sounds a horn of frequency 600 Hz . If the velocity of sound in air is $330 \mathrm{~m} / \mathrm{s}$, the frequency of reflected sound as heard by driver is:
1) 555.5 Hz
2) 720 Hz
3) 500 Hz
4) 550 Hz

Downloaded from A-ZShiksha.com

22. A wire of resistance 12 ohms per meter is bent to form a complete circle of radius 10 cm . The resistance between its two diametrically opposite points, A and B as shown in the Figure, is:

1) 3Ω
2) $6 \pi \Omega$
3) 6Ω
4) $0.6 \pi \Omega$
23. A rectangular, a square, a circular and an elliptical loop, all in the ($x-y$) plane, are moving out of a uniform magnetic field with a constant velocity, $\vec{V}=v \hat{i}$. The magnetic field is directed along the negative z axis direction. The induced emf, during the passage of these loops, out of the field region, will not remain constant for:
1) the circular and the elliptical loops.
2) only the elliptical loop.
3) any of the four loops.
4) the rectangular, circular and elliptical loops.
24. A galvanometer having a coil resistance of 60Ω shows full scale deflection when a current of 1.0 amp passes through it. It can be converted into an ammeter to read currents upto 5.0 amp by:
1) putting in series a resistance of 15Ω
2) putting in series a resistance of 240Ω
3) putting in parallel a resistance of 15Ω
4) putting in parallel a resistance of 240Ω
25. Power dissipated in an LCR series circuit connected to an a.c source of emf ε is:
1)

2)

Downioaded from A-T/Shilksha.com
3)
$\varepsilon^{2} R$

$$
\sqrt{R^{2}+\left(L w-\frac{1}{C w}\right)^{2}}
$$

4)

$$
\frac{\varepsilon^{2} R}{\left[R^{2}+\left(L w-\frac{1}{C w}\right)^{2}\right]}
$$

26. Three concentric spherical shells have radii a, b and $c(a<b<c)$ and have surface charge densities $\sigma,-\sigma$ and σ respectively. If VA, VB and VC denote the potentials of the three shells, then for $\mathrm{c}=\mathrm{a}+\mathrm{b}$, we have:
1) $V C=V B \neq V_{A}$
2) $V_{C} \neq V_{B} \neq V_{A}$
3) $V_{C}=V_{B}=V_{A}$
4) $V C=V A \neq V B$
27. An engine pumps water continuously through a hose. Water leaves the hose with a velocity v and m is the mass per unit length of the water jet. What is the rate at which kinetic energy is imparted to water?
1) $m v 2$
2) $(1 / 2) \mathrm{mv} 2$
3) $(1 / 2) \mathrm{m} 2 \mathrm{~V} 2$
4) $(1 / 2) \mathrm{mv} 3$
28. A bar magnet having a magnetic moment of $2 \times 104 \mathrm{JT}-1$ is free to rotate in a horizontal plane. A horizontal magnetic field $B=6 \times 10-4 \mathrm{~T}$ exists in the space. The work done in taking the magnet slowly from a direction parallel to the field to a direction 60° from the field is:
1) 12 J
2) 6 J
3) 2 J
4) 0.6 J
29. In a Rutherford scattering experiment when a projectile of charge $z 1$ and mass M 1 approaches a target nucleus of charge $z 2$ and mass M 2 , the distance of closest approach is ro. The energy of the projectile is:
1) directly proportional to $z 1 z 2$
2) inversely poorovimal@aded from A-ZShilksha.com
3) directly proportional to mass M 1
4) directly proportional to $\mathrm{M} 1 \times \mathrm{M} 2$
30. Monochromatic light of wavelength 667 nm is produced by a helium neon laser. The power emitted is 9 mW . The number of photons arriving per sec. On the average at a target irradiated by this beam is:
1) 3×1016
2) 9×1015
3) 3×1019
4) 9×1017
31. A wave in a string has an amplitude of 2 cm . The wave travels in the + ve direction of x axis with a speed of $128 \mathrm{~m} / \mathrm{sec}$. and it is noted that 5 complete waves fit in 4 m length of the string. The equation describing the wave is:
1) $y=(0.02) m \sin (15.7 x-2010 t)$
2) $y=(0.02) m \sin (15.7 x+2010 t)$
3) $y=(0.02) m \sin (7.85 x-1005 t)$
4) $y=(0.02) m \sin (7.85 x+1005 t)$
32. Which one of the following equations of motion represents simple harmonic motion?
33. Which one of the following equations of motion represents simple harmonic motion?

Where $\mathrm{k}, \mathrm{k} 0, \mathrm{k} 1$ and a are all positive.

