AIPMT - 2000

AIPMT - 2000

Q.1 Two masses as shown are suspended from a massless pulley. Calculate the acceleration of the system when masses are left free :

Q.2 A body of mass 3 kg hits a wall at an angle of 60° & returns at the same angle. The impact time was 0.2 s. Calculate the force exerted on the wall :

(1) $150\sqrt{3}$ N (2) $50\sqrt{3}$ N

(3) 100 N (4)
$$75\sqrt{3}$$
 N

- Q.3 A mass of 1kg is thrown up with a velocity of 100 m/s. After 5 seconds, it explodes into two parts. One part of mass 400 g comes down with a velocity 25 m/s Calculate the velocity of other part :
 - (1) 40 m/s upward (2) 40 m/s downward
 - (3) 100 m/s upward (4) 60 m/s downward
- Q.4 Calculate the net resistance of the circuit between A and B :

Q.5 A capacitor is charged with a battery and energy stored is U. After disconnecting battery another capacitor of same capacity is connected in parallel with it. Then energy stored in each capacitor is :

(1) U/2	(2) U/4
(3) 4 U	(4) 2 U

- **Q.6** Two projectiles of same mass and with same velocity are thrown at an angle 60° & 30° with the horizontal, then which quantity will remain same :
 - (1) Time of flight
 - (2) Horizontal range of projectile
 - (3) Max height acquired
 - (4) All of them
- Q.7 A mass is performing vertical circular motion (see figure). If The average velocity of the particle is increased, then at which point the string will break :

(1) A (2) B (3) C (4) D

Q.8 For the given reaction, the particle X is :

$$6^{C^{11}} \rightarrow 5^{B^{11}} + \beta^+ + X$$

(1) Neutron (2) Anti neutrino

(3) Neutrino (4) Proton

Q.9 A man is slipping on a frictionless inclined plane & a bag falls down from the same height. Then the speed of both is related as :

(1)
$$V_B > V_m$$
 (2) $V_B < V_m$
(3) $V_B = V_m$ (4) V_B and V_m can't related

Q.10 A body of weight 72 N moves from the surface of earth at a height half of the radius of the earth, then gravitational force exerted on it will be :

(1) 36 N (2) 32 N (3) 144 N (4) 50 N

- Q.11 Rainbow is formed due to :
 - (1) Scattering & refraction
 - (2) Total internal reflection & dispersion
 - (3) Reflection only
 - (4) Diffraction and dispersion
- Q.12 Gravitational force is required for : (1) Stirring of liquid (2) Convection
 - (3) Conduction (4) Radiation
- **Q.13** For a plane convex lenx ($\mu = 1.5$) has radius of curvature 10 cm. It is silvered on its plane surface. Find focal length after silvering :
 - (1) 10 cm (2) 20 cm (3) 15 cm (4) 25 cm

Q.14 By photo electric effect, Einstein proved :

(1)
$$E = hv$$
 (2) $KE = \frac{1}{2}mv^{2}$
(3) $E = mc^{2}$ (4) $E = \frac{-Rhc^{2}}{n^{2}}$

- Q.15 Maximum frequency of emission is obtained for the transition :
 - (1) n = 2 to n = 1 (2) n = 6 to n = 2

(3)
$$n = 1$$
 to $n = 2$ (4) $n = 2$ to $n = 6$

- Q.16 For a hollow cylinder & a solid cylinder rolling without slipping on an inclined plane, then which of these reaches earlier on the ground :
 - (1) Solid cylinder
 - (2) Hollow cylinder
 - (3) Both simultaneously
 - (4) Can't say anything
- Q.17 To find out degree of freedom, the correct expression is :

(1)
$$f = \frac{2}{\gamma - 1}$$
 (2) $f = \frac{\gamma + 1}{2}$
(3) $f = \frac{2}{\gamma + 1}$ (4) $f = \frac{1}{\gamma + 1}$

Q.18 The frequency order of for γ - rays (b), X – rays (a), UV – rays (c) :

(1)
$$b > a > c$$
 (2) $a > b > c$
(3) $c > b > a$ (4) $a > c > b$

Q.19 Electric field at centre O of semicircle of radius 'a' having linear charge density λ given is given by

- Q.20 The width of river is 1 km. The velocity of boat is 5 km/hr. The boat covered the width of river with shortest will possible path in 15 min. Then the velocity of river stream is :
 - (1) 3 km/hr (2) 4 km/hr
 - (3) $\sqrt{29}$ km/hr (4) $\sqrt{41}$ km/hr
- Q.21 Motion of a particle is given by equation $S = (3t^{3} + 7t^{2} + 14 t + 8)m$ The value of acceleration of the particle at t = 1 sec. is: (1) 10 m/s²
 (2) 32 m/s² (3) 23 m/s²
 (4) 16 m/s²

CAREER POINT: CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-3040000

Q.22 A charge Q is situated at the corner of a cube, the electric flux passed through all the six faces of the cube is :

AIPMT - 2000

(1)
$$\frac{Q}{6 \epsilon_0}$$
 (2) $\frac{Q}{8 \epsilon_0}$
(3) $\frac{Q}{\epsilon_0}$ (4) $\frac{Q}{2 \epsilon_0}$

Q.23 For adjoining fig., The magnetic field at point, 'P' will be :

Q.24 A charge having q/m equal to 10^8 c/kg and with velocity 3×10^5 m/s enters into a uniform magnetic field B = 0.3 tesla at an angle 30° with direction of field. Then radius of curvature will be :

Q.25 The value of quality factor is :

(1)
$$\frac{\omega L}{R}$$
 (2) $\frac{\omega}{RC}$
(3) \sqrt{LC} (4) L/R

Q.26 Two stationary sources each emitting waves of wave length λ . An observer moves from one source to other with velocity u. Then number of beats heared by him :

(1)
$$\frac{2u}{\lambda}$$
 (2) $\frac{u}{\lambda}$
(3) $\sqrt{u\lambda}$ (4) $\frac{u}{2\lambda}$

Q.27 A string is cut into three parts, having fundamental frequencies n_1 , n_2 and n_3 respectively. Then original fundamental frequency 'n' related by the expression as :

(1)
$$\frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$$

(2) $n = n_1 \times n_2 \times n_3$
(3) $n = n_1 + n_2 + n_3$
(4) $n = \frac{n_1 + n_2 + n_3}{3}$

- CAREER POINT
- 0.28 The equations of two waves given as $x = a\cos(\omega t + \delta)$ and $y = a \cos (\omega t + \alpha)$, Where $\delta = \alpha + \pi/2$, then resultant wave represent :

(1) a circle (c.w)

- (2) a circle (a.c.w)
- (3) an Ellipse (c.w)
- (4) an ellipse (a.c.w)

Q.29

The relation between λ and $T_{1/2}$ is :

