JEE (MAINS) MODEL GRAND TEST

PHYSICS

1. The area of the parallelogram whose adjacent sides are $(3 i+j+2 k)$ and $(i+4 j-6 k)$ is
1) 614 units
2) $\sqrt{614}$ units
3) $\sqrt{573}$ units
4) $\sqrt{717}$ units
2. A freely falling body takes ' t ' second to travel first $\left(\frac{1}{5}\right)^{\text {th }}$ distance. Then, time of descent is
1) $\frac{t}{\sqrt{5}}$
2) $t \sqrt{5}$
3) $\frac{\sqrt{5}}{t}$
4) $\frac{1}{t \sqrt{5}}$
3. At a certain height a shell at rest explodes into two equal fragments. One of the fragments receives a horizontal velocity ' u '. The time interval after which, the velocity vectors will be inclined at 120° to each other is
1) $\frac{u}{\sqrt{3} g}$
2) $\frac{\sqrt{3} u}{g}$
3) $\frac{2 u}{\sqrt{3} g}$
4) $\frac{u}{2 \sqrt{3} g}$
4. A metallic rod of length L, area of cross-section A and young's modulus Y has coefficient of linear expansion α. If the rod is heated through a temperature T, the energy stored per unit volume will be
1) $\frac{1}{2} \mathrm{Y} \alpha \mathrm{T}$
2) $\frac{1}{2} Y \alpha^{2} T^{2}$
3) $\frac{1}{2} \mathrm{YL} \alpha \mathrm{T}$
4) $\frac{1}{2} Y L \alpha^{2} T^{2}$
5. Find the ratio of specific heats for a gaseous mixture consisting of 8 grams of helium and 16 grams of oxygen.
1) $\frac{17}{27}$
2) $\frac{27}{17}$
3) $\frac{17}{24}$
4) $\frac{24}{17}$
6. The maximum tension a rope can withstand is 60 kg wt. The ratio of maximum acceleration with which two boys of masses 20 kg and 30 kg can climb up the rope at the same time is
1) $1: 2$
2) $2: 1$
3) $4: 3$
4) $3: 2$
7. A ball is dropped on the ground from a height h. If the coefficient of restitution is e, find the total distance travelled by the ball before coming to rest and the total time elapsed.
1) $\frac{\mathrm{h}(1+\mathrm{e})}{1-\mathrm{e}} ; \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}\left(\frac{1+\mathrm{e}}{1-\mathrm{e}}\right)$
2) $\frac{\mathrm{h}\left(1+\mathrm{e}^{2}\right)}{\left(1-\mathrm{e}^{2}\right)} ; \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}\left(\frac{1+\mathrm{e}}{1-\mathrm{e}}\right)$
3) $\frac{h\left(1+e^{2}\right)}{\left(1-e^{2}\right)} ; \sqrt{\frac{2 h}{g}}\left(\frac{1+e^{2}}{1-e^{2}}\right)$
4) $\frac{2 h\left(1+\mathrm{e}^{2}\right)}{\left(1-\mathrm{e}^{2}\right)} ; \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}\left(\frac{1+\mathrm{e}}{1-\mathrm{e}}\right)$
8. A mass m hangs with the help of a string wrapped around a pulley on a frictionless bearing. The pulley has mass ' m ' and radius ' R '. Assuming pulley to be a perfect uniform circular disc, the acceleration of the mass ' m ', if the string does not slip on the pulley is
1) $\frac{3}{2} \mathrm{~g}$
2) g
3) $\frac{2}{3} \mathrm{~g}$
4) $\frac{1}{3} \mathrm{~g}$
9. Two chambers, one containing ' m_{1} ' g of a gas at ' P_{1} ' pressure and other containing ' m_{2} ' g of a gas at ${ }^{\prime} \mathrm{P}_{2}$ ' pressure, are put in communication with each other. If temperature remains constant, the common pressure reached will be
1) $\frac{P_{1} P_{2}\left(m_{1}+m_{2}\right)}{P_{2} m_{1}+P_{1} m_{2}}$
2) $\frac{m_{1} m_{2}\left(P_{1}+P_{2}\right)}{\left(P_{2} m_{1}+P_{1} m_{2}\right)}$
3) $\frac{P_{1} P_{2} m_{1}}{P_{2} m_{1}+P_{1} m_{2}}$
4) $\frac{m_{1} m_{2} P_{2}}{\left(P_{2} m_{1}+m_{2} P_{1}\right)}$