1) acceleration $=-k(x+a)$
2) acceleration $=k(x+a)$
3) acceleration $=k x$
4) acceleration $=-k 0 x+k 1 x 2$
33. A student measures the terminal potential difference $(\mathrm{V}$) of a cell (of emf resistance r) as a function of the current (I) flowing through it. The slope, and intercept, of the graph between V and I , then, respectively, equal:
1) - r and \in
2) r and - e
3) - \in and r
4) \in and - r
34. If a diamagnetic substance is brought near the north or the south pole of a bar magnet, it is:
1) repelled by the north pole and attracted by the south pole
2) attracted by the north pole and repelled by the south pole
3) attracted by both the poles
4) repelled by both the poles
35. A bus is moving with a preedafleadsfronrstraightroad. A scooterist wishes to overtake the bus in 100 s . If the bus is at a distance of 1 km from the scooterist, with what speed should the scooterist chase the bus?
1) $40 \mathrm{~ms}-1$
2) $25 \mathrm{~ms}-1$
3) $10 \mathrm{~ms}-1$
4) $20 \mathrm{~ms}-1$
36. Sodium has body centred packing. Distance between two nearest atoms is 3.7 Ă. The lattice parameter is:
1) $4.3 \AA$
2) $3.0 \AA$
3) $8.6 \AA$
4) $6.8 \AA$
37. The internal energy change in a system that has absorbed 2 Kcals of heat and done 500 J of work is:
1) 6400 J
2) 5400 J
3) 7900 J
4) 8900 J
38. Three capacitors each of capacitance C and of breakdown voltage V are joined inseries. The capacitance and breakdown voltage of the combination will be:
1) $3 C, V / 3$
2) $\mathrm{C} / 3,3 \mathrm{~V}$
3) $3 \mathrm{C}, 3 \mathrm{~V}$
4) $C / 3, V / 3$
39. An explosion blows a rock into three parts. Two parts go off at right angles to each other. These two are, 1 kg first part moving with a velocity of $12 \mathrm{~ms}-1$ and 2 kg second part moving with a velocity of $8 \mathrm{~ms}-1$. If the third part flies off with a velocity of $4 \mathrm{~ms}-1$, its mass would be:
1) 7 kg
2) 17 kg
3) 3 kg
4) 5 kg
40. A particle starts its motion from rest under the action of a constant force. If the distance covered in first 10 seconds is S 1 and that covered in the first 20 seconds is S 2 , then:
1) $\mathrm{S}_{2}=3 \mathrm{~S}_{1}$
2) $\mathrm{S} 2=4 \mathrm{~S} 1$
3) $\mathrm{S}_{2}=\mathrm{S}_{1} \quad$ Downloaded from $\mathrm{A}=$ ThShiksha.com
4) $\mathrm{S} 2=2 \mathrm{~S} 1$
41. A body of mass 1 kg is thrown upwards with a velocity $20 \mathrm{~m} / \mathrm{s}$. It momentarily comes to rest after attaining a height of 18 m . How much energy is lost due to air friction? $(\mathrm{g}=10 \mathrm{~m} / \mathrm{s} 2)$
1) 30 J
2) 40 J
3) 10 J
4) 20 J
42. A conducting circular loop is placed in a uniform magnetic field 0.04 T with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at $2 \mathrm{~mm} / \mathrm{s}$. The induced emf in the loop when the radius is 2 cm is:
1) $4.8 \pi \mu V$
2) $0.8 \pi \mu \mathrm{~V}$
3) $1.6 \pi \mu \mathrm{~V}$
4) $3.2 \pi \mu \mathrm{~V}$
43. The magnetic force acting on a charged particle of charge $-2 \mu \mathrm{C}$ in a magnetic field of 2 T acting in y direction, when the particle velocity is
$(2 \hat{i}+3 \hat{j}) \times 106 \mathrm{~ms}-1$, is:
1) $4 N$ is z direction
2) 8 N is y direction
3) 8 N in z direction
4) 8 N in - z direction
44. Two bodies of mass 1 kg and 3 kg have position vectors $\hat{\imath}+2 \hat{\jmath}+$ $\hat{\mathrm{k}}$ and $-3 \hat{\imath}-2 \hat{\jmath}+, \quad \hat{\mathrm{k}}$ respectively. The centre of mass of this system has a position vector:
1) $-2 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}}$
2) $2 \hat{\imath}-\hat{\jmath}-2 \hat{\mathrm{k}}$
3) $-\hat{\imath}+\hat{\jmath}+\hat{k}$
4) $-2 \hat{i}+2 \hat{k}$
45. The electric potential at a point (x, y, z) is given by $V=-x 2 y-x z 3+4$

The electric field at $\overline{\text { What }}$ point is:

1) $\vec{E}=\hat{\imath} 2 x y+\hat{\jmath}(x 2+y 2)+\hat{k}(3 x z-y 2)$
2) $\vec{E}=\hat{i} z 3+\hat{\jmath} x y z+\hat{k} z 2$
3) $\vec{E}=\hat{\imath}(2 x y-z 3)+\hat{\jmath} x u 2+\hat{k} 3 z 2 x$
4) $\vec{E}=\hat{\imath}(2 x y+z 3)+\hat{\jmath} x 2+\quad \hat{k} 3 x z 2$
46. The mean free path of electrons in a metal is $4 \times 10-8 \mathrm{~m}$. The electric field which can given on an average eV energy to an electron in the metal will be in units of V / m :
1) $5 \times 10-11$
2) $8 \times 10-11$
3) 5×107
4) 8×107
47. The ionization energy of the electron in the hydrogen atom in its ground state is 13.6 eV . The atoms are excited to higher energy levels to emit radiations of 6 wavelengths. Maximum wavelength of emitted radiation corresponds to the transition between:
1) $n=3$ to $n=1$ states
2) $n=2$ to $n=1$ states
3) $n=4$ to $n=3$ states
4) $n=3$ to $n=2$ states
48. Under the influence of a uniform magnetic field, a charged particle moves with constant speed V in a circle of radius R . The time period of rotation of the particle:
1) depends on R and not on V
2) is independent of both V and R
3) depends on both V and R
4) depends on V and not on R
49. The electric field part of an electromagnetic wave in a medium is represented by $\mathrm{Ex}=0$;

$$
E_{y}=2.5 \frac{N}{C} \cos \left[\left(2 \pi \times 10^{6} \frac{\mathrm{rad}}{\mathrm{~m}}\right) \mathrm{t}-\left(\pi \times 10^{-2} \frac{\mathrm{rad}}{\mathrm{~s}}\right) \mathrm{x}\right]
$$

$\mathrm{Ez}=0$. The wave is:

1) moving along x direction with frequency 106 Hz and wave length 100 m .
2) moving along x direction with frequency 106 Hz and wave length 200 m .
3) moving along $-x$ direction with frequency 106 Hz and wave length 200 m .
4) moving along y direction with frequency $2 \pi \times 106 \mathrm{~Hz}$ and wave length 200 m .
50. A block of mass M is attached to the lower end of a vertical spring. The spring is hung from a ceiling and has force constant value k . The mass is released from rest with the spring initially unstretched. The maximum extension produced in the length of the spring will be:
1) $2 \mathrm{Mg} / \mathrm{k}$
2) $4 \mathrm{Mg} / \mathrm{k}$
3) $\mathrm{Mg} / 2 \mathrm{k}$
4) Mg / k

Biology

51. Which one of the following is correct pairing of a body part and the kind of muscle tissue that moves it?

(1) Eiceps of upbevarmorid	Fsmotbhuscle fibres
(2) Abdominal wall	Smooth muscle
(3) Ins	Involuntary smooth muscle
(4) Heart wall	Involuntary unstriated muscle

1) 1
2) 2
3) 3
4) 4
52. The epithelial tissue present on the inner surface of bronchioles and fallopian tubes is:
1) Glandular
2) Ciliated
3) Squamous
4) Cuboidal
53. Study the pedigree chart given below:

What does it show?

1) Inheritance of a condition like phenylketonuria as an autosomal recessive trait
2) The pedigree chart is wrong as this is not possible
3) Inheritance of a recessive sex-linked disease like haemophilia
4) Inheritance of a sex-linked inborn error of metabolism like phenylketonuria
54. Manganese is required in:
1) Plant cell wall formation
2) Photolysis of water during photosynthesis
3) Chlorophyll synthesis
4) Nucleic acid synthesis
55. Polyethylene glycol method is used for:
1) Biodiesel production
2) Seedless fruit production
3) Energy production from sewage
4) Gene transfer without a vector
56. The floral formula

$$
\oplus \underset{+}{\mathrm{K}_{(5)}} \stackrel{\leftarrow}{\mathrm{C}_{(5)}} \mathrm{A}_{5} \underline{\mathrm{G}(2)} \text { is that of: }
$$

1) Soybean
2) Sunnhemp
3) Tobacco
4) Tulip

Downloaded from A-ZAShiksha.com
57. Which one of the following groups of animals is bilaterally symmetrical and triploblastic ?

