SEAL

2014

20 kmph. What is the average speed of the car?

SUBJECT: PHYSICS	A physical quantity of is found to depend
SESSION: MORNING	TIME: 10.30 A.M. TO 11.50 A.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

MENTION YOUR	QUESTION BO	OKLETDETAILS
CET NUMBER	VERSION CODE	SERIAL NUMBER
	vector LagitiA	ich of the following is not
	14-1	548417

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.30 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 10.40 a.m., till then;
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - · Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- This question booklet contains 60 questions and each question will have one statement and four distracters. (Four different options / choices.)
- 2. After the 3rd Bell is rung at 10.40 a.m., remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - · Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN
 against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- After the last bell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 8. After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

A physical quantity Q is found to depend on observables x, y and z, obeying relation The percentage error in the measurements of x, y and z are 1%, 2% and 4% respectively. What is percentage error in the quantity Q?

(1) 4%

70 MINUTES (3) 11%

(4) 1%

2. Which of the following is not a vector quantity?

DESTION BOOKLET DETAILS

Weight (1)

Nuclear spin

SERBAL NUMBER

Momentum (4) Potential energy

A car moves from A to B with a speed of 30 kmph and from B to A with a speed of 20 kmph. What is the average speed of the car?

25 kmph

THE TIMENG AND MARKS PR 24 kmph

- 50 kmph
- (4) 10 kmph

A body starts from rest and moves with constant acceleration for t s. It travels a distance x_1 in first half of time and x_2 in next half of time, then

- (1) $x_2 = x_1$ (2) $x_2 = 2x_1$ (3) $x_3 = 2x_1$ (4) $x_4 = 2x_1$ (5)

After the 3st Bell is roung at 10.40 a.m., remove the paper seal on the right hand side of this quos

(3) $x_2 = 3x_1$

(4) $x_2 = 4x_1$

Preserve the replica of the OMR measure short for a nanimum period of ONE year

against the question number on the OMR answer sheet.

Space For Rough Work Completely darken / shade the relevant clerke with a BLLiff. OR BLACK FUR DALL POINT PEN

Correct Method of shudding the circle on the OMR massiry sheet is as shown below:

Please note that even a minute unintended ink dotton the OMR answer sheet will also be recognised and recorded

After the last bell is rring at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND

Turn Over

A person is driving a vehicle at uniform speed of 5 ms⁻¹ on a level curved track of radius 5. 5 m. The coefficient of static friction between tyres and road is 0.1. Will the person slip while taking the turn with the same speed? Take $g = 10 \text{ ms}^{-2}$.

Choose the correct statement.

- (1) A person will slip if $v^2 = 5 \text{ ms}^{-1}$ (2) A person will slip if $v^2 > 5 \text{ ms}^{-1}$
 - (3) A person will slip if $v^2 < 5 \text{ ms}^{-1}$ (4) A person will not slip if $v^2 > 10 \text{ ms}^{-1}$
- A stone is thrown vertically at a speed of 30 ms⁻¹ making an angle of 45° with the horizontal. What is the maximum height reached by the stone? Take $g = 10 \text{ ms}^{-2}$.

 - (1) 30 m (2) 22.5 m
 - (3) 15 m

- (4) 10 m
- A force $\vec{F} = 5\hat{i} + 2\hat{j} 5\hat{k}$ acts on a particle whose position vector is $\vec{r} = \hat{i} 2\hat{j} + \hat{k}$. What is the torque about the origin? (1) $8\hat{i} + 10\hat{j} + 12\hat{k}$ (2) $8\hat{i} + 10\hat{j} - 12\hat{k}$

(1) 10 ms

- (3) $8\hat{i} 10\hat{j} 8\hat{k}$ am 01 (2) (4) $10\hat{i} 10\hat{j} \hat{k}$ am 001 (1)
- What is a period of revolution of earth satellite? Ignore the height of satellite above the surface of earth. A train is approaching towards a platform with a speed of 10 ms

Given: (1) The value of gravitational acceleration $g = 10 \text{ ms}^{-2}$.

- (2) Radius of earth $R_E = 6400$ km. Take $\pi = 3.14$.
- 85 minutes (1)

156 minutes

(3) 83.73 minutes

90 minutes

							s driving a vehi		
	(1) to the state of the				200		coefficient of st		
	(3)	30 h		d ? Take g	(4)	48 h	ng the turn with	white take	
						ent.	correct statems		
10.							uired to get 70		y ?
	Given sinl	k temperat	ure = 27 °C	ns ⁻¹ (4)	(2)	90 °C	A person will	(3)	
the							thrown vertice.		.6.
11.	A 10 kg	metal bloc from equi	ek is attached librium positio	to a spring n by 10 cm	of s	spring con	nstant 1000 Nn The maximum	n ⁻¹ . A bloc acceleration	
	(1)	10 ms ⁻²	10 m	(4)	(2)	100 ms	2 m 21	(3)	
	(3)	200 ms	2		(4)	0.1 ms ⁻²	2		
	2j + k. Wha	-1=78	osition vector i				$=5\hat{i}+2\hat{j}-5\hat{k}$ a		7.
12.			m length has				f a tension of 10		lied
	(1)	100 ms	101-101-1		(2)	10 ms ⁻¹	18-101-18		
	(3)	200 ms			(4)	0.1 ms	1		
the	lite above	tht of sate	Ignore the heig	satellite ?	dries	ution of e	period of revol	What is a	.8
13.							ms ⁻¹ while blo		
	the platfor	m ? Giver	n speed of soun	d = 340 ms	sT ¹ 00	$h R_R = 64$	Radius of cart	(2)	
	(1)	330 Hz	156 minutes	(2)	(2)	350 Hz	85 minutes		
	(3)	340 Hz	90 minutes		(4)	360 Hz	83.73 minutes	(8)	
-			Spa	ice For Rou	igh V	Vork			