 $(T_{1/2} = half life, \lambda \rightarrow decay constant)$

(1)
$$T_{1/2} = \frac{\ell n 2}{\lambda}$$
 (2) $T_{1/2} \ell n 2 = \lambda$
(3) $T_{1/2} = \frac{1}{\lambda}$ (4) $(\lambda + T_{1/2}) = \frac{\ell n}{2}$

The ratio (W/Q) for a carnot – engine is $\frac{1}{\kappa}$, Now Q.30

> the temp. of sink is reduced by 62°C, then this ratio becomes twice, therefore the initial temp. of the sink and source are respectively :

(1) 33°C, 67°C (2) 37°C, 99°C

Q.31 From the following diode circuit. Which diode in forward biased condition :

Given Truth table is correct for : Q.32

- Q.33 The bob of simple pendulum having length ℓ , is displaced from mean position to an angular position θ with respect to vertical. If it is released, then velocity of bob at lowest position :
 - (1) $\sqrt{2g\ell(1-\cos\theta)}$

(2) $\sqrt{2g\ell(1+\cos\theta)}$

- (3) $\sqrt{2g\ell\cos\theta}$
- (4) $\sqrt{2g\ell}$

AIPMT - 2000

- If $\vec{F} = (60 \ \hat{i} + 15 \ \hat{j} 3 \ \hat{k})$ N and Q.34 $\vec{V} = (2\hat{i} - 4\hat{j} + 5\hat{k})$ m/s, then instantaneous power is : (1) 195 watt (2) 45 watt
 - (3) 75 watt (4) 100 watt
- Q.35 For the adjoining diagram, a triangular lamina is shown the correct relation between I_1 , I_2 & I_3 is (I – moment of inertia)

O.36 Two spherical bob of masses M_A and M_B are hung vertically from two strings of length ℓ_A and ℓ_B respectively. They are excuting SHM with frequency relation $f_A = 2f_B$, Then :

(1)
$$\ell_{A} = \frac{\ell_{B}}{4}$$

(2) $\ell_{A} = 4\ell_{B}$
(3) $\ell_{A} = 2 \ell_{B} \& M_{A} = 2M_{B}$
(4) $\ell_{A} = \frac{\ell_{B}}{2} \& M_{A} = \frac{M_{E}}{2}$

- Q.37 Nuclear - Fission is best explained by :
 - (1) Liquid droplet theory
 - (2) Yukawa π meson theory
 - (3) Independent particle model of the nucleus

M_B

2

- (4) Proton-proton cycle
- 0.38 Who evaluated the mass of electron indirectly with help of charge :
 - (1) Thomson (2) Millikan
 - (3) Rutherford (4) Newton
- Q.39 A car battery of emf 12 V and internal resistance $5 \times 10^{-2} \Omega$, receives a current of 60 Å from external source, then terminal voltage of battery is :

- Q.40 Two bulbs of (40 W, 200 V), and (100 W, 200 V). Then correct relation for their resistance :
 - (1) $R_{40} < R_{100}$
 - (2) $R_{40} > R_{100}$
 - (3) $R_{40} = R_{100}$
 - (4) No relation can be predicted

	CAREER POINT		AIPMT - 2000
Q.41	According to the Faraday Law of electrolysis,	Q.50	Which pair have not equal dimensions :
	the mass deposited at electrode proportional to :		(1) Energy and torque
	(1) m \propto I ²		(2) Force and impulse
	(2) m \propto Q		(3) Angular momentum and Plank's constant
	(3) m $\propto Q^2$		(4) Elastic modulus and pressure
	(4) 'm' does not depend on Q	Q.51	Increasing order of electrophilic substitution for
Q.42	A tall man of height 6 feet, want to see his full		following compounds :
	image. Then required minimum length of the		CH_3
	mirror will be :		
	(1) 12 feet (2) 3 feet		
	(3) 6 feet (4) Any length		OCH ₃ CF ₃
Q.43	The potentiometer is best for measuring voltage,		
	as :		
	(1) It has a sensitive galvanometer		(1) IV < I < II < III (2) III < II < IV
	(2) It has wire of high resistance		$(1) I < IV < III < II \qquad (2) III < III < IV$ $(3) I < IV < III < II \qquad (4) II < III < IV$
	(3) It measures p.d. like in closed circuit	Q.52	Ethyl benzoate can be prepared from benzoic
	(4) It measures p.d. like in open circuit	<i>2</i>	acid by using :
Q.44	For a planet having mass equal to mass of the		(1) Ethyl alcohol
	earth but radius is one fourth of radius of the earth. Then escape velocity for this planet will be		(2) Ethyl alcohol and dry HCl
	(1) 11.2 km/s (2) 22.4 km/s		(3) Ethyl chloride
	(3) 5.6 km/s (4) 44.8 km/s		(4) Sodium ethoxide
0.45	The correct relation for α , β for a transistor :	Q.53	Polarization in acrolein as :
Q.45			$+\delta$ $-\delta$
	(1) $\beta = \frac{1-\alpha}{\alpha}$ (2) $\beta = \frac{\alpha}{1-\alpha}$		(1) $CH_2=CH-CHO$
	(3) $\alpha = \frac{\beta - 1}{\beta}$ (4) $\alpha\beta = 1$		(2) $\overset{-\delta}{CH}_{2}=CH-\overset{+\delta}{CHO}$
	(3) $\alpha = \frac{1}{\beta}$ (4) $\alpha\beta = 1$		$-\delta$ $+\delta$
Q.46	The life span of atomic hydrogen is :		(3) CH ₂ =CH–CHO
	(1) Fraction of one sec.(2) One year		$+\delta$ $-\delta$
	(3) One hour (4) One day		(4) $CH_2 = CH - CHO$
Q.47	The cations and anions are arranged in alternate	Q.54	$A \xrightarrow{\text{reduction}} B \xrightarrow{\text{CHCl}_3/\text{KOH}} C \xrightarrow{\text{reduction}} (34 \text{uaur})$
	form in :		N-methyl aniline than A is :
	(1) Metallic crystal		NH ₂ NO ₂
	(2) Ionic crystal		\sim
	(3) Co-valent crystal		
Q.48	(4) Semi-conductor crystal When an electron do transition from $n = 4$ to		ŇC
Q.40	n = 2, then emitted line in spectrum will be :		
	(1) First line of Lyman series		$(3) \operatorname{CH}_3 \operatorname{NH}_2 \qquad (4) \bigcirc$
	(2) Second line of Balmer series	Q.55	First product of the reaction between RCHO
	(3) First line of Paschen series		and NH_2NH_2 : -
	(4) Second line of Paschen series		(1) $\operatorname{RCH} = \operatorname{NNH}_2$ (2) $\operatorname{RCH} = \operatorname{NH}$
Q.49	A bubble in glass slab ($\mu = 1.5$) when viewed		$(3) \operatorname{RCH}_2 \operatorname{NH}_2 \qquad (4) \operatorname{RCON}_3$
	from one side appears at 5 cm and 2 cm from	Q.56	In Friedal craft reaction Toluene can be
	other side, then thickness of slab is :		prepared by :
	(1) 3.75 cm (2) 3 cm		(1) $C_6H_6 + CH_3Cl$ (2) $C_6H_5Cl + CH_4$
	(3) 10.5 cm (4) 2.5 cm		(3) $C_6H_6 + CH_2Cl_2$ (4) $C_6H_6 + CH_3COCl_3$
CAREE	R POINT: CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-	-3040000	4

