JEE (MAINS) MODEL GRAND TEST

No. of Questions: 90 **Marks: 360** Time: 3 Hrs. PHYSICS The area of the parallelogram whose adjacent sides are (3i + j + 2k) and (i + 4j - 6k) is 1. 3) $\sqrt{573}$ units 1) 614 units 2) $\sqrt{614}$ units 4) $\sqrt{717}$ units A freely falling body takes 't' second to travel first $\left(\frac{1}{5}\right)^{\text{th}}$ distance. Then, time of descent is 2. $3)\frac{\sqrt{5}}{4}$ 1) $\frac{t}{\sqrt{5}}$ 2) t $\sqrt{5}$ $(4) \frac{1}{\sqrt{\pi}}$ At a certain height a shell at rest explodes into two equal fragments. One of the fragments receives a 3. horizontal velocity 'u'. The time interval after which, the velocity vectors will be inclined at 120° to each other is 2) $\frac{\sqrt{3} u}{g}$ 3) $\frac{2 u}{\sqrt{3} g}$ 1) $\frac{u}{\sqrt{3}g}$ 4) $\frac{u}{2\sqrt{3}g}$ 4. A metallic rod of length L, area of cross-section A and young's modulus Y has coefficient of linear expansion α . If the rod is heated through a temperature T, the energy stored per unit volume will be $(2)\frac{1}{2}Y\alpha^2T^2$ $3)\frac{1}{2}$ YL α T 1) $\frac{1}{2}$ Y α T 4) $\frac{1}{2}$ YL α^2 T² 5. Find the ratio of specific heats for a gaseous mixture consisting of 8 grams of helium and 16 grams of oxygen. $1)\frac{17}{27}$ $(4)\frac{24}{17}$ $2)\frac{27}{17}$ $3)\frac{17}{24}$ The maximum tension a rope can withstand is 60 kg wt. The ratio of maximum acceleration with which 6. two boys of masses 20 kg and 30 kg can climb up the rope at the same time is 3) 4 : 3 2)2:11)1:27. A ball is dropped on the ground from a height h. If the coefficient of restitution is e, find the total distance travelled by the ball before coming to rest and the total time elapsed. 2) $\frac{h(1 + e^2)}{(1 - e^2)}; \sqrt{\frac{2h}{g}} \left(\frac{1 + e}{1 - e}\right)$ 4) $\frac{2h(1 + e^2)}{(1 - e^2)}; \sqrt{\frac{2h}{g}} \left(\frac{1 + e}{1 - e}\right)$ 1) $\frac{h(1+e)}{1-e}$; $\sqrt{\frac{2h}{\sigma}} \left(\frac{1+e}{1-e}\right)$ 3) $\frac{h(1+e^2)}{(1-e^2)}$; $\sqrt{\frac{2h}{g}} \left(\frac{1+e^2}{1-e^2}\right)$ A mass m hangs with the help of a string wrapped around a pulley on a frictionless bearing. The 8. pulley has mass 'm' and radius 'R'. Assuming pulley to be a perfect uniform circular disc, the acceleration of the mass 'm', if the string does not slip on the pulley is $(3)\frac{2}{2}g$ 1) $\frac{3}{2}$ g $(4)\frac{1}{2}g$ 2) g Two chambers, one containing 'm1' g of a gas at 'P1' pressure and other containing 'm2' g of a gas at 9. P_2 pressure, are put in communication with each other. If temperature remains constant, the common pressure reached will be 1) $\frac{P_1P_2(m_1 + m_2)}{P_2m_1 + P_1m_2}$ $2)\frac{m_{1}m_{2}(P_{1}+P_{2})}{(P_{2}m_{1}+P_{1}m_{2})}$ 4) $\frac{m_1m_2P_2}{(P_2m_1 + m_2P_1)}$ 3) $\frac{P_1P_2 m_1}{P_2m_1 + P_1m_2}$

www.eenadupratibha.net

R-1,2-4-15

10. A point mass is suspended to the free end of a weightless string of length *l* and area of cross section A and Young's modulus of the material of the wire Y. If this pendulum is oscillating in a vertical plane the frequency of oscillation will be

$$1)\frac{1}{2\pi}\sqrt{\frac{YA}{l}} \qquad 2)\frac{1}{2\pi}\sqrt{\frac{ml}{YA}} \qquad 3)\frac{1}{2\pi}\sqrt{\frac{YA}{ml}} \qquad 4)\frac{1}{2\pi}\sqrt{\frac{l}{m}}$$