1) Aschelminthes (round worms)
2) Ctenophores
3) Sponges
4) Coelenterates (Cnidarians)
58. Which one of the following is commonly used in transfer of foreign DNA into crop plants ?
1) Meloidogyne incognita
2) Agrobacterium tumefaciens
3) Penicillium expansum
4) Trichoderma harzianum
59. Which one of the following is the correct matching of the events occurring during menstrual cycle?

(1)	proliferative phase	Rapid regeneration of myometrium and maturation of Graafian follicle.
(2)	Development of corpus luteum	Secretory phase and increased secretion of progesterone.
(3)	Menstruation	breakdown of myometrium and oum not fertilised.

1) 1
2) 2
3) 3
4) 4
60. Which one is the wrong pairing for the disease and its causal organism ?

(1)	Black rust of wheat	Puccinia graminis
(2) L	pose smut of wheat	Ustilago nuda
(3)	Root-knot of vegetables	Meloidogyne sp
(4) Late blight of potato	Alternaria solani	

1) 1
2) 2
3) 3
4) 4
61. Global agreement in specific control strategies to reduce the release of ozone depleting substances, was adopted by:
1) The Montreal Protocol
2) The Koyoto Protocol
3) The Vienna Convention
4) Rio de Janeiro Conference
62. What is true about Bt toxin?
1) Bt protein existraspative todxinih the Baqillus. $=$ Th Shiksha.conn
2) The activated toxin enters the ovaries of the pest to sterilise it and thus prevent its multiplication.
3) The concerned Bacillus has antitoxins.
4) The inactive protoxin gets converted into active form in the insect gut.
63. Peripatus is a connecting link between:
1) Mollusca and Echinodermata
2) Annelida and Arthropoda
3) Coelenterata and Porifera
4) Ctenophora and Platyhelminthis
64. T.O. Diener discovered a:
1) Free infectious DNA
2) Infectious protein
3) Bacteriophage
4) Free infectious RNA
65. Seminal plasma in humans is rich in:
1) fructose and calcium but has no enzymes
2) glucose and certain enzymes but has no calcium
3) fructose and certain enzymes but poor in calcium
4) fructose, calcium and certain enzymes
66. A fruit developed from hypanthodium inflorescence is called:
1) Sorosis
2) Syconus
3) Caryopsis
4) Hesperidium
67. The cell junctions called tight, adhering and gap junctions are found in:
1) Connective tissue
2) Epithelial tissue
3) Neural tissue
4) Muscular tissue
68. What will happen if the stretch receptors of the urinary bladder wall are totally removed?
1) Micturition will continue
2) Urine will continue to collect normally in the bladder
3) There will be no micturition
4) Urine will not collect in the bladder
69. If a live earthwormis prifledayithed deedepphits outer surface without damaging its gut, the fluid that comes out is:
1) coelomic fluid
2) haemolymph
3) slimy mucus
4) excretory fluid
70. The most popularly known blood grouping is the ABO grouping. It is named ABO and not $A B C$, because " O " in it refers to having:
1) overdominance of this type on the genes for A and B types
2) one antibody only - either anti-A or anti-B on the RBCs
3) no antigens A and B on RBCs
4) other antigens besides A and B on RBCs
71. One of the synthetic auxin is:
1) IAA
2) GA
3) IBA
4) NAA
72. A person likely to develop tetanus is immunised by administering:
1) Preformed antibodies
2) Wide spectrum antibiotics
3) Weakened germs
4) Dead germs
73. Alzheimer disease in humans is associated with the deficiency of:
1) glutamic acid
2) acetylcholine
3) gamma aminobutyric acid (GABA)
4) dopamine
74. Biochemical Oxygen Demand (BOD) in a river water:
1) has no relationship with concentration of oxygen in the water.
2) gives a measure of salmonella in the water.
3) increases when sewage gets mixed with river water.
4) remains unchanged when algal bloom occurs.
75. The genetic defect - adenosine deaminase (ADA) deficiency may be cured permanently by:
1) administering adenosine deaminase activators.
2) introducing bone marrow cells producing ADA into cells at early embryonic stages.
3) enzyme replacement therapy.
4) periodic infusion of genetically engineered lymphocytes having functional ADA cDNA.
76. Compared to blood our lymph has:

2) more WBCs and no RBCs
3) more RBCs and less WBCs
4) no plasma
77. Sickle cell anemia is:
1) caused by substitution of valine by glutamic acid in the beta globin chain of haemoglobin
2) caused by a change in a single base pair of DNA
3) characterized by elongated sickle like RBCs with a nucleus
4) an autosomal linked dominant trait
78. Which of the following plant species you would select for the production of bioethanol ?
1) Zea mays
2) Pongamia
3) Jatropha
4) Brassica
79. When breast feeding is replaced by less nutritive food low in proteins and calories; the infants below the age of one year are likely to suffer from:
1) Rickets
2) Kwashiorkor
3) Pellagra
4) Marasmus
80. A young infant may be feeding entirely on mother's milk which is white in colour but the stools which the infant passes out is quite yellowish. What is this yellow colour due to ?
1) Bile pigments passed through bile juice
2) Undigested milk protein casein
3) Pancreatic juice poured into duodenum
4) Intestinal juice
81. Which one of the following has maximum genetic diversity in India?
1) Mango
2) Wheat
3) Tea
4) Teak
82. Oxygenic photosynthesis occurs in:
1) Oscillatoria
2) Rhodospirillum
3) Chlorobium
4) Chromatiumownloaded from A-ZShilksha.com
83. There is no DNA in:
1) Mature RBCs
2) A mature spermatozoan
3) Hair root
4) An enucleated onum
84. Given below is a schematic break-up of the phases / stages of cell cycle:

Which one of the following is the correct indication of the stage/phase in the cell cycle ?

1) C-Karyokinesis
2) D-Synthetic phase
3) A-Cytokinesis
4) B-Metaphase
85. Tiger is not a resident in which one of the following national park ?
1) Sunderbans
2) Gir
3) Jim Corbett
4) Ranthambhor
86. Which one of the following statements is true regarding digestion and absorption of food in humans?
1) Fructose and amino acids are absorbed through intestinal mucosa with the help of carrier ions like Na+.
2) Chylomicrons are small lipoprotein particles that are transported from intestine into blood capillaries.
3) About 60% of starch is hydrolysed by salivary amylase in our mouth.
4) Oxyntic cells in our stomach secrete the proenzyme pepsinogen.
87. Synapsis occurs between:
1) mRNA and ribosomes
2) spindle fibres and centromere
3) two homologous chromosomes
4) a male and a female gamete
88. Given below is a diagrammatic sketch fof a portion of hum mate reproductive system.

Select the correct set of the names of the parts labelled A, B, C, D.