www.eenadupratibha.net

10. A point mass is suspended to the free end of a weightless string of length l and area of cross section A and Young's modulus of the material of the wire Y. If this pendulum is oscillating in a vertical plane the frequency of oscillation will be
1) $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{YA}}{l}}$
2) $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{~m} l}{\mathrm{YA}}}$
3) $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{YA}}{\mathrm{m} l}}$
4) $\frac{1}{2 \pi} \sqrt{\frac{l}{m}}$
11. A uniform wire of 20 cm long is bent into a circle. It is placed gently on the surface of water of surface tension $0.07 \mathrm{Nm}^{-1}$. The extra force than its weight required to pull it out of the water is
1) 0.014 N
2) 0.028 N
3) zero
4) 0.0035 N
12. The time period of a simple pendulum, in the form of a hollow metallic sphere is T. When it is filled with sand and mercury, then its time periods are T_{1} and T_{2} respectively. When it is partially filled with sand, then its time period is T_{3}. The correct relation between T_{1}, T_{2} and T_{3} will be
1) $\mathrm{T}=\mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}$
2) $\mathrm{T}=\mathrm{T}_{1}=\mathrm{T}_{2}<\mathrm{T}_{3}$
3) $T_{1}=T_{2}>T_{3}>T$
4) $T_{1}>T_{3}>T=T_{2}$
13. A particle of mass ' m ' is projected from the surface of earth with a speed $\mathrm{V}_{0}\left(\mathrm{~V}_{0}<\right.$ escape velocity $)$. The speed of the particle at a height $\mathrm{h}=\mathrm{R}$ (radius of the earth) is
1) $\sqrt{g R}$
2) $\sqrt{V_{0}^{2}-2 g R}$
3) $\sqrt{V_{0}^{2}-g R}$
4) $\sqrt{2 g R}$
14. Resistance of a given wire is obtained by measuring the current flowing in it and the voltage difference applied across it. If the percentage errors in the measurement of the current and the voltage difference are 3% each, then error in the value of resistance of the wire is
1) 1%
2) 3%
3) 6%
4) zero
15. Consider a parallel plate capacitor of capacity $10 \mu \mathrm{~F}$ filled with air. When the gap between the plates is filled partly with a dielectric of dielectric constant 4 , as shown in figure, the new capacity of the capacitor is (A is the area of plates):

1) $20 \mu \mathrm{~F}$
2) $40 \mu \mathrm{~F}$
3) $2.5 \mu \mathrm{~F}$
4) $25 \mu \mathrm{~F}$
16. A student finds the balancing length as ' l ' with a cell of constant emf in the secondary circuit. Another student connects the same cell in the secondary circuit of potentiometer of half the length but with a cell of double of emf in the primary circuit than used in the primary of circuit of first case. Then the balancing length will be
1) $\frac{l}{4}$
2) $\frac{l}{2}$
3) $4 l$
4) l
17. In the photo electric effect experiment when the incident wavelengths are λ and $\frac{\lambda}{2}$, the kinetic energies of the photo electrons are E and 2 E . The work function of the metal is
1) $\frac{E}{4}$
2) $\frac{E}{2}$
3) $\frac{E}{3}$
4) 0
18. The magnetic induction at a point on the axis of the circular coil is $\frac{1}{2 \sqrt{2}}$ times the magnetic induction at the centre of the coil, when current is passed through the coil. If radius of the coil is 10 cm then the distance of that point is
1) 5 cm
2) 10 cm
3) 15 cm
4) 20 cm