CAREER POINT

Oracle Career Point										
Q.57	Which reagent conve	rts propene to 1-propanol :								
	(1) H ₂ O, H ₂ SO ₄									
	(2) B_2H_6 , H_2O_2 , OH^-									
	 (3) Hg(OAc)₂, NaBH₄/H₂O (4) Aq. KOH Reduction by LiAlH₄ of hydrolysed product of an effect gives : 									
	(4) Aq. KOH									
Q.58	Reduction by LiAlH	4 of hydrolysed product of								
	an ester gives :									
	(1) Two alcohols									
	(2) Two aldehyde									
	(3) One acid and one	alcohol								
	(4) Two acids									
Q.59	α -D-glucose and β -I)-glucose are ·								
L ,	(1) Epimers	(2) Anomer								
	(3) Enantiomers	(4) Diastereomers								
Q.60	$CF_2 = CF_2$ is monom									
Q.00	(1) Teflon	(2) Orlon								
	(3) Polythene	(4) Nylon-6								
Q.61	• •									
Q.01	Correct order of stab (1) hyperbolic Trans	•								
		s-2-butene > Cis-2-butene								
		> 1-butene > Cis-2-butene								
		> Cis–2-butene > 1–butene								
0.4		rans-2-butene > 1-butene								
Q.62	-	netrical isomerism due to :								
	(1) Restricted rotatio									
	(2) Free rotation abo									
	(3) Free rotation abo	ut single bond								
	(4) Chiral carbon									
Q.63	Dihedral angle in sta	ggered form of ethane is :								
	(1) 0°	(2) 120°								
	(3) 60°	(4) 180°								
Q.64		nsible for produce energy in								
	bio reaction :									
	•	(2) Adrenelene								
	(3) Oestrogen	(4) Projestrone								
Q.65		tic energy of CO and N_2 at								
	same temperature is	:								
	$(1) \operatorname{KE}_1 = \operatorname{KE}_2$									
	(2) $KE_1 > KE_2$									
	(3) $KE_1 < KE_2$									
	(4) Can't say any th	ning. Both volumes are not								
	given									
Q.66		prresponding wavelength will								
		¹⁹ Joules (h = 6.6×10^{-34} J x								
	sec., $C = 3 \times 10^8$ m/se	<i>,</i>								
	(1) 65.3 nm.	(2) 6.53 nm.								
	(3) 3.4 nm.	(4) 653 nm.								

AIPMT - 2000 Q.67 Equilibrium constant Kp for following reaction : $MgCO_3(s) \implies MgO(s) + CO_2(g)$ (1) Kp = P_{CO_2} (2) Kp = $P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_2}}$ (3) Kp = $\frac{P_{CO_2} + P_{MgO}}{P_{MgCO_3}}$ (4) Kp = $\frac{P_{MgCO_3}}{P_{CO_3} \times P_{MgO}}$ Correct relation b/w dissociation constant's of a Q.68 di-basic acid : (1) $Ka_1 = Ka_2$ (2) $Ka_1 > Ka_2$ (3) $Ka_1 < Ka_2$ (4) $Ka_1 = \frac{1}{Ka_2}$ Q.69 For a any reversible reaction. If increases concentration of reactants. Then effect on equilibrium constant : (1) Depend's on amount of concentration (2) Unchange (3) Decrease (4) Increase Q.70 A cube of any crystal A-atom placed at every corners and B-atom placed at every centre of face. The formula of compound : (1) AB $(2) AB_3$ $(3) A_2 B_2$ $(4) A_2 B_3$ Q.71 In quantitative analysis of second group in lab. H₂S gas is passed in acidic medium for ppt. When Cu⁺² and Cd⁺² react with KCN, than in which of the following condition, ppt will not be formed due to relative stability :

(1) $K_2[Cu(CN)_4]$ – More stable

 $K_2[Cd(CN)_4]$ – Less stable

- (2) K₂[Cu(CN)₄] Less stableK₂[Cd(CN)₄] More stable
- (3) K₃[Cu(CN)₄] More stable K₂[Cd(CN)₄] – Less stable
- (4) $K_3[Cu(CN)_4]$ Less stable
- $K_3[Cd(CN)_4] More stable$
- Q.72 Conjugate acid of NH_2^- : (1) NH OH (2) NH ⁺