A uniform wire of 20 cm long is bent into a circle. It is placed gently on the surface of water of surface tension 0.07 Nm⁻¹. The extra force than its weight required to pull it out of the water is
 1) 0.014 N
 2) 0.028 N
 3) zero
 4) 0.0035 N

12. The time period of a simple pendulum, in the form of a hollow metallic sphere is T. When it is filled with sand and mercury, then its time periods are T_1 and T_2 respectively. When it is partially filled with sand, then its time period is T_3 . The correct relation between T_1 , T_2 and T_3 will be

1)
$$T = T_1 = T_2 = T_3$$

3) $T_1 = T_2 > T_3 > T$
2) $T = T_1 = T_2 < T_3$
4) $T_1 > T_3 > T = T_2$

13. A particle of mass 'm' is projected from the surface of earth with a speed $V_0(V_0 < escape velocity)$. The speed of the particle at a height h = R (radius of the earth) is

1)
$$\sqrt{gR}$$
 2) $\sqrt{V_0^2 - 2gR}$ 3) $\sqrt{V_0^2 - gR}$ 4) $\sqrt{2gR}$

14. Resistance of a given wire is obtained by measuring the current flowing in it and the voltage difference applied across it. If the percentage errors in the measurement of the current and the voltage difference are 3% each, then error in the value of resistance of the wire is

15. Consider a parallel plate capacitor of capacity 10μ F filled with air. When the gap between the plates is filled partly with a dielectric of dielectric constant 4, as shown in figure, the new capacity of the capacitor is (A is the area of plates):

16. A student finds the balancing length as '*l*' with a cell of constant emf in the secondary circuit. Another student connects the same cell in the secondary circuit of potentiometer of half the length but with a cell of double of emf in the primary circuit than used in the primary of circuit of first case. Then the balancing length will be

1)
$$\frac{l}{4}$$

1) 20 µF

4l

4) l

4)0

17. In the photo electric effect experiment when the incident wavelengths are λ and $\frac{\lambda}{2}$, the kinetic energies of the photo electrons are E and 2E. The work function of the metal is

$$2)\frac{E}{2} \qquad 3)\frac{E}{3}$$

18. The magnetic induction at a point on the axis of the circular coil is $\frac{1}{2\sqrt{2}}$ times the magnetic

induction at the centre of the coil, when current is passed through the coil. If radius of the coil is 10 cm then the distance of that point is