www.eenadupratibha.net

19. A coil is suspended in a uniform magnetic field with the plane of the coil parallel to the magnetic lines of force. When a current is passed through the coil, it starts oscillating; it is very difficult to stop. But if an aluminium plate is placed near to the coil, it stops. This is due to
1) development of air current when the plate is placed
2) induction of electrical charge on the plate
3) shielding of magnetic lines of forces as aluminium is a paramagnetic material
4) electromagnetic induction in the aluminium plate giving rise to electromagnetic damping
20. A radioactive nucleus (initial mass number A and atomic number Z) emits 3α - particles and 2 positrons. The ratio of number of neutrons to that of protons in the final nucleus will be
1) $\frac{\mathrm{A}-\mathrm{Z}-8}{\mathrm{Z}-4}$
2) $\frac{A-Z-4}{Z-8}$
3) $\frac{\mathrm{A}-\mathrm{Z}-12}{\mathrm{Z}-4}$
4) $\frac{A-Z-4}{Z-2}$
21. The equation $y=5 \sin (3 x / 50) \cos (450 t)$ represents the stationary wave setup on a vibrating sonometer wire, where x, y are in cm and t in second. The velocity of one of the two progressive waves in that stationary wave is
1) $2.7 \mathrm{~ms}^{-1}$
2) $27 \mathrm{~ms}^{-1}$
3) $7.5 \mathrm{~ms}^{-1}$
4) $75 \mathrm{~ms}^{-1}$
22. A source of sound gives five beats per second, when sounded with another source of frequency $100 \mathrm{~s}^{-1}$. The second harmonic of the source together with a source of frequency $205 \mathrm{~s}^{-1}$ gives 5 beats/ sec. The frequency of the first source is
1) $105 \mathrm{~s}^{-1}$
2) $205 \mathrm{~s}^{-1}$
3) $95 \mathrm{~s}^{-1}$
4) $100 \mathrm{~s}^{-1}$
23. The average emf during the positive half cycle of an $A C$ supply of peak value E_{0} is
1) $\frac{E_{0}}{\pi}$
2) $\frac{\mathrm{E}_{0}}{\sqrt{2 \pi} \pi}$
3) $\frac{E_{0}}{2 \pi}$
4) $\frac{2 \mathrm{E}_{0}}{\pi}$
24. Match the following

TYPE - I

a) Continuous spectrum
b) Line emission spectrum
c) Band emission spectrum
d) Line absorption spectrum

1) $a-e, b-f, c-g, d-h$
2) $a-e, b-g, c-f, d-h$

TYPE - II

e) Tungsten emission filament of a bulb
f) CO_{2} gas
g) Sodium vapour lamp
h) Chromosphere of sun
2) $a-h, b-g, c-f, d-e$
4) $a-h, b-f, c-g, d-e$
25. Two beams of light having intensities I and 4 I interfere to produce a fringe pattern on a screen. The phase difference between the beams is $\frac{\pi}{2}$ at point A, and π at point B. The difference between the respective intensities at A and B is

1) $2 I$
2) 4 I
3) 5 I
4) 7 I
26. A beam of unpolarised light is incident on a tourmaline crystal C. The intensity of the emergent light is I_{0} and it is incident on another tourmaline crystal C_{2}. It is found that no light emerges from C_{2}. If now C_{1} is rotated through 45° towards C_{2}, the intensity of the light emerging from C_{2} is
1) zero
2) $\frac{I_{0}}{4}$
3) $\frac{I_{0}}{2}$
4) $\frac{3 \mathrm{I}_{0}}{4}$
27. In a transistor amplifier $\beta=62, \mathrm{R}_{\mathrm{L}}=5000 \Omega$ and internal resistance of the transistor is 500Ω. Its power amplification will be
1) 25580
2) 33760
3) 38440
4) 55760
28. The combination of gates shown below yields
1) NAND gate
2) OR gate
3) NOT gate
4) XOR gate