	A	B	C	D
(1)	as deferens	seminal vesicle prostate	bulbourethral gland	
(2)	as deferens	seminal vesicle bulbourethral gland	prostate	
(3)	ureter	seminal vesicle prostate	bulbourethral gland	
(4)	reter	prostate	seminal vesicle	bulbourethral gland

1) 1
2) 2
3) 3
4) 4
89. What is not true for genetic code?
1) It is nearly universal
2) It is degenerate
3) It is unambiguous
4) A codon in mRNA is read in a non-contiguous fashion
90. Which one of the following plants is monoecious?
1) Pinus
2) Cycas
3) Papaya
4) Marchantia
91. Cyclic photophosphorylation results in the formation of
1) ATP and NADPH
2) ATP, NADPH and O 2
3) ATP
4) NADPH
92. The letter T in T-lymphocyte refers to:
1) Thalamus
2) Tonsil
3) Thymus
4) Thyroid
93. Foetal ejection reflex in human female is induced by:
1) release of oxytocin from pituitary

2) differentiation of mammary glands
3) pressure exerted by amniotic fluid
94. Anatomically fairly old dicotyledonous root is distinguished from the dicotyledonous stem by
1) Absence of secondary phloem
2) Presence of cortex
3) Position of protoxylem
4) Absence of secondary xylem
95. Plasmodesmata are :
1) Locomotary structures
2) Membranes connecting the nucleus with plasmalemma
3) Connections between adjacent cells
4) Lignified cemented layers between cells
96. Removal of introns and joining the exons in a defined order in a transcription unit is called:
1) Tailing
2) Transformation
3) Capping
4) Splicing
97. Phylogenetic system of classification is based on :
1) Morphological features
2) Chemical constituents
3) Floral characters
4) Evolutionary relationships
98. Which part of human brain is concerned with the regulation of body temperature?
1) Cerebellum
2) Cerebrum
3) Hypothalamus
4) Medulla Oblongata
99. Semiconservative replication of DNA was first demonstrated in:
1) Escherichia coli
2) Streptococcus pneumoniae
3) Salmonella typhimurium
4) Drosophila melanogaster
100. Which one of the following pairs of animals comprises 'jawless fishes'?
1) Mackerals and Rohu
2) Lampreys anaidalinarded from A-T/Shilksha.com
3) Guppies and hag fishes
4) Lampreys and eels
101. Which of the following is a pair of viral diseases ?
1) Common Cold, AIDS
2) Dysentery, Common Cold
3) Typhoid, Tuberculosis
4) Ringworm, AIDS
102. Aerobic respiratory pathway is appropriately termed:
1) Parabolic
2) Amphibolic
3) Anabolic
4) Catabolic
103. A country with a high rate of population growth took measures to reduce it. The Figure below shows age-sex pyramids of populations A and B twenty years apart. Select the correct interpretation about them:

Interpretations:

1) " B " is earlier pyramid and shows stabilised growth rate.
2) " B " is more recent showing that population is very young.
3) " A " is the earlier pyramid and no change has occurred in the growth rate.
4) " A " is more recent and shows slight reduction in the growth rate.
104. Cytoskeleton is made up of:
1) Callose deposits
2) Cellulosic microfibrils
3) Proteinaceous filaments
4) Calcium carbonate granules
105. An example of axileplacentationisंd from A-TAShiksha.com
1) Dianthus
2) Lemon
3) Marigold
4) Argemone
106. Which one of the following has haplontic life cycle?
1) Polytrichum
2) Ustilago
3) Wheat
4) Funaria
107. Steps taken by the Government of India to control air pollution include:
1) compulsory PUC (Pollution Under Control) certification of petrol driven vehicles which tests for carbon monoxide and hydrocarbons.
2) permission to use only pure diesel with a maximum of 500 ppm sulphur as fuel for vehicles.
3) use of non-polluting Compressed Natural Gas (CNG) only as fuel by all buses and trucks.
4) compulsory mixing of 20% ethyl alcohol with petrol and 20% biodiesel with diesel.
108. Which one of the following is considered important in the development of seed habit?
1) Heterospory
2) Haplontic life cycle
3) Free-living gametophyte
4) Dependent sporophyte
109. The annular and spirally thickened conducting elements generally develop in the protoxylem when the root or stem is:
1) elongating
2) widening
3) differentiating
4) maturing
110. The correct sequence of plants in a hydrosere is:
1) Volvox \rightarrow Hydrilla \rightarrow Pistia \rightarrow Scirpus \rightarrow Lantana \rightarrow Oak
2) Pistia \rightarrow Volvox \rightarrow Scirpus \rightarrow Hydrilla \rightarrow Oak \rightarrow Lantana
3) Oak \rightarrow Lantana \rightarrow Volvox \rightarrow Hydrilla \rightarrow Pistia \rightarrow Scirpus
4) Oak \rightarrow Lantana \rightarrow Scirpus \rightarrow Pistia \rightarrow Hydrilla \rightarrow Volvox
111. Stroma in the chloroplasts of higher plant contains:
1) Light-dependent reaction enzymes
2) Ribosomes
3) ChlorophylDownloaded from A-ZShilksha.com
4) Light-independent reaction enzymes
112. A health disorder that results from the deficiency of thyroxine in adults and characterised by (i) a low metabolic rate, (ii) increase in body weight and (iii) tendency to retain water in tissues is:
1) simple goitre
2) myxoedema
3) cretinism
4) hypothyroidism
113. Mannitol is the stored food in:
1) Porphyra
2) Fucus
3) Gracillaria
4) Chara
114. Which one of the following pairs is wrongly matched ?
1) Alcohol - nitrogenase
2) Fruit juice - pectinase
3) Textile -amylase
4) Detergents - lipase
115. Which of the following is not used as a biopesticide ?
1) Trichoderma harzianum
2) Nuclear Polyhedrosis Virus (NPV)
3) Xanthomonas campestris
4) Bacillus thuringiensis
116. Which one of the following is a vascular cryptogam?
1) Ginkgo
2) Marchantia
3) Cedrus
4) Equisetum
117. In a standard ECG which one of the following alphabets is the correct representation of the respective activity of the human heart?
1) S - start of systole
2) T - end of diastole
3) P - depolarisation of the atria
4) R - repolarisation of ventricles
118. Uric acid is the chief nitrogenous component of the excretory products of:
1) Earthworm
2) Cockroach
3) Frog
4) Man
119. Guard cells help in:
1) Transpiration
2) Guttation
3) Fighting against infection
4) Protection against grazing
120. Montreal Protocol aims at:
1) Biodiversity conservation
2) Control of water pollution
3) Control of CO 2 emission
4) Reduction of ozone depleting substances
121. DDT residues are rapidly passed through food chain causing biomagnification because DDT is:
1) moderately toxic
2) non-toxic to aquatic animals
3) water soluble
4) lipo soluble
122. Vegetative propagation in mint occurs by:
1) Offset
2) Rhizome
3) Sucker
4) Runner
123. Select the incorrect statement from the following:
1) Galactosemia is an inborn error of metabolism
2) Small population size results in random genetic drift in a population
3) Baldness is a sex-limited trait
4) Linkage is an exception to the principle of independent assortment in heredity
124. Cotyledons and testa respectively are edible parts in:
1) walnut and tamarind
2) french bean and coconut
3) cashew nut and litchi
4) groundnut and pomegranate

Downloaded from A-ZSShiksha.com
125. Which one of the following statements is correct ?