(1) NH ₄ OH	(2) NH_4
(3) NH^{-2}	(4) NH ₃

CAREER POINT: CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-3040000

	CAREER POINT				AIPMT - 2000			
Q.73	Which statement is	wrong about pH and H^+	Q.84	Which of the fo	ollowing element exhibit			
	(1) pH of neutral wa	ater does not zero		maximum oxidation	state :			
	(2) Adding 1N, 1N s	sol ⁿ of CH ₃ COOH and NaOH		(1) Cr (2) Mn	(3) Fe (4) V			
	pH will be seve	n	Q.85		owing statement is correct			
		nd hot H_2SO_4 is more than			ions of ethyl alcohol and			
	concentrate and			phenol :				
	•	n of CH ₃ COOH and HCl, pH			π -electrons in phenoxide ion			
o - (will be less than				electrons in ethoxide ion			
Q.74	e	ctive sample has half life of			of ethyl and phenyl group			
	(1) 4.68 gram	r's remaining quantity will be : (2) 2.34 gram			-electrons in phenoxide ion			
	(1) 4.08 gram (3) 3.34 gram	(4) 9.37 gram	Q.86	Which compound ha	-			
Q.75	• •	wing compound is electron		(1) XeF_4	(2) $XeOF_2$			
Q.13	defficient :	wing compound is election		(3) XeO_2F_2	(4) XeO_4			
	(1) BeCl_2 (2) BCl_3	(3) CCl_4 (4) PCl_5	Q.87	-	ompound will give four			
Q.76	$d\pi$ - $p\pi$ bond present			isomers :				
L	1 1	(3) NO_3^- (4) NO_2^-		(1) $[Fe(en)_3]Cl_3$ (2) $[Co(en)_2Cl_2]Cl_3$				
				(2) $[CO(CH)_2CI_2]CI$ (3) $[Fe(PPh_3)_3NH_3C]$	IBr1CI			
Q.77	Which statement is y	*		(4) $[Co(PPh_3)_3Cl]Cl_2$				
	(1) Bond energy of l		Q.88		ot exhibits paramagnetism :			
	(2) Electronegativity		Q.00	-	$(3) \text{ CO} \qquad (4) \text{ NO}$			
	(3) F is more oxidisi	•	Q.89	For the disproportion				
Q.78	(4) Electron affinity	form linear polymer due to	2.05		Cu, E ^o is : - (Given E ^o for			
Q.70	H-bond :	form mear polymer due to		Cu^{+2}/Cu is 0.34 V &	E° for Cu^{+2}/Cu^{+} is 0.15 V :			
		(3) HBr (4) HCl		(1) 0.49 V	(2) - 0.19 V			
Q.79	Shape of $Fe(CO)_5$ is			(3) 0.38 V	(4) – 0.38 V			
-	(1) Octahedral		Q.90	Cell reaction is spon	taneous when :			
	(2) Square planar			(1) ΔG° is negative (2) ΔG° is positive				
	(3) Trigonal bipyran	nidal		(3) ΔE_{Pad}° is positive	e (4) ΔE°_{Red} is negative			
	(4) Square pyramida	ıl	Q.91		equivalent conductances of			
Q.80	Correct order of di	ssociation energy of N_2 and	Q.) I		$e 127 \& 760 hm^{-1} cm^{-1} eq^{-1}$			
	N_2^+ is :			respectively. Equiva	lent conductance of BaCl ₂			
	(1) $N_2 > N_2^+$	(2) $N_2 = N_2^+$		at infinite dilutions i	s :			
	(3) $N_2^+ > N_2$	(4) None		(1) 139.5	(2) 101.5			
Q.81	Isoelectronic species			(3) 203	(4) 279			
	$(1) \operatorname{CO}, \operatorname{CN}^{-}, \operatorname{NO}^{+}, \operatorname{O}^{+}$		Q.92	$2Zn + O_2 \rightarrow 2ZnO$				
	(2) CO ⁻ , CN, NO, C			$2Zn + S_2 \rightarrow 2ZnS$	$\Delta G^{o} = -293 J$			
	$(3) CO^+, CN^+, NO^-, O^-$			$\mathrm{S_2} + \mathrm{2O_2} \rightarrow \mathrm{2SO_2}$	$\Delta G^{o} = -408 J$			
	$(4) \text{ CO, CN, NO, } C_2$			ΔG° for the followin	g reaction is :			
Q.82	Which ion is colourl			$2ZnS + 3O_2 \rightarrow 2ZnO_2$	$O + 2SO_2$			
	(1) Cr^{+4}	(2) Sc^{+3}		(1) – 731 J	(2) – 1317 J			
0.02	(3) Ti^{+3}	(4) V^{+3}		(3) – 501 J	(4) + 731 J			
Q.83	Mg is present in :	(2) 11	Q.93		of fusion of a compound is			
	(1) Chlorophyl	(2) Haemoglobin(4) Vitamin P		2930 J/mol. Entropy	-			
	(3) Vitamin-12	(4) Vitamin-B		(1) 9.77 J/mol–K	(2) 10.77 J/mol–K			
				(3) 9.07 J/mol–K	(4) 0.977 J/mol–K			

- Q.94 For the reaction $C_2H_5OH(\ell) + 3O_2(g) \rightarrow$ $2CO_2(g) + 3H_2O(\ell)$ which one is true : (1) $\Delta H = \Delta E - RT$ (2) $\Delta H = \Delta E + RT$ (3) $\Delta H = \Delta E + 2RT$ (4) $\Delta H = \Delta E - 2RT$
- Q.95 For the reaction $H^+ + BrO_3^- + 3Br^- \rightarrow 5Br_2 +$ H₂O which of the following relation correctly represents the consumption & formation of reactants and products :

(1)
$$\frac{d[Br^{-}]}{dt} = -\frac{3}{5} \frac{d[Br_2]}{dt}$$

(2) $\frac{d[Br^{-}]}{dt} = \frac{3}{5} \frac{d[Br_2]}{dt}$
(3) $\frac{d[Br^{-}]}{dt} = -\frac{5}{3} \frac{d[Br_2]}{dt}$
(4) $\frac{d[Br^{-}]}{dt} = \frac{5}{3} \frac{d[Br_2]}{dt}$

- Q.96 From the colligative properties of solution which one is the best method for the determination of mol. wt of proteins & polymers :
 - (1) Osmotic pressure
 - (2) Lowering in V.P.
 - (3) Lowering is freezing point
 - (4) Elevation in B.Pt.
- Q.97 Which one of the following method is commonly used method for destruction of colloid :
 - (1) Dialysis
 - (2) Condensation
 - (3) Filteration by animal membrane
 - (4) By adding electrolyte
- Volume of CO₂ obtained by the complete Q.98 decomposition of 9.85 gm. BaCO₃ is : (1) 2.24 lit. (2)1.12 lit.
 - (3) 0.84 lit. (4) 0.56 lit. Oxidation numbers of A, B and C are +2, +5 and -
- Q.99 2 respectively possible formula of compound is :

$(1) A_2(BC_2)_2$	(2) $A_3(BC_4)_2$
$(3) A_2(BC_3)_2$	(4) $A_3(B_2C)_2$

- Q.100 R and S enantiomer are differ in :
 - (1) Rotation of PPL
 - (2) Solubility in achiral solvent
 - (3) Chemical properties
 - (4) Dipole moment

- **AIPMT 2000**
- The first step for initiation of photosynthesis 0.101 will be :
 - (1) Photolysis of water
 - (2) Excitement of chlorophyll molecule due to absorption of light
 - (3) ATP formation
 - (4) Glucose formation
- Q.102 When the plants are grown in magnesium deficient but urea rich soil; the symptoms expressed are :
 - (1) Yellowish leaves (2) Colourless petiole
 - (3) Dark green leaves (4) Shoot apex die
- 0.103 For the synthesis of one glucose molecule the calvin cycle operates for :
 - (1) 2 times (2) 4 times
 - (3) 6 times (4) 8 times
- Q.104 Plants take zinc in form of : (1) $ZnSO_4$ (2) Zn^{++} (3) ZnO (4) Zn
- Q.105 The bacteria generally used for genetic engineering is : (1) Agrobacterium (2) Bacillus
 - (3) Pseudomonas
- (4) Clostridium Q.106 For assimilation of one CO₂ molecule; the
- energy required in form of ATP & NADPH₂ (1) 2 ATP & 2 NADPH₂
 - (2) 5 ATP & 3 NADPH₂
 - (3) 3 ATP & 2 NADPH₂
 - (4) 18 ATP & 12 NADPH₂
- Which is the first CO_2 Acceptor enzyme in C_4 Q.107 plants :
 - (1) RuDP Carboxylase (2) Phosphoric acid
 - (3) RUBISCO (4) PEP-Carboxylase
- Q.108 According to mendelism which character is showing dominance :
 - (1) Terminal position of flower
 - (2) Green colour in seed coat
 - (3) Wrinkled seed
 - (4) Green pod colour
- Due to the cross between TTRr \times ttrr the Q.109 resultant progenies showed how many percent plants tall, red flowered :
 - (1) 50% (2) 75% (3) 25% (4) 100%
- 0.110 Which is showing accurate pairing :
 - (1) Syphilis Treponema pallidum
 - (2) AIDS Bacillus conjugalis
 - (3) Gonorrhoea Leishmania denovoni
 - (4) Typhoid Mycobacterium leprae