wWw.eenadupratibha.net

29. In a $\mathrm{p}-\mathrm{n}$ junction diode the thickness of depletion layer is $2 \times 10^{-6} \mathrm{~m}$ and barrier potential is 0.3 V . The intensity of the electric field at the junction is
1) $0.6 \times 10^{-6} \mathrm{Vm}^{-1}$ from n to p side
2) $0.6 \times 10^{-6} \mathrm{Vm}^{-1}$ from p to n side
3) $1.5 \times 10^{5} \mathrm{Vm}^{-1}$ from n to p side
4) $1.5 \times 10^{5} \mathrm{Vm}^{-1}$ from p to n side
30. A radio can tune to any station in the 7.5 MHz to 12 MHz band. The corresponding wavelength band is
1) 7.5 m to 12 m
2) 25 m to 40 m
3) 2.5 m to 4.0 m
4) 250 m to 400 m

CHEMISTRY

31. The electronic configuration of an ion M^{2+} is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}$ and the atomic weight of M is 56. The number of protons in the nucleus of M^{2+} is
1) 24
2) 26
3) 28
4) 30
32. An open vessel at $27^{\circ} \mathrm{C}$ is heated until $\frac{1}{4}^{\text {th }}$ mass of the air in it has been expelled. Neglecting the expansion of the vessel, the temperature to which the vessel has been heated is
1) $400^{\circ} \mathrm{C}$
2) $127^{\circ} \mathrm{C}$
3) $1000^{\circ} \mathrm{C}$
4) $477^{\circ} \mathrm{C}$
33. How many unit cells are present in cube shaped ideal crystal of NaCl of mass 58.5 g ?
1) 2.57×10^{21}
2) 5.14×10^{21}
3) 1.505×10^{23}
4) 1.71×10^{21}
34. 1.0 g of an organic compound containing phosphorous precipitated 0.444 g of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The percentage of phosphorous in that organic compound is
1) 12.4
2) 24.8
3) 49
4) 75
35. 1.25 Faradays of electricity is passed through solution of CuSO_{4}. The number of gram equivalents of copper deposited on the cathode would be
1) 1
2) 2
3) 2.5
4) 1.25
36. For a spontaneous process
1) $\Delta G_{\text {system }}=+v e$ only
2) $\Delta G_{\text {system }}=$ zero
3) $\Delta S_{\text {total }}=-v e$
4) $\Delta S_{\text {total }}=+v e$
37. Trichloroacetaldehyde was subjected to Cannizzaro's reaction by using NaOH . The mixture of the products contains sodium trichloroacetate and another compound. The other compound is
1) Chloroform
2) 2,2,2 - trichloro ethanol
3) Trichloro methanol
4) 2,2,2 - trichloro propanol
38. The mole fractions of water and methanol in a solution containing 2 mole of water and 3 moles of
methanol are
1) 0.2 and 0.8
2) 0.4 and 0.6
3) $\frac{1}{18}$ and $\frac{1}{8}$
4) $\frac{1}{8}$ and $\frac{1}{18}$
39. A certain amount of PCl_{5} is heated to $250^{\circ} \mathrm{C}$ in a 2 litre vessel till equilibrium is reached. At equilibrium the vessel was found to contain 0.1 mole of PCl_{5} and 0.2 mole of Cl_{2}. The value of K_{c} for the reaction
$\mathrm{PCl}_{5(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$ is
1) 0.02
2) 0.025
3) 0.2
4) 0.04
40. The rate of gaseous reaction is given by $K[A][B]$. If the volume of reaction vessel is reduced to $\frac{1}{3}$ of initial volume the reaction rate relative to the original rate is
1) $\frac{1}{16}$
2) $\frac{1}{8}$
3) 6
4) 9
41. The correct order of reducing abilities of hydrides of VA group elements is
1) $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$
2) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$
3) $\mathrm{NH}_{3}<\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$
4) $\mathrm{SbH}_{3}>\mathrm{BiH}_{3}>\mathrm{AsH}_{3}>\mathrm{NH}_{3}>\mathrm{PH}_{3}$