1) Benign tumours show the property of metastasis.
2) Heroin accelerates body functions.
3) Malignant tumours may exhibit metastasis.
4) Patients who have undergone surgery are given cannabinoids to relieve pain.
126. The correct sequence of spermatogenetic stages leading to the formation of sperms in a mature human testis is:
1) spermatogonia - spermatocyte - spematid - sperms
2) spermatid - spermatocyte - spermatogonia - sperms
3) spermatogonia - spermatid - spermatocyte - sperms
4) spermatocyte - spermatogonia - spematid - sperms
127. Use of anti-histamines and steroids give a quick relief from:
1) Nausea
2) Cough
3) Headache
4) Allergy
128. Chipko movement was launched for the protection of:
1) Forests
2) Livestock
3) Wet lands
4) Grasslands
129. Which one of the following is the most likely root cause why menstruation is not taking place in regularly cycling human female?
1) maintenance of the hypertrophical endometrial lining
2) maintenance of high concentration of sex hormones in the blood stream
3) retention of well-developed corpus luteum
4) fertilisation of the owm
130. Globulins contained in human blood plasma are primarily involved in:
1) osmotic balance of body fluids
2) oxygen transport in the blood
3) clotting of blood
4) defence mechanisms of body
131. Palisade parenchyma is absent in leaves of :
1) Mustard
2) Soybean
3) Gram Downloaded from A-T/Shilkslha.com
4) Sorghum
132. In barley stem vascular bundles are:
1) closed and scattered
2) open and in a ring
3) closed and radial
4) open and scattered
133. Which one of the following is the correct matching of three items and their grouping category ?

	Items	Group
(1)	lium, ischium, pubis	coxal bones of pelvic girdle
(2)	actin, myosin, rhodopsin	muscle proteins
(3)	cytosine, uracil, thiamine	pyrimidines
(4)	malleus, incus, cochlea	ear ossicles

1) 1
2) 2
3) 3
4) 4
134. Somaclones are obtained by
1) Plant breeding
2) Irradiation
3) Genetic engineering
4) Tissue culture
135. In the case of peppered moth (Biston betularia) the black-coloured form became dominant over the light-coloured form in England during industrial revolution. This is an example of :
1) appearance of the darker coloured individuals due to very poor sunlight
2) protective mimicry
3) inheritance of darker colour character acquired due to the darker environment
4) natural selection whereby the darker forms were selected
136. Transgenic plants are the ones:
1) generated by introducing foreign DNA into a cell and regenerating a plant from that cell.
2) produced after protoplast fusion in artificial medium.
3) grown in artificial medium after hybridization in the field.
4) produced by a somatic embryo in artificial medium.
137. Which one of the following pairs of food components in humans reaches the stomach totally undigested?
1) Starch and fat
2) Fat and cellulose
3) Starch and cellulose
4) Protein andstsiax
138. A change in the amount of yolk and its distribution in the egg will affect:
1) Pattern of cleavage
2) Number of blastomeres produced
3) Fertilization
4) Formation of zygote
139. Middle lamella is composed mainly of:
1) Muramic acid
2) Calcium pectate
3) Phosphoglycerides
4) Hemicellulose
140. Elbow joint is an example of:
1) hinge joint
2) gliding joint
3) ball and socket joint
4) pivot joint
141. Which of the following is a symbiotic nitrogen fixer?
1) Azotobacter
2) Frankia
3) Azolla
4) Glomus
142. Whose experiments cracked the DNA and discovered unequivocally that a genetic code is a "triplet"?
1) Hershey and Chase
2) Morgan and Sturtevant
3) Beadle and Tatum
4) Nirenberg and Mathaei
143. Which one of the following types of organisms occupy more than one trophic level in a pond ecosystem?
1) Fish
2) Zooplankton
3) Frog
4) Phytoplankton
144. Which one of the following acids is a derivative of carotenoids ?

3) Abscisic acid
4) Indole butyric acid
145. The bacterium Bacillus thuringiensis is widely used in contemporary biology as:
1) Insecticide
2) Agent for production of dairy products
3) Source of industrial enzyme
4) Indicator of water pollution
146. An example of a seed with endosperm, perisperm, and caruncle is:
1) coffee
2) lily
3) castor
4) cotton
147. Reduction in vascular tissue, mechanical tissue and cuticle is characteristic of :
1) Mesophytes
2) Epiphytes
3) Hydrophytes
4) Xerophytes
148. Point mutation involves:
1) Change in single base pair
2) Duplication
3) Deletion
4) Insertion
149. Which one of the following correctly describes the location of some body parts in the earthworm Pheretima?
1) Four pairs of spermathecae in $4-7$ segments.
2) One pair of ovaries attached at intersegmental septum of 14th and 15th segments.
3) Two pairs of testes in 10th and 11th segments.
4) Two pairs of accessory glands in 16-18 segments.
150. The kind of tissue that forms the supportive structure in our pinna (external ears) is also found in:
1) nails
2) ear ossicles
3) tip of the nose
4) vertebrae

Downloaded from A-ZSShilksha.com Chemistry

151. The state of hybridization of $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 5$ and C 6 of the hydrocarbon,

CH_{3}
is in the following sequence:
1) $\mathrm{sp} 3, \mathrm{sp2} 2, \mathrm{sp} 2$ and sp
2) $\mathrm{sp}, \mathrm{sp2}$, sp2 and sp3
3) $\mathrm{sp}, \mathrm{sp2}$, sp3 and sp2
4) $\mathrm{sp}, \mathrm{sp} 3, \mathrm{sp2}$ and sp 3
152. Oxidation numbers of P in PO 43 , of S in SO 42 - and that of Cr in Cr 2 O 72 -, are respectively :
1) +3 , +6 and +5
2) $+5,+3$ and +6
3) $-3,+6$ and +6
4) $+5,+6$ and +6
153. Lithium metal crystallises in a body centred cubic crystal. If the length of the side of the unit cell of lithium is 351 pm , the atomic radius of the lithium will be:
unit cell of lithium is 351 pm , the atomic radius of the lithium will be:
1) 151.8 pm
2) 75.5 pm
3) 300.5 pm
4) 240.8 pm
154. Which of the following reactions is an example of nucleophilic susbtitution reaction?
1) $2 R X+2 \mathrm{Na} \rightarrow R-R+2 \mathrm{NaX}$
2) $\mathrm{RX}+\mathrm{H} 2 \rightarrow \mathrm{RH}+\mathrm{HX}$
3) $R X+M g \rightarrow R M g X$
4) $\mathrm{RX}+\mathrm{KOH} \rightarrow \mathrm{ROH}+\mathrm{KX}$
155. In the case of alkali metals, the covalent character decreases in the order:
1) $\mathrm{MF}>\mathrm{MCl}>\mathrm{MBr}>\mathrm{MI}$
2) $\mathrm{MF}>\mathrm{MCl}>\mathrm{MI}>\mathrm{MBr}$
3) $\mathrm{MI}>\mathrm{MBr}>\mathrm{MCl}>\mathrm{MF}$
4) $\mathrm{MCl}>\mathrm{MI}>\mathrm{MBr}>\mathrm{MF}$
156. Which one of the elements with the following outer orbital configurations may exhibit the largest number of oxidation states?
1) $3 d 54 \mathrm{~s} 1$
2) 3 d 54 s 2
3) 3 d 24 s 2