CAREER POINT: CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-3040000

O	CAREER POINT		AIPMT - 2000
Q.111	Which is expressing right appropriate pairing :	Q.122	What is true for mammalia :
	(1) Brassicaceae - Sunflower		(1) Platypus is oviparous
	(2) Malvaceae - Cotton		(2) Bats have feather
	(3) Papilionaceae - Catechu		(3) Elephant is a ovo viviparous
	(4) Liliaceae - Wheat		(4) Diaphragm is absent in them
Q.112	Enzymes not found in :	Q.123	Which of the following character is not found in
	(1) Fungi (2) Algae	C	all the chordates :
	(3) Virus (4) Cyanobacteria		(1) Diaphragm (2) Coelom
Q.113	Virus are living, because :		(3) Pharyngeal gill clifts (4) Dorsal nerve cord
	(1) They multiply in host cells	Q.124	Hair are found in the inflorescences of Zea mays
	(2) Carry anaerobic respiration	2	are the modification of :
	(3) Carry metabolic activity		(1) Style (2) Stigma (3) Spathe (4) Filaments
	(4) Cause infection	Q.125	Pneumatophores are found in :
Q.114	If the apical bud has been removed then we	Q	(1) The vegetation which is found in marshy
	observe :		and saline lake
	(1) More lateral branches		(2) The vegetation which found in saline soil
	(2) More axillary buds		(3) Xerophytes
	(3) Plant growth stops		(4) Epiphytes
	(4) Flowering stops	Q.126	Concentration of urine depends upon which
Q.115	Which hormone is responsible for fruit ripening :		organ :
	(1) Ethylene (2) Auxin		(1) Bowman's capsule
	(3) Ethyl chloride (4) Cytokinin		(2) Length of Henle's loop
Q.116	Eight nucleated embryosac is a :		(3) P.C.T.
	(1) Only monosporic (2) Only bisporic		(4) Network of capillaries arising from
	(3) Only tetra sporic (4) Any of the above		glomerulus
Q.117	Which is the cause of damage to relative biological effectiveness :	Q.127	In which point pulmonary artery is different from pulmonary vein :
	(1) High temperature (2) Pollution		(1) Its lumen is broad (2) Its wall is thick
	(3) Radiation (4) Low temperature		(3) It have valves
Q.118	Which is the reason for highest biomass in		(4) It does not possess endothelium
	aquatic ecosystem :	Q.128	Reason, why hair loss is more in old age :
	(1) Nano plankton, blue green algae, green algae		(1) Reduction of blood supply
	(2) Sea grass, and slime molds		(2) Decrease in protein synthesis
	(3) Benthonic and brown algae		(3) Low energy production
	(4) Diatoms		(4) Reduced storage of glycogen
Q.119	Geocarpic fruits is :	Q.129	What is the work of copper T :
	(1) Carrot (2) Radish	2	(1) To inhibit ovulation
	(3) Ground nut (4) Turnip		(2) To inhibit fertilization
Q.120	Endosperm is formed during the double		(2) To inhibit implantation(3) To inhibit implantation of blastocyst
	fertilization by :		(4) To inhibit gametogenesis
	(1) Two polar nuclei & one male gamete	0 120	
	(2) One polar nuclei & one male gamete	Q.130	What is the work of progesteron which is present in oral contraceptive pills :
	(3) Ovum and male gamete		
Q.121	(4) Two polar nuclei & two male gametesBy which action a seed coat becomes permeable		(1) To inhibit ovulation
Q.121	to water :		(2) To check oogenesis(2) To check output of memory in to coming 8 to 1
	(1) Sclarification (2) Stratification		(3) To check entry of sperms in to cervix & to make them inactive
	(3) Vernalization (4) All of the above		
			(4) To check sexual behaviour

Ø					AIPMT - 2000				
Q.131		nmonia to urea is done	Q.141	Depolarization of	e				
	by Cycle :			conduction takes pl					
	(1) Ornithin cycle	(2) Arginine cycle			$f \operatorname{Na}^{+} \& \operatorname{K}^{+} $ move out across				
	(3) Fumaric cycle	(4) Citrulline cycle		axolema					
Q.132	What is name of join	t between ribs and sternum :			e and K ⁺ move more out side				
	(1) Cartilaginous join	nt (2) Angular joint		(3) More Na^+ outsic	le				
	(3) Gliding joint	(4) Fibrous joints		(4) None					
Q.133	Bone related with sk	ull is :	Q.142	Which statement is	true for WBC :				
	(1) Coracoid	(2) Arytenoid		(1) Non nucleated					
	(3) Pterygoid	(4) Atlas		(2) In deficiency ca					
Q.134	Melatonin is secreted	d by :		(3) Manufactured in	•				
	(1) Pineal body	(2) Skin	0.142		ough blood capillaries				
	(3) Pituitary Gland	(4) Thyroid	Q.143	Which pair is correc					
Q.135	M S H is secreted by	· ·		(1) Sweat = temperative $(2) \subseteq 1^{1}$					
	(1) Anteria lobe of p	ituitary		(2) Saliva = sense o					
	(2) Middle lobe of p	ituitary		(3) Sebum = sexual (4) U					
	(3) Posteria lobe of p	bituitary	0 144	(4) Humerus = Hind	•				
	(4) Endostyle		Q.144	Which gland secretes odourous secretion mammals :					
Q.136	A person who is ea	ating boiled potato his food		(1) Bartholins	(2) Prostate				
	contains the compon	ent is :		(3) Anal gland (4) Liver-bile					
	(1) Cellulose which	is digested by cellulase	Q.145	Characteristic of sir					
	(2) Starch which is	not digested	-	(1) They are arranged indiscriminately					
	(3) Lactose which is	s not digested		(2) They make a d					
	(4) DNA which ca DNA'ase	n be digested by pancreatic		(3) Continue to function	divide and help in organ				
Q.137	In mammals milk is	digested by action of :		(4) None					
	(1) Rennin	(2) Amylase	Q.146		d be eaten in deficiency of				
	(3) Intestinal bacteria	a (4) Invertase		Rhodopsin in eyes :					
Q.138	**	ne of frog is kept in dilute		(1) Carrot & ripe pa	npaya				
	hydrochloric acid :			(2) Guava, banana					
	(1) Will become flex	ible		(3) Mango & Potato)				
	(2) Will turn black		0.14	(4) None					
	(3) Will break in pie	ces	Q.147	enzymatic process of	esponsible for inhibition of during feed back :				
	(4) Will shrinke			(1) Substrate	(2) Enzymes				
Q.139		nan is similar with cattle's,		(3) End product	(4) Temperature				
	bovine spongyform (encephalopathy :	Q.148	• •	on the protein formed in host				
	(1) Encephalitis(2) Jecob-crutzfelt data	50050	-	cells to resist is :					
	(3) Spongiocitis of c			(1) Interferone	(2) Antitoxin				
				(3) Antibody	(4) Histone				
Q.140	(4) SpondylitisErythroblastosis foet	alis is caused when .	Q.149		ons against the concentration				
Y110	(1) Rh^{-} female & Rh^{-}			gradient will be :					
	(1) Rh ⁺ female & Rh ⁺			(1) Active transport(2) Osmosis					
	(3) Rh^+ female & Rh^+			(3) Diffusion					
	(4) Rh ⁻ female & Rh			(4) All					
	-			× /					