www.eenadupratibha.net

42. Horn silver ore is leached with aqueous NaCN solution. The product formed is
1) Silver metal
2) Silver chloride
3) Silver cyanide
4) Sodium argento cyanide
43. The ion having maximum magnetic moment is
1) Co^{+3}
2) Cr^{+3}
3) Ni^{+2}
4) Cu^{+1}
44. The number of lone pairs on chlorine atom in $\mathrm{ClO}^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{ClO}_{4}^{-}$ions are
1) $0,1,2,3$
2) $1,2,3,4$
3) $4,3,2,1$
4) $3,2,1,0$
45. Volume strength of 250 ml solution containing 6.8 gr of $\mathrm{H}_{2} \mathrm{O}_{2}$ is
1) 11.2
2) 6.8
3) 8.96
4) 2.24
46. In which of the following sets, all the given species are isostructural?
1) $\mathrm{CO}_{2}, \mathrm{NO}_{2}, \mathrm{ClO}_{2}, \mathrm{SiO}_{2}$
2) $\mathrm{PCl}_{3}, \mathrm{AlCl}_{3}, \mathrm{BCl}_{3}, \mathrm{SbCl}_{3}$
3) $\mathrm{BF}_{3}, \mathrm{NF}_{3}, \mathrm{PF}_{3}, \mathrm{AlF} 3$
4) $\mathrm{BF}_{3}^{-}, \mathrm{CCl}_{4}, \mathrm{NH}_{4}^{+}, \mathrm{PCl}_{4}^{+}$
47. 10.03×10^{22} atoms of an element weight 4 gms . The atomic mass of the elements is
1) 290
2) 180
3) 24.01
4) 104
48. In a galvanic cell electron flow will be from
1) negative electrode to positive electrode
2) positive electrode to negative electrode
3) there will be no flow of electrons
4) cathode to anode in the external electrons
49. The crystal field splitting energy for octahedral complex $\left(\Delta_{0}\right)$ and tetrahedral complex $\left(\Delta_{t}\right)$ are related as
1) $\Delta_{t}=\frac{4}{9} \Delta_{0}$
2) $\Delta_{t}=0.5 \Delta_{0}$
3) $\Delta_{t}=0.33 \Delta_{0}$
4) $\Delta_{t}=\frac{9}{4} \Delta_{0}$
50. Froth flotation process used for the concentration of sulphide ore
a) is based on the difference in wettability of different minerals
b) uses sodium ethyl xanthate, as collector
c) uses NaCN as depressant in the mixture of ZnS and PbS when ZnS forms soluble complex and PbS forms froth
1) a, b only correct
2) b, c only correct
3) a, c only correct
4) a, b, c are correct
51. Aryl fluoride may be prepared from diazonium chloride using
1) $\mathrm{HBF}_{4} / \mathrm{NaNO}_{2}, \mathrm{Cu}, \Delta$
2) $\mathrm{HBF}_{4} / \Delta$
3) $\mathrm{CuF} / \mathrm{HF}$
4) $\mathrm{Cu} / \mathrm{HF}$
52. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{I}_{2}+\mathrm{KOH} \rightarrow \mathrm{CHI}_{3}+\mathrm{KI}+\mathrm{X}$. Here the missing product ' X ' is
1) HCOOK
2) $\mathrm{CH}_{3} \mathrm{COOK}$
3) $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}$
4) $(\mathrm{HCOO})_{2} \mathrm{Ca}$
53. The intermediate product in the preparation of ethanol from ethylene and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is
1) $\mathrm{C}_{2} \mathrm{H}_{5}^{+}$
2) $\mathrm{C}_{2} \mathrm{H}_{4}$
3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HSO}_{4}$
4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+} \mathrm{H}_{2}$
54. Which reaction produces acrylonitrile $\left(\mathrm{CH}_{2}=\mathrm{CHCN}\right)$
1) Ethyne $\xrightarrow[\mathrm{Ba}^{2+}]{\mathrm{HCN}}$
2) Acrylic acid $\xrightarrow[\mathrm{Hg}]{\mathrm{KCN}}$
3) Ethyne $\xrightarrow[\mathrm{Hg}^{+2}]{\mathrm{KCN}}$
4) Ethyne $\xrightarrow[\mathrm{H}^{+}]{\mathrm{HOCl}}$
55. Picric acid is a yellow coloured compound. Its chemical name is
1) m-nitrobenzoic acid
2) 2, 4, 6 - trinitrophenol
3) trinitrotoluene
4) trinitroaniline