Downloaded from A-ZShiksha.com

4) $3 d 34 \mathrm{~s} 2$
157. The stability of +1 oxidation state increases in the sequence:
1) $\mathrm{Tl}<\mathrm{In}<\mathrm{Ga}<\mathrm{Al}$
2) $\mathrm{In}<\mathrm{Tl}<\mathrm{Ga}<\mathrm{Al}$
3) $\mathrm{Ga}<\mathrm{In}<\mathrm{Al}<\mathrm{Tl}$
4) $\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$
158. Given:
(i) $\mathrm{Cu} 2++2 \mathrm{e}-\rightarrow \mathrm{Cu}, \mathrm{E}^{\circ}=0.337 \mathrm{~V}$
(ii) $\mathrm{Cu}++\mathrm{e}-\rightarrow \mathrm{Cu}+\mathrm{E}^{\circ}=0.153 \mathrm{~V}$

Electrode potential, E° for the reaction, $\mathrm{Cu}_{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}$, will be:

1) 0.90 V
2) 0.30 V
3) 0.38 V
4) 0.52 V
159. For the reaction $\mathrm{N} 2+3 \mathrm{H} 2 \rightarrow 2 \mathrm{NH} 3$, if $(\mathrm{d}[\mathrm{NH} 3]) / \mathrm{dt}=2 \times 10-4 \mathrm{~mol} \mathrm{~L}-1 \mathrm{~s}-1$, the value of $(-$ $\mathrm{d}[\mathrm{H} 2] /$ dt would be :
1) $4 \times 10-4 \mathrm{~mol} \mathrm{L-1} \mathrm{~s}-1$
2) $6 \times 10-4 \mathrm{~mol} \mathrm{L-1} \mathrm{~s}-1$
3) $1 \times 10-4 \mathrm{~mol} \mathrm{L-1} \mathrm{s-1}$
4) $3 \times 10-4 \mathrm{~mol} \mathrm{L-1} \mathrm{s-1}$
160. Consider the following reaction,
ethanol $\xrightarrow{\mathrm{PBr}_{3}} \mathrm{X} \xrightarrow{\text { ald. } \mathrm{KOH}} \mathrm{Y} \xrightarrow[\text { (ii) } \mathrm{H}_{2} \mathrm{O} \text {, heat }]{\text { (i) } \mathrm{H}_{2} \mathrm{SO}_{4} \text { room temperature }} \mathrm{Z}$;
the product Z is:
1) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
2) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{SO}_{3} \mathrm{H}$
3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
4) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
161. The energy absorbed by each molecule (A2) of a substance is $4.4 \times 10-19 \mathrm{~J}$ and bond energy per molecule is $4.0 \times 10-19 \mathrm{~J}$. The kinetic energy of the molecule per atom will be:
1) $2.2 \times 10-19 \mathrm{~J}$
2) $2.0 \times 10-19 \mathrm{~J}$
3) $4.0 \times 10-20 \mathrm{~J}$
4) $2.0 \times 10-20^{J} \mathrm{OW}$ O loaded from $\mathrm{A}=$ ThShiksha.com
162. Amongst the elements with following electronic configurations, which one of them may have the highest ionization energy?
1) $\mathrm{Ne}[3 \mathrm{~s} 23 \mathrm{p} 2]$
2) $\operatorname{Ar}[3 d 104 \mathrm{~s} 24 \mathrm{p} 3]$
3) $\mathrm{Ne}[3 \mathrm{~s} 23 \mathrm{p} 1]$
4) $\mathrm{Ne}[3 \mathrm{~s} 23 \mathrm{p} 3]$
163. In the reaction $\mathrm{BrO}-3(\mathrm{aq})+5 \mathrm{Br}-(\mathrm{aq})+6 \mathrm{H}_{+} \rightarrow 3 \mathrm{Br} 2(\mathrm{l})+3 \mathrm{H} 2 \mathrm{O}(\mathrm{I})$. The rate of appearance of bromine $(\mathrm{Br} 2)$ is related to rate of disappearance of bromide ions as follwing :
1)

$$
\frac{\mathrm{d}\left(\mathrm{Br}_{2}\right)}{\mathrm{dt}}=-\frac{5}{3} \frac{\mathrm{~d}\left(\mathrm{Br}^{-}\right)}{\mathrm{dt}}
$$

2) $\frac{\mathrm{d}\left(\mathrm{Br}_{2}\right)}{\mathrm{dt}}=\frac{5}{3} \frac{\mathrm{~d}\left(\mathrm{Br}^{-}\right)}{\mathrm{dt}}$
3)

$$
\frac{\mathrm{d}\left(\mathrm{Br}_{2}\right)}{\mathrm{dt}}=\frac{3}{5} \frac{\mathrm{~d}\left(\mathrm{Br}^{-}\right)}{\mathrm{dt}}
$$

4)

$$
\frac{\mathrm{d}\left(\mathrm{Br}_{2}\right)}{\mathrm{dt}}=-\frac{3}{5} \frac{\mathrm{~d}\left(\mathrm{Br}^{-}\right)}{\mathrm{dt}}
$$

164. A 0.0020 m aqueous solution of an ionic compound $\mathrm{Co}(\mathrm{NH} 3) 5(\mathrm{NO} 2) \mathrm{Cl}$ freezes at $0.00732^{\circ} \mathrm{C}$. Number of moles of ions which 1 mol of ionic compound produces on being dissolved in water will be ($k f=-1.86^{\circ} \mathrm{C} / \mathrm{m}$)
1) 3
2) 4
3) 1
4) 2
165. What is the dominant intermolecular force or bond that must be overcome in converting liquid $\mathrm{CH}_{3} \mathrm{OH}$ to a gas?
1) Dipole-dipole interaction
2) Covalent bonds
3) London dispersion force
4) Hydrogen bonding
166. Which of the following oxides is not expected to react with sodium hydroxide?
1) CaO
2) SiO_{2}

Downloaded from A-ZSShiksha.com
3) BeO
4) $\mathrm{B}_{2} \mathrm{O}_{3}$
167. The segment of DNA which acts as the instrumental manual for the synthesis of the protein is:

1) ribose
2) gene
3) nucleoside
4) nucleotide
168. Maximum number of electrons in asubshell of an atom is determined by the following:
1) $2 I+1$
2) $4 \mathrm{I}-2$
3) 2 n 2
4) $4 I+2$
169. Half life period of a first-order reaction is 1386 seconds. The specific rate constant of the reaction is:
1) $0.5 \times 10-2 \mathrm{~s}-1$
2) $0.5 \times 10-3 \mathrm{~s}-1$
3) $5.0 \times 10-2 \mathrm{~s}-1$
4) $5.0 \times 10-3 \mathrm{~s}-1$
170. Which one of the following is employed as a tranquilizer?
1) Naproxen
2) Tetracycline
3) Chlorpheninamine
4) Equanil
171. $\mathrm{Al}_{2} \mathrm{O} 3$ is reduced by electrolysis at low potentials and high currents. If 4.0×104 amperes of current is passed through molten $\mathrm{Al}_{2} \mathrm{O} 3$ for 6 hours, what mass of aluminium is produced? (Assume 100\% current efficiency. At. mass of $\mathrm{Al}=27 \mathrm{~g} \mathrm{~mol}-1$)
1) $8.1 \times 104 \mathrm{~g}$
2) $2.4 \times 105 \mathrm{~g}$
3) $1.3 \times 104 \mathrm{~g}$
4) $9.0 \times 103 \mathrm{~g}$
172. Benzene reacts with CH 3 Cl in the presence of anhydrous AlCl 3 to form:
1) Chlorobenzene
2) BenzycchorideWnloaded from A-ZSShilksha.com
3) Xylene
4) Toluene
173. Which of the following is not permissible arrangement of electrons in an atom?
1) $n=5, l=3, m=0, s=+1 / 2$
2) $n=3, I=2, m=-3, s=-1 / 2$
3) $n=3, I=2, m=-2, s=-1 / 2$
4) $n=4, I=0, m=0, s=-$?
174. The dissociation constants for acetic acid and HCN at $25^{\circ} \mathrm{C}$ are $1.5 \times 10-5$ and $4.5 \times$

10-10 respectively. The equilibrium constant for the equilibrium
$\mathrm{CN}-+\mathrm{CH} 3 \mathrm{COOH} \mathrm{HCN}+\mathrm{CH}_{2} \mathrm{COO}-$ would be:

1) $3.0 \times 10-5$
2) $3.0 \times 10-4$
3) 3.0×104
4) 3.0×105
175. Propionic acid with $\mathrm{Br} 2 \mid \mathrm{P}$ yields a dibromo product. Its structure would be:
1)

2) $\mathrm{CH} 2 \mathrm{Br}-\mathrm{CH} 2-\mathrm{COBr}$
3)

4) $\mathrm{CH} 2 \mathrm{Br}-\mathrm{CHBr}-\mathrm{COOH}$
176. The values of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ for the reaction, C (graphite) $+\mathrm{CO} 2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$ are 170 kJ and $170 \mathrm{JK}-1$, respectively. This reaction will be spontaneous at

1) 910 K
2) 1110 K
3) 510 K
4) 710 K
177. Copper crystallises in a face-centred cubic lattice with a unit cell length of 361 pm. What is the radius of copper atom in pm?
1) 157
2) 181
3) 108
4) 128
178. Predict the produe:Mnloaded from $\mathbf{A - Z S h i l k s h a . c o m}$

1)

2)

3)

4)

179. $\mathrm{H} 2 \mathrm{COH} . \mathrm{CH} 2 \mathrm{OH}$ on heating with periodic acid gives:

1) 2 HCOOH
2)

CHO
3)

H
4) 2 CO 2
180. According to MO theory which of the following lists ranks the nitrogen species in terms of increasing bond order?

1) N22- < N2- < N2
2) $\mathrm{N} 2<\mathrm{N} 22-\mathrm{N} 2-$
3) $\mathrm{N} 2-<\mathrm{N} 22-<\mathrm{N} 2$
4) $\mathrm{N} 2-<\mathrm{N} 2<\mathrm{N} 22-$
181. Out of $\mathrm{TiF} 62-\mathrm{COF} 63-\mathrm{Cu2} \mathrm{Cl} 2$ and $\mathrm{NiCl} 42-(\mathrm{Z}$ of $\mathrm{Ti}=22, \mathrm{CO}=27, \mathrm{Cu}=29, \mathrm{Ni}=28)$ the colourless species are :
1) $\mathrm{Cu}_{2} \mathrm{Cl} 2$ and $\mathrm{NiCl} 42-$
2) TiF 62 - and Cu 2 Cl 2
3) COF 63 - and $\mathrm{NiCl} 42-$
4) TiF 62- and COF $63-$

Downloaded from A-ZZShiksha.com
182. Which of the following molecules acts as a Lewis acid?

1) $(\mathrm{CH} 3) 2 \mathrm{O}$
2) $(\mathrm{CH} 3) 3 \mathrm{P}$
3) $(\mathrm{CH} 3) 3 \mathrm{~N}$
4) $(\mathrm{CH} 3) 3 \mathrm{~B}$
183. The IUPAC name of the compound having the formula $\mathrm{CH} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH} 2$ is:
1) 1-butyn-3-ene
2) but-1-yne-3-ene
3) 1-butene-3-yne
4) 3-butene-1-yne
184. Which of the following compounds will exhibit cis-trans (geometrical) isomerism?
1) Butanol
2) 2-Butyne
3) 2-Butenol
4) 2-Butene
185. Which of the following does not show optical isomerism?
1) $[\mathrm{CO}(\mathrm{NH} 3) 3 \mathrm{Cl} 3] 0$
2) $[\mathrm{CO}$ (en) $\mathrm{Cl} 2(\mathrm{NH} 3) 2]+$
3) $[\mathrm{CO}(\mathrm{en}) 3] 3+$
4) $[\mathrm{CO}(\mathrm{en}) 2 \mathrm{Cl} 2]+$ (en $=$ ethylenediamine $)$
186. Structures of some common polymers are given. Which one is not correctly presented?
1) Neoprene

2) Terylene

3) Nylon 66

$$
+\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CO}-\mathrm{I}_{2}
$$

4) Teflon

$$
\left(\mathrm{CF}_{2}-\mathrm{CF}_{2}-\right)_{\mathrm{n}}
$$

187. The ionization constant of ammonium hydroxide is $1.77 \times 10-5$ at 298 K . Hydrolysis constant of armoriwnndtardeteisid from A-TLShiksha.colm
1) $6.50 \times 10-12$
2) $5.65 \times 10-13$
3) $5.65 \times 10-12$
4) $5.65 \times 10-10$
188. Consider the following reaction:

Phenol $\xrightarrow[\text { Zn dust }]{ } \mathrm{X} \xrightarrow[\text { Anhydrous } \mathrm{AlCl}_{3}]{\mathrm{CH}_{3} \mathrm{Cl}} \mathrm{Y} \xrightarrow{\text { Alkaline } \mathrm{KMnO}_{4}} \mathrm{Z}$, the product Z is:

1) Benzaldehyde
2) Benzoic acid
3) Benzene
4) Toluene
189. The equivalent conductance of $M / 32$ solution of a weak monobasic acid is 8.0 mhos cm 2 and at infinite dilution is 400 mhos cm 2 . The dissociation constant of this acid is :
1) $1.25 \times 10-6$
2) $6.25 \times 10-4$
3) $1.25 \times 10-4$
4) $1.25 \times 10-5$
190. The straight chain polymer is formed by:
1) hydrolysis of $\mathrm{CH} 3 \mathrm{SiCl}_{3}$ followed by condensation polymerisation
2) hydrolysis of $(\mathrm{CH} 3) 4 \mathrm{Si}$ by addition polymerisation
3) hydrolysis of (CH 3) 2 SiCl 2 followed by condensation polymerisation
4) hydrolysis of $(\mathrm{CH} 3) 3 \mathrm{SiCl}$ followed by condensation polymerisation
191. From the following bond energies:
$\mathrm{H}-\mathrm{H}$ bond energy: $431.37 \mathrm{~kJ} \mathrm{~mol}-1$
$\mathrm{C}=\mathrm{C}$ bond energy: 606.10 kJ mol -1
C - C bond energy: $336.49 \mathrm{~kJ} \mathrm{~mol}-1$
C - H bond energy: $410.50 \mathrm{~kJ} \mathrm{~mol}-1$
Enthalpy for the reaction,

	H	H	H
1	1	1	I
	C	$\rightarrow \mathrm{H}-\mathrm{C}$	- C
1	I	1	I
H	H	H	H

1) $-243.6 \mathrm{~kJ} \mathrm{~mol}-1$
2) $-120.0 \mathrm{~kJ} \mathrm{~mol}-1$
3) -55.0 ku rolewnloaded from A-Z/Shilksha.com
4) $-1523.6 \mathrm{~kJ} \mathrm{~mol}-1$
192. 10 g of hdyrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be:
1) 3 mol
2) 4 mol
3) 1 mol
4) 2 mol
193. Among the following which is the strongest oxidising agent?
1) Br 2
2) 12
3) Cl 2
4) F 2
194. In which of the following molecules / ions BF 3, NO2-, NH2- and H 2 O , the central atom is sp2 hybridized?
1) $\mathrm{NH} 2-$ and $\mathrm{H}_{2} \mathrm{O}$
2) NO_{2} - and $\mathrm{H}_{2} \mathrm{O}$
3) BF 3 and $\mathrm{NO} 2-$
4) NO_{2} - and $\mathrm{NH}_{2}-$
195. Nitrobenzene can be prepared from benzene by using a mixture of conc. HNO 3 and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the mixture, nitric acid acts as a/an:
1) acid
2) base
3) catalyst
4) reducing agent
196. Which of the following complex ions is expected to absorb visible light?
1) $[\mathrm{Ti}(\mathrm{en}) 2(\mathrm{NH} 3) 2] 4+$
2) $[\mathrm{Cr}(\mathrm{NH} 3) 6] 3+$
3) $[\mathrm{Zn}(\mathrm{NH} 3) 6] 2+$
4) $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right) 3\left(\mathrm{NH}_{3}\right) 3\right] 3+$
197. What is the [OH -] in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with 30.0 mL of $0.10 \mathrm{M} \mathrm{Ba}(\mathrm{OH}) 2$?
1) 0.40 m Downloaded from A-ZShilksha.com
2) 0.0050 M
3) 0.12 M
4) 0.10 M
198. Trichloroacetaldehyde, CCl 3 CHO reacts with chlorobenzene in presence of sulphuric acid and produces:

4)

199. For the reaction $\mathrm{A}+\mathrm{B} \rightarrow$ products, it is observed that:
(a) on doubling the initial concentration of A only, the rate of reaction is also doubled and (b) on doubling the initial concentrations of both A and B, there is a change by a factor of 8 in the rate of the reaction.

The rate of this reaction is given by:

1) rate $=k[A][B] 2$
2) rate $=k[A] 2[B] 2$
3) rate $=k[A][B]$
4) rate $=k[A] 2[B]$
200. Which of the following hormones contains iodine?
1) testosterone
2) adrenaline
3) thyroxine
4) insulin

Answer Key

1) 4	2) 1	3) 1	4) 2	5) 3	6) 4	7) 3	8) 2	9) 2	10) 3
11) 3	12) 4	13) 3	14) 1	15) 4	16) 1	17) 3	18) 1	19) 2	20) 2
21) 2	22) 1	23) 3	24) 3	25) 4	26) 4	27) 4	28) 2	29) 1	30) 1
31) 3	32) 1	33) 1	34) 4	35) 4	36) 1	37) 3	38) 2	39) 4	40) 2
41) 4	42) 4	43) 4	44) 1	45) 4	46) 3	47) 3	48) 2	49) 2	50) 4
51) 2	52) 2	53) 1	54) 2	55) 4	56) 3	57) 1	58) 2	59) 2	60) 4
61) 1	62) 4	63) 2	64) 4	65) 3	66) 2	67) 2	68) 3	69) 1	70) 3
71) 4	72) 3	73) 2	74) 3	75) 2	76) 2	77) 2	78) 3	79) 2	80) 1
81) 2	82) 1	83) 1	84) 2	85) 2	86) 1	87) 3	88) 1	89) 4	90) 1
91) 3	92) 3	93) 2	94) 3	95) 3	96) 4	97) 4	98) 3	99) 1	100) 2
101) 1	102) 2	103) 4	104) 3	105) 2	106) 2	107) 1	108) 1	109) 4	110) 1
111) 4	112) 2	113) 2	114) 1	115) 3	116) 4	117) 3	118) 2	119) 1	120) 4
121) 4	122) 3	123) 3	124) 4	125) 3	126) 1	127) 4	128) 1	129) 4	130) 4
131) 4	132) 1	133) 1	134) 4	135) 2	136) 1	137) 2	138) 1	139) 2	140) 1
141) 2	142) 4	143) 1	144) 3	145) 1	146) 3	147) 3	148) 1	149) 3	150) 3
151) 4	152) 4	153) 1	154) 4	155) 3	156) 2	157) 4	158) 4	159) 4	160) 3
161) 4	162) 4	163) 4	164) 4	165) 4	166) 1	167) 2	168) 4	169) 2	170) 4
171) 1								179) 3	180) 1
181) 2	182) 4	183) 3	184) 4	185) 1	186) 1	187) 4	188) 2	189) 4	190) 3
191) 2	192) 2	193) 4	194) 3	195) 2	196) 2	197) 4	198) 3	199) 1	200) 3