1) 5 cm 2) 10 cm 3) 15 cm 4) 20 cm

29.	In a p – n junction diode the thickness of depletion layer is 2×10^{-6} m and barrier potential is 0.3 V. The intensity of the electric field at the junction is						
	1) $0.6 \times 10^{-6} \text{ Vm}^{-1} \text{ fr}$	om n to n side	2) 0.6×10^{-6} Vm ⁻¹ ft	com n to n side			
	3) 1.5×10^5 Vm ⁻¹ fro	m n to n side	4) 1.5×10^5 Vm ⁻¹ from 10^{-1}	om p to n side			
30.	A radio can tune to an	v station in the 7.5 MHz to	12 MHz band The corr	esponding wavelength band			
20.	is						
	1) 7.5 m to 12 m	2) 25 m to 40 m	3) 2.5 m to 4.0 m	4) 250 m to 400 m			
		CHEMI	STRY	· 3. •			
31.	The electronic configuration of an ion M^{2+} is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$ and the atomic weight of M is 56. The number of protons in the nucleus of M^{2+} is						
	1) 24	2) 26	3) 28	4) 30			
32.	An open vessel at 27°C is heated until $\frac{1}{4}$ mass of the air in it has been expelled. Neglecting the expansion of the vessel, the temperature to which the vessel has been heated is						
	1) 400°C	2) 127°C	3) 1000°C	4) 477°C			
33.	How many unit cells a	re present in cube shaped i	deal crystal of NaCl of n	nass 58.5 g?			
	1) 2.57×10^{21}	2) 5.14×10^{21}	3) 1.505×10^{23}	4) 1.71×10^{21}			
34.	1.0 g of an organic compound containing phosphorous precipitated 0.444 g of $Mg_2P_2O_7$. The percentage of phosphorous in that organic compound is						
	1) 12.4	2) 24.8	3) 49	4) 75			
35.	1.25 Faradays of electr	ricity is passed through sol	ution of $CuSO_4$. The nur	nber of gram equivalents of			
	copper deposited on th	e cathode would be	7				
	1) 1	2) 2	3) 2.5	4) 1.25			
36.	For a spontaneous pro-	cess					
	1) $\Delta G_{\text{system}} = +\text{ve onl}$	У	2) $\Delta G_{\text{system}} = \text{zero}$	2.			
	3) $\Delta S_{\text{total}} = -ve$		4) $\Delta S_{\text{total}} = + \text{ve}$				
37.	Trichloroacetaldehyde	was subjected to Cannizz	aro's reaction by using other compound. The oth	NaOH. The mixture of the			
	1) Chloroform		2) 2, 2, 2 – trichloro e	thanol			
	3) Trichloro methanol		4) 2, 2, 2 – trichloro p	ropanol			
38.	The mole fractions of	water and methanol in a s	solution containing 2 mc	ble of water and 3 moles of			
	methanol are	· · · · · · · · · · · · · · · · · · ·	1 1	1 1			
	1) 0.2 and 0.8	2) 0.4 and 0.6	3) $\frac{1}{18}$ and $\frac{1}{8}$	4) $\frac{1}{8}$ and $\frac{1}{18}$			
39.	A certain amount of	PCl_5 is heated to 250°C	in a 2 litre vessel till	equilibrium is reached. At			
	equilibrium the vessel	was found to contain 0.1 m	tole of PCl_5 and 0.2 mole	e of Cl_2 . The value of K_c for			
	the reaction $PCI \rightarrow PCI$	Cl is					
	$1 C l_{5(g)} = 1 C l_{3(g)} + 1 0 02$	(2(g)) 15 2) 0.025	3) 0 2	4) 0.04			
40.	The rate of gaseous rea	action is given by K[A] [B]	l. If the volume of reaction	on vessel is reduced to $\frac{1}{2}$ of			
100	initial volume the reac	initial volume the reaction rate relative to the original rate is					
	$1)\frac{1}{16}$	$2)\frac{1}{8}$	3) 6	4) 9			
41.	The correct order of re	ducing abilities of hydrides	s of VA group elements i	S			
	1) NH ₃ < PH ₃ < AsH ₂	< SbH ₃ < BiH ₃	2) $NH_3 > PH_3 > AsH_3$	$_3 > \text{SbH}_3 > \text{BiH}_3$			
	3) $NH_3 < PH_3 > AsH_3$	> SbH ₃ $>$ BiH ₃	4) $SbH_3 > BiH_3 > Asl$	$H_3 > NH_3 > PH_3$			

42.	Horn silver ore is leached with aqueous NaCN solution. The product formed is						
	1) Silver metal		2) Silver chloride				
	3) Silver cyanide		4) Sodium argento cya	4) Sodium argento cvanide			
43.	The ion having maximum magnetic moment is						
	1) Co+3	2) Cr+3	3) Ni ⁺²	4) Cu ⁺¹			
44.	The number of lone pair	s on chlorine atom in Cl	$D^{-}, ClO_{2}^{-}, ClO_{3}^{-}, ClO_{4}^{-}$ io	ns are			
	1) 0, 1, 2, 3	2) 1, 2, 3, 4	3) 4, 3, 2, 1	4) 3, 2, 1, 0			
45.	Volume strength of 250	ml solution containing 6.	8 gr of H_2O_2 is	2			
	1) 11.2	2) 6.8	3) 8.96	4) 2.24			
46.	In which of the followin	g sets, all the given speci	es are isostructural?				
	1) CO_2 , NO_2 , ClO_2 , SiO_2		2) PCl ₃ , AlCl ₃ , BCl ₃ , SbCl ₃				
	3) BF ₃ , NF ₃ , PF ₃ , A/F_3		4) BF ₂ , CC l_4 , NH ⁺ ₄ , PC l_4^+				
47.	10.03×10^{22} atoms of a	n element weight 4 gms.	The atomic mass of the e	lements is			
	1) 290	2) 180	3) 24.01	4) 104			
48.	In a galvanic cell electro	n flow will be from					
	1) negative electrode to	positive electrode					
	2) positive electrode to negative electrode						
	3) there will be no flow of electrons						
	4) cathode to anode in th	e external electrons					
49.	The crystal field splitting	g energy for octahedral co	mplex (Δ_0) and tetrahed	ral complex (Δ_t) are related			
	as						
<	1) $\Delta_{\rm f} = \frac{4}{\Omega} \Delta_0$	2) $\Delta_t = 0.5 \Delta_0$	3) $\Delta_{\rm t} = 0.33 \Delta_0$	4) $\Delta_t = \frac{9}{4} \Delta_0$			
50.	Froth flotation process u	sed for the concentration	of sulphide ore	4 0			
	a) is based on the difference in wettability of different minerals						
	b) uses sodium ethyl xar	thate, as collector	\cdot				
	c) uses NaCN as depress	ant in the mixture of ZnS	and PbS when ZnS form	s soluble complex and PbS			
	forms froth		XX				
	1) a, b only correct		2) b, c only correct				
	3) a, c only correct		4) a, b, c are correct				
51.	Aryl fluoride may be pre	epared from diazonium ch	nloride using				
	1) HBF ₄ / NaNO ₂ , Cu, Δ	AAA	2) HBF ₄ / Δ				
	3) CuF/HF	20	4) Cu/HF				
52.	$C_2H_5OH + I_2 + KOH -$	• $CHI_3 + KI + X$. Here the	ne missing product 'X' is				
	1) HCOOK	2) CH ₃ COOK	3) $(CH_3COO)_2Ca$	4) (HCOO) ₂ Ca			
53.	The intermediate produc	t in the preparation of eth	anol from ethylene and H	H_2SO_4 is			
	1) $C_2 H_5^+$	2) C ₂ H ₄	3) $C_2H_5HSO_4$	4) $C_2H_5O^+H_2$			
54.	Which reaction produces	s acrylonitrile ($CH_2 = CH_2$	ICN)				
<	1) Ethyne $\xrightarrow{\text{HCN}}$	2) Acrylic acid KCN	\rightarrow 3) Ethyne $\xrightarrow{\text{KCN}}$	4) Ethyne $\xrightarrow{\text{HOC}l}$			
	Hg Hg^{+2} H^+						
55.	Picric acid is a yellow co	bloured compound. Its ch	emical name is				
	1) m-nitrobenzoic acid		2) 2, 4, 6 - trinitrophen	ol			
	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	3) trinitrotoluene		4) trinitroaniline				