Ø	CAREER POINT		AIPMT - 2000
Q.150	Which is not a vestigial organ in man :	Q.160	Which cell organelle is concerned with
	(1) Third molar (2) Nails		glycosylation of protein :
	(3) Segmental muscles of abdomen		(1) Ribosome
	(4) Coccyx		(2) Peroxisome
Q.151	Homo sapiens have evolved in :		(3) Endoplasmic reticulum
	(1) Paleocene (2) Plestocene		(4) Mitochondria
	(3) Oligocene (4) Myocene	Q.161	Simillarity in DNA and RNA :
Q.152	Character which is closely related to human		(1) Both are polymer of nucleotides
	evolution :		(2) Both have similar pyrimidine
	(1) Disappearance of tail		(3) Both have similar sugar
	(2) Reduction in size of jaws		(4) Both are genetic material
	(3) Binocular vision	Q.162	Aquatic fern is used to increase the yield in
	(4) Flat nails		paddy crop :
Q.153	Which evidence of evolution related to Darwin's		(1) Azolla (2) Salvinia
	finches :		(3) Marsilea (4) Isoetes
	(1) Evidences from biogeographical distribution	Q.163	Plant group with largest ovule, largest tree, and
	(2) Evidences from comparative anatomy		largest gametes :
	(3) Evidences from embryology		(1) Gymnosperm (2) Angiosperm
~	(4) Evidences from palaeontological	0.1(4	(3) Bryophyta (4) Pteridophyta
Q.154	Who is directly related to man :	Q.164	In ferns, Meiosis takes place at the time of :
	(1) Gorilla (2) Rhesus		(1) Spore formation (2) Spore commination
0.1	(3) Gibbon (4) Orangutan		(2) Spore germination(3) Gamete formation
Q.155	Lemur edri-edri is found in :		(4) Antheridia and archegonia formation
	(1) Madagascar (2) Mauritius	Q.165	Similarity in <i>Ascaris lumbricoides</i> and
0.150	(3) India (4) Sri Lanka	Q.103	Anopheles stephensi :
Q.156	Coconut milk is used in tissue culture in which present :		(1) Sexual dimorphism (2) Metamerism
	(1) Cytokinin (2) Auxin		(3) Anaerobic respiration (4) Endoparasitism
	(3) Gibberellin (4) Ethylene	Q.166	Length of one loop of B- DNA :
Q.157	A giant rat is formed in the laboratory, what is	C ¹	(1) 3.4 nm. (2) 0.34 nm.
Q.137	the reason :		(3) 20 nm. (4) 10 nm.
	(1) Gene mutation (2) Gene synthesis	Q.167	Primary function of enteronephric nephridia of
	(3) Gene manipulation (4) Gene replication	-	Pheretima :
Q.158	Plasmid has been used as vector because :		(1) Osmoregulation
	(1) It is circular DNA which have capacity to		(2) Excretion of nitrogenous waste
	join to eukaryotic DNA		(3) Respiration
	(2) It can move between prokaryotic and		(4) Locomotion
	eukaryotic cells (3) Both ends show replication	Q.168	Which statement is correct :
	(4) It has antibiotic resistance gene		(1) A. indica is largest wild honey bee
Q.159	Irregularity is found in drosophila during the		(2) Wax is waste material of honey bee
2	organ differentiation for example- inplace of		(3) C.V. Fritsch discovered the transmission
	wing, long legs are formed. Which gene is		methods in honey bee
	responsible for :		(4) Drone of honey bee is diploid
	(1) Double dominant gene	Q.169	ATP is :
	(2) Homeotic gene(3) Complimentary gene		(1) Nucleotide (2) Nucleoside
	(4) Plastid		(3) Nucleic acid (4) Vitamin