www.eenadupratibha.net

56. Identify A, B and C in the following reactions

A
B
C
1) $\mathrm{CH}_{3} \mathrm{NC}$
$\mathrm{CH}_{3} \mathrm{NHCH}_{3}$
$\mathrm{CH}_{3}-\mathrm{N}-\mathrm{C}_{2} \mathrm{H}_{5}$
CH_{3}
2) $\mathrm{CH}_{3} \mathrm{CN}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$
3) $\mathrm{CH}_{3} \mathrm{CN}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
$\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
57. Nitro benzene on reduction with $\mathrm{Sn} / \mathrm{HCl}$ gives ' A ' which on reaction with acetyl chloride forms ' B ' which of the following is ' B '?
1) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CO}-\mathrm{CH}_{3}$
2) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{3}$
3) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{NHCl}$
4) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{O}-\mathrm{CO}-\mathrm{CH}_{3}$
58. Lactose is a disaccharide of
1) $\beta-\mathrm{D}-$ Glucose and $\beta-\mathrm{D}-$ Galactose
2) $\alpha-\mathrm{D}$ - Glucose and $\beta-\mathrm{D}$ - Ribose
3) $\alpha-\mathrm{D}$ - Glucose and $\beta-\mathrm{D}-$ Galactose
4) $\alpha-D-$ Glucose and $\alpha-D-$ Fructose
59. The structure of paracetamol is
1)

2)

3)

4)

60. 1,3-butadiene and styrene on polymerization give

1) Bakelite
2) Terylene
3) Buna-S
4) Teflon

MATHS

61. The image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ is
1) $(1,2,3)$
2) $(1,3,5)$
3) $(0,1,2)$
4) $(1,0,7)$
62. $I=\int^{\pi / 3} \frac{\sin x}{x} d x$ then I lies in
1) $\left(\frac{\sqrt{3}}{8}, \frac{\sqrt{2}}{6}\right)$
2) $\left(\frac{1}{\sqrt{2}}, \frac{3}{2}\right)$
3) $\left(\frac{\sqrt{1}}{\sqrt{2}}, \frac{1}{2}\right)$
4) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$
63. The maximum value of $f(x)=x^{3}-3 x$ subject to $x^{4}+36 \leq 13 x^{2}$ is
1) 15
2) 18
3) 25
4) ∞
64. $\quad \underset{\rightarrow}{\mathrm{Lt}}\left(\left[\frac{\mathrm{n} \sin \theta}{\theta}\right]+\left[\frac{\mathrm{n} \tan \theta}{\theta}\right]\right)$, where $[\mathrm{x}]$ is greatest integer $\leq \mathrm{x}$ and $\mathrm{n} \in \mathrm{I}$ is
1) $2 n$
2) $2 n+1$
3) $2 n-1$
4) $n+2$