65.	If 'e' is eccentricity of hy	perbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	and θ is angle between a	symptotes, then $\cos \frac{\theta}{2} =$		
	$1)\sqrt{e}$	$2)\frac{e}{1+e}$	$3)\frac{1}{\sqrt{e}}$	$4)\frac{1}{e}$		
66.	If a, b, c are positive interpretent triplets (a, b, c) is	egers such that $a + b + c$	\leq 8, then the number of j	possible values of ordered		
	1) 84	2) 56	3) 83	4) 54		
67.	A line passing through (3	3, 4) meets the axes OX a	nd OY at A & B. The min	imum area of $\triangle OAB$ is		
	1) 8	2) 16	3) 24	4) 32		
68.	The plane $x + 2y - kz + 3 = 0$ is perpendicular to the line whose D.r.'s are (2, 4, 3). Then k =					
	1) 5	2) $-\frac{3}{2}$	3) 1	4) 0		
	1	2	. 2.			
69.	$Lt_1(1-x^2)^{\overline{log(1-x)}} =$					
	1) e	2) e ²	3) e ³	4) e ⁴		
70.	If $f(x) = \frac{1 - \cos ax}{x \sin x}, x$	$\neq 0, f(0) = \frac{1}{2}$ is continu	ous at $x = 0$, then $a =$			
	1) ± 2	$2) \pm 3$	3) ± 1	$(4) \pm 4$		
71.	If $x - y = 0$ is tangent to	$y = x^2 + bx + c$ at (1, 1).	Then			
	1) b = -1 , c = 1	2) b = 1, c = -1	3) $b = -1, c = 0$	4) $b = 0, c = -1$		
72.	In \triangle ABC, a = 6, b = 3, c	$\cos (A - B) = \frac{4}{5} \Rightarrow \angle C =$	= ?			
	1) $\frac{\pi}{4}$	2) $\frac{\pi}{3}$	$3)\frac{\pi}{6}$	$4)\frac{\pi}{2}$		
73.	$\overline{a} = i + 2j + 3k$, $\overline{b} = -i + 2j + k$, $\overline{c} = 3i + j$ and \overline{d} is normal to both $\overline{a} & \overline{b}$ then $(\overline{c}, \overline{d}) =$					
	1) $\cos^{-1}\frac{4}{\sqrt{30}}$	2) $\sin^{-1}\frac{4}{\sqrt{30}}$	3) $\cos^{-1}\frac{2}{\sqrt{30}}$	4) $\sin^{-1}\frac{2}{\sqrt{30}}$		
	$\begin{bmatrix} 0 & 5 \end{bmatrix}$	¥ 50	V SU	1 50		
74.	$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } f(x) = I$	$+ x + x^{2} + + x^{16}$.0.			
	\Rightarrow f(A) =					
	1) 0	$2)\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$	$3)\begin{bmatrix}1 & 5\\0 & 0\end{bmatrix}$	$4)\begin{bmatrix} 0 & 5\\ 1 & 1 \end{bmatrix}$		
75.	$f: C \rightarrow C$ where 'C' is set of complex numbers and $f(z) = z $ then 'f' is					
	1) one – one		2) onto			
	3) bijection		4) neither one – one nor	onto		
76.	A line of symmetry to the	e circle is a				
	1) tangent	2) polar	3) chord	4) diameter		
77.	If $x - 2y - a = 0$ is a cho	rd of $y^2 = 4ax$. Then its 1	ength is			
	1) $4\sqrt{5}a$	2) 20 a	3) 5 a	4) 40 a		
78.	C is centre of $\frac{x^2}{25} + \frac{y^2}{16}$	= 1 and S is one focus.	Then the ratio of CS to se	mi major axis is		
	1) 4 : 5	2) 2 : 3	3) 3 : 5	4) 2 : 5		
	W	ww.eenadur	oratibha.net			