Ø	CAREER POINT		AIPMT - 2000
Q.170	Essential amino acid is :	Q.180	What happens in plants during vascularisation :
	(1) Phenyl alanine (2) Glycine		(1) Differentiation of procambium, formation
	(3) Aspartic acid (4) Serine		of primary phloem followed by formation
Q.171	Anticodon occurs in :		of primary xylem
	(1) t-RNA (2) m-RNA		(2) Differentiation of procambium followed by the formation of primary phloem and
	(3) r-RNA (4) DNA		xylem simultaneously
Q.172	In three dimensional view the molecule of t-RNA is :		(3) Formation of procambium, primary phloem and xylem simultaneously
	(1) L-shaped (2) S-shaped		(4) Differentiation of procambium followed by
	(3) Y-shaped (4) E-shaped		the formation of secondary xylem
Q.173	Saline solution is given to patients of Cholera	Q.181	Which of the following ribosomes are engaged
C C	because :		in protein synthesis in animal cell :
	(1) Na^+ prevents water loss from body		(1) Ribosomes which occur on nuclear
	(2) NaCl function as regulatory material		membrane and E.R.
	(3) NaCl produces energy		(2) Ribosomes of only cytosol
	(4) NaCl is antibacterial		(3) Ribosomes of only nucleolus and cytosol
Q.174	Function of telomeres in nucleus :		(4) Ribosomes of only mitochondria and
	(1) Pole ward movement	0 192	cytosol
	(2) To initiate the RNA synthesis	Q.182	First cloned animal : (1) Dolly sheep (2) Polly sheep
	(3) To seal the ends of chromosome		(3) Molly sheep (4) Dog
	(4) To recognize the homologous chromosome	Q.183	Which of the following is initiation codon :
Q.175	Spindle fibre unite with which structure of	Q.105	(1) UAG (2) AUC
	chromosomes :		(3) AUG (4) CCU
	(1) Chromocentre (2) Chromomere	Q.184	Method of DNA replication in which two
	(3) Kinetochore (4) Centriole	C C	strands of DNA separates and synthesize new
Q.176	Which of the following have carbohydrate as		strands :
	prosthetic group :		(1) Dispersive
	(1) Glycoprotein		(2) Conservative
	(2) Chromoprotein		(3) Semiconservative
	(3) Lipoprotein		(4) Non conservative
	(4) Nucleoprotein	Q.185	In <i>Drosophila</i> the XXY condition leads to femaleness whereas in human beings the same
Q.177	Viable material of endangered species can be		condition leads to Klienfelter's syndrome in
	preserved by :		male. It proves :
	(1) Gene bank (2) Gene library		(1) In human beings Y chromosome is active
0.150	(3) Herbarium (4) Gene pool		in sex determination
Q.178	Proteoglycan in cartilages which is part of polysaccharide :		(2) Y chromosome is active in sex determination in both human beings and <i>Drosophila</i>
	(1) Condriotin (2) Ossein		(3) In <i>Drosophila</i> Y-chromosome decides
	(3) Cassin (4) Cartilegen		femaleness
Q.179	Mangolian idiots are due to trisomy in 21 st chromosome is called :		(4) Y chromosome of man have genes for syndrome
	(1) Down's syndrome	Q.186	In which stage of cell cycle, DNA replication
	(2) Turner's syndrome		occurs :
	(3) Kleinfelters syndrome		(1) G_1 - phase (2) S - phase
	(4) Triplex syndrome		(3) G_2 - phase (4) M - phase

	CAREER POINT		AIPMT - 2000
Q.187	Black rust of wheat is caused by :	Q.197	Most of the mutations are :
	(1) Puccinia (2) Ustilago		(1) Harmful (2) Harmful and recessive
	(3) Albugo (4) Phytophthora		(3) Beneficial (4) Dominant
Q.188	Which of the following animals have scattered	Q.198	Stored food in fungi :
	cells with cell – tissue grade organisation :		(1) Starch (2) Proteins
	(1) Sponge (2) <i>Hydra</i>		(3) Glycogen (4) Chitin
	(3) Liver fluke (4) <i>Ascaris</i>	Q.199	Living beings maintain continuity of life by :
Q.189	Blastopore is the pore of :		(1) Adaptation
	(1) Archenteron (2) Blastocoel		(2) DNA-replication and its transfer in next
	(3) Coelom (4) A.C.		generation
Q.190	Cleavage in mammals :		(3) RNA synthesis
	(1) Holoblastic equal		(4) None of the above
	(2) Holoblastic unequal	Q.200	What shall be the effect of destruction of wild
	(3) Superficial		life :
	(4) Discoidal		(1) Wild gene of disease resistance will not be
Q.191	Extranuclear DNA is found in :		obtained
	(1) Lysosome and chloroplast		(2) Soil erosion
	(2) Chloroplast and mitochondria		(3) Floods
	(3) Mitochondria and lysosome		(4) Green house effect
	(4) Golgi and E.R.		
Q.192	Which of the following is used to manufacture		
	ethanol from starch :		
	(1) Penicilline		
	(2) Saccharomyces		
	(3) Azotobactor		
	(4) Lactobacillus		
Q.193	A student observed an algae with chl. 'a' 'd' and		
	phycoerythrin it should belong to :		
	(1) Phaeophyta (2) Rhodophyta		
0.404	(3) Chlorophyta (4) Bacillariophyta		
Q.194	Lysosome contains :		
	(1) Oxidative enzymes		
	(2) Hydrolytic enzymes		
	(3) Reductive enzymes		
0.40.	(4) Anabolic enzymes		
Q.195	Role of enzyme in reactions :		
	(1) Decrease activation energy		
	(2) Increase activation energy		
	(3) Inorganic catalyst		
	(4) None of the above		
Q.196	What happens in light reaction (Photo chemical		
	reaction):		
	(1) Formation of ATP and NADPH ₂ (2) F_{1} (2) F_{2} (3) F_{2}		
	(2) Formation of ATP		
	(3) Formation of sugar		
	(4) Breakdown of sugar		

ANSWER KEY (AIPMT-2000)

· · · · ·		-		-	-	-	-		-	-	-	-	-	-	-		-			
Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans	2	1	3	2	2	2	2	3	3	2	2	2	1	1	1	1	1	1	3	1
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	2	2	3	2	1	1	1	2	1	2	1	2	1	2	2	1	1	2	3	2
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	2	2	4	2	2	1	2	2	3	2	1	2	4	2	1	1	2	1	2	1
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	3	1	3	1	1	4	1	2	2	2	3	4	2	1	2	2	1	2	3	1
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	1	2	1	2	1	1	3	3	3	1	1	1	1	1	1	1	4	2	2	1
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	2	1	3	2	1	3	4	4	1	1	2	3	1	1	1	4	2	3	3	1
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	1	1	1	1	1	2	2	1	3	1	1	1	3	1	2	4	1	1	2	1
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	2	4	1	3	2	1	3	1	1	2	2	2	1	1	1	1	3	1	2	3
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	1	1	1	1	1	1	2	3	1	1	1	1	1	3	3	1	1	1	1	2
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	1	1	3	3	1	2	1	2	1	1	2	2	2	2	1	1	2	3	2	1

HINTS & SOLUTIONS

4.

5.

$$1 \times 50\,\hat{j} = 0.4 \times 25\,(-\,\hat{j}\,) + 0.6\,\vec{v}$$

$$50\,\hat{j} + 10\,\hat{j} = 0.6\,\vec{v}$$

$$\vec{v} = \frac{60\,\hat{j}}{0.6} = 100\,\hat{j} = 100\,\text{m/s}\,\hat{j}$$

It is belowed wheetetons bridge

It is balanced wheatstone bridge so equivalent resistance between A & B

AIPMT - 2000

CAREER POINT: CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744-3040000

AIPMT - 2000

≣

$$6. R = \frac{2u^2 \sin \theta \cos \theta}{g}$$

Range of a projectile for angles of projection θ and $90 - \theta$ are same.