www.eenadupratibha.net

65. If 'e' is eccentricity of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and θ is angle between asymptotes, then $\cos \frac{\theta}{2}=$
1) \sqrt{e}
2) $\frac{e}{1+e}$
3) $\frac{1}{\sqrt{\mathrm{e}}}$
4) $\frac{1}{e}$
66. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive integers such that $\mathrm{a}+\mathrm{b}+\mathrm{c} \leq 8$, then the number of possible values of ordered triplets ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) is
1) 84
2) 56
3) 83
4) 54
67. A line passing through $(3,4)$ meets the axes $O X$ and $O Y$ at $A \& B$. The minimum area of $\triangle O A B$ is
1) 8
2) 16
3) 24
4) 32
68. The plane $\mathrm{x}+2 \mathrm{y}-\mathrm{kz}+3=0$ is perpendicular to the line whose D.r.'s are $(2,4,3)$. Then $\mathrm{k}=$
1) 5
2) $-\frac{3}{2}$
3) 1
4) 0
69. $\operatorname{Lt}_{\mathrm{x} \rightarrow 1}\left(1-\mathrm{x}^{2}\right)^{\frac{1}{\log (1-\mathrm{x})}}=$
1) e
2) e^{2}
3) e^{3}
4) e^{4}
70. If $\mathrm{f}(\mathrm{x})=\frac{1-\cos \mathrm{ax}}{\mathrm{x} \sin \mathrm{x}}, \mathrm{x} \neq 0, \mathrm{f}(0)=\frac{1}{2}$ is continuous at $\mathrm{x}=0$, then $\mathrm{a}=$
1) ± 2
2) ± 3
3) ± 1
4) ± 4
71. If $x-y=0$ is tangent to $y=x^{2}+b x+c$ at $(1,1)$. Then
1) $b=-1, c \in 1$
2) $b=1, c=-1$
3) $b=-1, c=0$
4) $b=0, c=-1$
72. In $\triangle A B C, a=6, b=3, \cos (A-B)=\frac{4}{5} \Rightarrow \angle C=$?
1) $\frac{\pi}{4}$
2) $\frac{\pi}{3}$
3) $\frac{\pi}{6}$
4) $\frac{\pi}{2}$
73. $\bar{a}=i+2 j+3 k, \bar{b}=-i+2 j+k, \bar{c}=3 i+j$ and \bar{d} is normal to both $\bar{a} \& \bar{b}$ then $(\bar{c}, \bar{d})=$
1) $\cos ^{-1} \frac{4}{\sqrt{30}}$
2) $\sin ^{-1} \frac{4}{\sqrt{30}}$
3) $\cos ^{-1} \frac{2}{\sqrt{30}}$
4) $\sin ^{-1} \frac{2}{\sqrt{30}}$
74. $A=\left[\begin{array}{ll}0 & 5 \\ 0 & 0\end{array}\right]$ and $f(x)=I+x+x^{2}+\ldots+x^{16}$
$\Rightarrow \mathrm{f}(\mathrm{A})=$
1) 0
2) $\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$
3) $\left[\begin{array}{ll}1 & 5 \\ 0 & 0\end{array}\right]$
4) $\left[\begin{array}{ll}0 & 5 \\ 1 & 1\end{array}\right]$
75. $f: C \rightarrow C$ where ' C ' is set of complex numbers and $f(z)=|z|$ then ' f ' is
1) one - one
2) onto
3) bijection
4) neither one - one nor onto
76. A line of symmetry to the circle is a
1) tangent
2) polar
3) chord
4) diameter
77. If $x-2 y-a=0$ is a chord of $y^{2}=4 a x$. Then its length is
1) $4 \sqrt{5} \mathrm{a}$
2) 20 a
3) 5 a
4) 40 a
78. C is centre of $\frac{\mathrm{x}^{2}}{25}+\frac{\mathrm{y}^{2}}{16}=1$ and S is one focus. Then the ratio of CS to semi major axis is
1) $4: 5$
2) $2: 3$
3) $3: 5$
4) $2: 5$