 $[2x + 3]dx = \dots$, where [x] is greatest integer function $\leq x$ 79. 3) 26 1) 122) 24 4) 10 80. 'n' persons are sit in a row at random. The probability that 2 particular persons are never together $(2)\frac{1-2}{n}$ 3) $\frac{(n-1)C_2}{\angle n}$ $1)\frac{2}{2}$ 81. If 4 throws with a pair of dice, the probability of throwing doublet at least once is 2) $1 - \left(\frac{5}{6}\right)^4$ 3) $1 - \left(\frac{1}{6}\right)^4$ $\left(\frac{5}{6}\right)^4$ 82. If a, b, c are all positive and a, b, c are in H.P., then the roots of $ax^2 + bx + c = 0$ are 2) imaginary 3) rational 4) equal 1) real 83. The number of n-digit numbers, no two consecutive digits being the same is 3) 9ⁿ 4) n⁹ 1) ∠n In the expansion $\left(5\sqrt{3} + \sqrt{2}\right)^{24}$, the rational term is 84. 1) T₁₄ 2) T₁₆ 4) T_{7} If the 7th term in the expansion of $\left(\frac{3}{\sqrt[3]{84}} + \sqrt{3} \log x\right)^9$, x > 0 is 729, then x is 85. $1)\frac{e}{2}$ 3) 2e 4) e A set S contains 7 elements. A non-empty subset A of S and an element x of S are chosen at random. 86. The probability that $x \in A$ is $2)\frac{64}{127}$ $3)\frac{63}{128}$ $(4) \frac{31}{128}$ The area enclosed by the curves $y = x^2$, $y = x^3$, x = 0, x = p where p > 1, is $\frac{1}{6}$, then p equals 87. $1)\frac{8}{2}$ $(3)\frac{16}{3}$ An integrating factor of $(1 + y + x^2y) dx + (x + x^3) dy = 0$ is 88. 2) x² 1) e^x 4) x If $f : R \to C$ defined by $f(x) = e^{2ix}$ for $x \in R$ then, f is [C-is set of complex numbers]. 89. 1) one – one 2) on to 3) bijection 4) neither one-one nor onto The condition that $f(x) = ax^3 + bx^2 + cx + d$ has no extreme value is 90. 2) $b^2 = 3ac$ 4) $b^2 > 3ac$ 1) $b^2 - 4ac = 0$ 3) $b^2 < 3ac$ KEY 1-4; 2-2; 3-1; 4-2; 5-2; 6-2; 7-2; 8-3; 9-1; 10-3; 11-2; 12-2; 13-3; 14-3; 15-4; 16-1; 17-4; 18-2; 19-4; 20-2; 21-4; 22-1; 23-4; 24-3; 25-2; 26-3; 27-3; 28-2; 29-3; 30-2; 31-2; 32-2; 33-3; 34-1; 35-4; 36-4; 37-2; 38-2; 39-3; 40-4; 41-1; 42-4; 43-1; 44-4; 45-3; 46-4; 47-3; 48-1; 49-1; 50-4; 51-2; 52-1; 53-3; 54-1; 55-2; 56-3; 57-2; 58-1; 59-2; 60-3; 61-4; 62-1; 63-2; 64-3; 65-4; 66-2; 67-3; 68-2; 69-1; 70-3; 71-1; 72-4; 73-1; 74-2; 75-4; 76-4; 77-2; 78-3; 79-3; 80-2; 81-2; 82-2; 83-3; 84-3; 85-4; 86-2; 87-2; 88-4; 89-4; 90-3. (This model grand test is prepared by

Srigayatri Educational Institutions)