7. Tension in the string at the lowest position B is maximum.

10.
$$F = mg = 72N$$

$$g' = g\left(\frac{R_e}{R_e + h}\right)^2 = g\left(\frac{R_e}{R_e + R_e/2}\right)^2$$
$$= g\left[\frac{2R_e}{3R_e}\right]^2 = \frac{4}{9}g$$
$$F' = mg' = mg \times \frac{4}{9} = 72 \times \frac{4}{9} = 32N$$

13. Equivalent power of combination $P_{eq} = 2P_L + P_M$

The required focal length

$$f = -\frac{1}{P_{eq}} = -\frac{R}{2(\mu - 1)} = -\frac{10}{2(1.5 - 1)} = -10cm$$

17.
$$\therefore \gamma = 1 + \frac{2}{f}$$

 $\Rightarrow \frac{2}{f} = \gamma - 1 \Rightarrow f = \frac{2}{\gamma - 1}$

19.

Electric field at $O = \frac{2K\lambda}{a} \sin(\alpha/2)$ $=\frac{2\lambda}{4\pi\epsilon_0 a}\sin\frac{\pi}{2}=\frac{\lambda}{2\pi\epsilon_0 a}$

20.

 $t = \frac{d}{\sqrt{u^2 - v^2}}$

$$\frac{1}{4} = \frac{1}{\sqrt{(5)^2 - v^2}}$$

$$\frac{1}{16} = \frac{1}{25 - v^2}$$

$$v = 3 \text{ km/hr.}$$
21. $v = \frac{ds}{dt} = \frac{d}{dt} (3t^3 + 7t^2 + 14t + 8)$

$$= 9t^2 + 14t + 14$$

$$a = \frac{dv}{dt} = 18t + 14$$

$$at, t = 1 \text{ sec.}$$

$$a = 32 \text{ ms}^{-2}.$$
23. Magnetic field due to $5A \rightarrow \frac{5\mu_0}{2\pi \times 2.5} = \frac{2\mu_0}{2\pi} \otimes$
Magnetic field due to $2.5A \rightarrow \frac{2.5\mu_0}{2\pi \times 2.5} = \frac{\mu_0}{2\pi} \odot$
Resultant Magnetic field $= \frac{2\mu_0}{2\pi} - \frac{\mu_0}{2\pi} = \frac{\mu_0}{2\pi} \otimes$
24. $\vec{V} \sin 30^\circ \int_{30^\circ} \vec{V} = \vec{V}$

$$r = \frac{mV_{\perp}}{qB}$$

$$r = \left(\frac{m}{q}\right) \left(\frac{3 \times 10^5 \times \sin 30^\circ}{0.3}\right)$$

$$r = \frac{3 \times 10^5}{10^8 \times 0.3 \times 2} = 0.5 \times 10^{-2} \text{ m} = 0.5 \text{ cm}$$
26. $\mathbf{S}_1 = \mathbf{O} - \mathbf{U} = \mathbf{S}_2$
For first source
$$n_1 = n\left(\frac{v - u}{v}\right) = \left(1 - \frac{u}{v}\right) n$$
for IInd source
$$n_2 = n\left(\frac{v + u}{v}\right) = \left(1 + \frac{u}{v}\right) n$$
Beat freq. $= |n_1 - n_2| = n + \frac{nu}{v} - n + \frac{nu}{v}$

$$= \frac{2nu}{v} = 2\frac{u}{\lambda} \left[\because v = n\lambda \therefore \frac{1}{\lambda} = \frac{n}{v}\right]$$
240000

27. $\ell = \ell_1 + \ell_2 + \ell_3$ $f = \frac{1}{2\pi} \sqrt{\frac{g}{\ell}}$ 36. $\frac{\mathbf{k}}{\mathbf{n}} = \frac{\mathbf{k}}{\mathbf{n}_1} + \frac{\mathbf{k}}{\mathbf{n}_2} + \frac{\mathbf{k}}{\mathbf{n}_3}$ $\Rightarrow \frac{1}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$ $\frac{W}{O} = \frac{1}{6}$ 30. $1 - \frac{T_L}{T_H} = \frac{1}{6}$ $\frac{T_{L}}{T_{H}} = n\frac{5}{6}$ If sink temp. decrease by 62°C then $1 - \frac{T_L - 62}{T_H} = \frac{2}{6} \Rightarrow \frac{T_L - 62}{T_H} = \frac{2}{3}$ $2T_{\rm H} = 3T_{\rm L} - 186 \implies 2T_{\rm H} = 3 \times \frac{5}{6} T_{\rm H} - 186$ $2T_{H} - \frac{5}{2}T_{H} = -186 \implies \frac{5-4}{2}T_{H} = 186$ $T_{\rm H} = 186 \times 2$ = 372 K = 99°C $T_L = \frac{5}{6} \times 372 = 310 \text{ K} = 37^{\circ}\text{C}$ 33. $\ell cos \theta$

Potential energy at extreme position = kinetic energy at mean position

$$mg\ell (1 - \cos \theta) = \frac{1}{2} mv^{2}$$

$$v = \sqrt{2g\ell(1 - \cos \theta)}$$
34
$$P = \vec{F} \cdot \vec{v}$$

$$= (60\hat{i} + 15\hat{j} - 3\hat{k}) \cdot (2\hat{i} - 4\hat{j} + 5\hat{k})$$

$$= (120 - 60 - 15) = 45 watt$$

35. For triangular lamina Longest side $\rightarrow I_{min}$ Smallest side $\rightarrow I_{max}$ Therefore $I_2 > I_1 > I_3$

$$f \propto \frac{1}{\sqrt{\ell}}$$

$$\frac{f_{A}}{f_{B}} = \sqrt{\frac{\ell_{B}}{\ell_{A}}}$$

$$\Rightarrow \frac{2f_{B}}{f_{B}} = \sqrt{\frac{\ell_{B}}{\ell_{A}}}$$

$$\Rightarrow 4 = \frac{\ell_{B}}{\ell_{A}}$$

$$\Rightarrow \ell_{A} = \frac{\ell_{B}}{4}$$
39. $V = E + IR$

$$= 12 + 60 \times 5 \times 10^{-2}$$

$$= 12 + 3$$

$$= 15 V$$
40. $P = \frac{V^{2}}{R}, P \propto \frac{1}{R}$
i.e. $R_{40} > R_{100}$
42. The minimum height of mirror
$$= \frac{h}{2} = \frac{6}{2} = 3 \text{ feet}$$
44. V_{es} for earth is 11.2 km/sec.
$$v_{es} = \sqrt{\frac{2GM_{e}}{R_{e}}} = 11.2 \text{ km/sec.}$$

$$v_{es} = \sqrt{\frac{2GM_{e} \times 4}{R_{e}}} = 2\sqrt{\frac{2GM_{e}}{R_{e}}}$$

$$= 2 \times 11.2 = 22.4 \text{ km/sec.}$$
49. From one side, $\frac{t-x}{5} = 1.5$
From other side, $\frac{x}{2} = 1.5 \rightarrow x = 3$

$$\therefore \frac{t-3}{5} = 1.5 \Rightarrow t = 7.5 + 3 = 10.5 \text{ cm}$$

AIPMT - 2000

 \equiv