wWw.eenadupratibha.net

79. $\int_{0}^{4}[2 x+3] d x=$ \qquad where $[x]$ is greatest integer function $\leq x$
1) 12
2) 24
3) 26
4) 10
80. ' n ' persons are sit in a row at random. The probability that 2 particular persons are never together
1) $\frac{2}{n}$
2) $\frac{1-2}{n}$
3) $\frac{(n-1) C_{2}}{\angle n}$
4) $\frac{1}{n}$
81. If 4 throws with a pair of dice, the probability of throwing doublet at least once is
1) $\left(\frac{5}{6}\right)^{4}$
2) $1-\left(\frac{5}{6}\right)^{4}$
3) $1-\left(\frac{1}{6}\right)^{4}$
4) $\left(\frac{1}{6}\right)^{4}$
82. If a, b, c are all positive and a, b, c are in H.P., then the roots of $a x^{2}+b x+c=0$ are
1) real
2) imaginary
3) rational
4) equal
83. The number of n-digit numbers, no two consecutive digits being the same is
1) $\angle n$
2) $\angle 9$
3) 9^{n}
4) n^{9}
84. In the expansion $(\sqrt[5]{3}+\sqrt[7]{2})^{24}$, the rational term is
1) T_{14}
2) T_{16}
3) T_{15}
4) T_{7}
85. If the $7^{\text {th }}$ term in the expansion of $\left(\frac{3}{\sqrt[3]{84}}+\sqrt{3} \log x\right)^{9}, x>0$ is 729 , then x is
1) $\frac{e}{2}$
2) e^{2}
3) $2 e$
4) e
86. A set S contains 7 elements. A non-empty subset A of S and an element x of S are chosen at random. The probability that $x \in A$ is
1) $\frac{1}{2}$
2) $\frac{64}{127}$
3) $\frac{63}{128}$
4) $\frac{31}{128}$
87. The area enclosed by the curves $y=x^{2}, y=x^{3}, x=0, x=p$ where $p>1$, is $\frac{1}{6}$, then p equals
1) $\frac{8}{3}$
2) $\frac{4}{3}$
3) $\frac{16}{3}$
4) 2
88. An integrating factor of $\left(1+y+x^{2} y\right) d x+\left(x+x^{3}\right) d y=0$ is
1) e^{X}
2) x^{2}
3) $\frac{1}{x}$
4) x
89. If $f: R \rightarrow C$ defined by $f(x)=e^{2 i x}$ for $x \in R$ then, f is [C-is set of complex numbers].
1) one - one
2) on to
3) bijection
4) neither one-one nor onto
90. The condition that $f(x)=a x^{3}+b x^{2}+c x+d$ has no extreme value is
1) $\mathrm{b}^{2}-4 \mathrm{ac}=0$
2) $\mathrm{b}^{2}=3 \mathrm{ac}$
3) $\mathrm{b}^{2}<3 \mathrm{ac}$
4) $b^{2}>3 a c$

KEY

$1-4 ; 2-2 ; 3-1 ; 4-2 ; 5-2 ; 6-2 ; 7-2 ; 8-3 ; 9-1 ; 10-3 ; 11-2 ; 12-2 ; 13-3 ; 14-3 ; 15-4 ; 16-1 ; 17-4 ; 18-2 ; 19-4 ; 20-2$; $21-4 ; 22-1 ; 23-4 ; 24-3 ; 25-2 ; 26-3 ; 27-3 ; 28-2 ; 29-3 ; 30-2 ; 31-2 ; 32-2 ; 33-3 ; 34-1 ; 35-4 ; 36-4 ; 37-2 ; 38-2$; $39-3 ; 40-4 ; 41-1 ; 42-4 ; 43-1 ; 44-4 ; 45-3 ; 46-4 ; 47-3 ; 48-1 ; 49-1 ; 50-4 ; 51-2 ; 52-1 ; 53-3 ; 54-1 ; 55-2 ; 56-3$; $57-2 ; 58-1 ; 59-2 ; 60-3 ; 61-4 ; 62-1 ; 63-2 ; 64-3 ; 65-4 ; 66-2 ; 67-3 ; 68-2 ; 69-1 ; 70-3 ; 71-1 ; 72-4 ; 73-1 ; 74-2$; $75-4 ; 76-4 ; 77-2 ; 78-3 ; 79-3 ; 80-2 ; 81-2 ; 82-2 ; 83-3 ; 84-3 ; 85-4 ; 86-2 ; 87-2 ; 88-4 ; 89-4 ; 90-3$.
(This model grand test is prepared by Srigayatri Educational Institutions)