14,0	A rotating angular ac	wheel change celeration ass	es angular s uming to be	peed fro uniform	m 180	0 rpm to 300	00 rpm in 20	s. What is	the
	(1)	$60\pi \text{ rad s}^{-2}$		v. The va	(2)	$90\pi \text{ rad s}^{-2}$	ass 27 kg mo	body of m	
	(3)	$2\pi \text{ rad s}^{-2}$	0.5 ms ⁻¹	(2)	(4)	$40\pi \text{ rad s}^{-2}$	1 ms-I	(1)	
15.	A flow of	liquid is stream	mline if the		numb	er is	2 ms ⁻¹	(3)	
	(1)	less than 100	0		(2)	greater than	n 1000		
	(3)	between 200	0 to 3000	ype of th	(4)	between 40	000 to 5000	A cycle tyr	.00
16.		30 cm long a	as forced of some T	both th		7	armonics. Wl	APPN -	onic
	(1)	Fifth harmon	nic		(2)	Fourth har	monic		
	dingen(3)	Third harmo					is placement.		
17.	In anomal	ous expansion	of water, a	t what te	mperat	ture, the den	sity of water i	s maximur	n?
		4 °C	7,5 cm	(4)		< 4 °C			
	(3)	>4 °C			(4)	10 °C			
18.	-	ane executes a					ph with its wi		d at
	(1)	4 km 7.2 km	20 D	(4)		4.5 km 2 km	15 D		
			Spa	ce For R	ough V	Vork			

			3 rad s ⁻¹ . Kinetic ing with velocity	v. The v	alue of v is	60n rad s	(i)gan	f a
	(1)	1 ms ⁻¹	(4) 40m rad s	(2)	0.5 ms^{-1}	2m rad s 2		
	(3)	2 ms ⁻¹	number is	(4)	1.5 ms ⁻¹	liquid is stream	to woft A	15,
		0001 na					(1)	
20.	A cycle ty	re bursts sudde	nly. What is the t	type of th	is process?	between 200		
	(1)			(2)	Adiabatic			
			(2) Fourth ha					
21.	-		cm in front of a length of the con			duces three tin	mes magnif	ied
¢.	(1)	15 cm		(2)	6.6 cm	ous expansion	lemons nl	17.
	(3)	10 cm	(2) <4°C	(4)	7.5 cm	4°C		
	DE A		D° 01 (4)			>4°C		
22.	A focal le	ngth of a lens is	s 10 cm. What is	power of	a lens in di	optre ?		
	(1)	0.1 D	= 10 ms ⁻² .	(2)	10 D	is the radius of		
	(3)	15 D	(2) 4.5 km	(4)	20 D	4 km	(1)	
	(0)			(.)		7.2 km		

23.	A microscope is having objective of focal length 1 cm and eyepiece of focal length 6 cm.
	If tube length is 30 cm and image is formed at the least distance of distinct vision, what is
	the magnification produced by the microscope? Take D = 25 cm.

(1) 6

(2) 150

(3) 25

(4) 125

A fringe width of a certain interference pattern is $\beta = 0.002$ cm. What is the distance of 5th dark fringe from centre?

(1) 1×10^{-2} cm

(2) 11×10^{-2} cm

28. The maximum kinetic energy of the photoelectrons depends only on

 1.1×10^{-2} cm (4) 3.28×10^{6} cm (5)

Diameter of the objective of a telescope is 200 cm. What is the resolving power of a 25. telescope? Take wavelength of light = 5000 A.

(2) 3.4 eV

(4) 4 eV

(2) AT = 5

(1) 6.56×10^6

(2) 3.28×10^5

(3) 1×10^6

(4) 3.28 × 10^6

A polarized light of intensity I₀ is passed through another polarizer whose pass axis makes 26. an angle of 60° with the pass axis of the former. What is the intensity of emergent polarized light from second polarizer?

(1) $I = I_0$

(2) $I = I_0/6$

(3) $I = I_0/5$

(4) I₂/4

	(3)	0.1227 Å	150		(4)	0.001227 Å		
			125				(3) 25	
		num kinetic ener						
of 5th	500(1)b	potential	= 0.002	en is ß	(2)	frequency	fringe width of a ce ark fringe from centr	A A
	(3)	incident angle	11×10		(4)	pressure	(1) 1×10 ⁻² er	
		the following spe gnetic wave?	ectral ser	ies of hy	ydrogen	atom is lying	in visible range of	
e lo	(1)	Paschen series	om, Wha		(2)	Pfund series	Piameter of the object	
	(3)	Lyman series		Ă.	(4)	Balmer serie	elescope ? Take wave	13
30. V	Vhat is th	e energy of the e	lectron r	evolving	g in thir	d orbit expres	sed in eV ?	
	(1)	1.51 eV	3.28 × 1	(4)	(2)	3.4 eV	(3) 1×10°	
	(3)	4.53 eV			(4)	4 eV		
	iss axis ri	olarizer whose pa	dother p	nough a	assed th	tensity Io is pa	oparized light of in	
31. T	he relation	on between half l	ife (T) ar	nd decay	y consta	int (λ) is	n angle of 60° with olarized light from se	e q
	(1)	$\lambda T = 1$	$I=I_{o}/6$	(2)	(2)	$\lambda T = \frac{1}{2}$	(1) I=I _o	
	(0)	$\lambda T = \log_e 2$	T./4	(4)	(4)	$\lambda = \log 2T$	(3) I=I _a /5	

32. A force between two protons is same as the force between proton and neutron. The nature of the force is

- (1) Weak nuclear force
- (2) Strong nuclear force
- (3) Electrical force
- (4) Gravitational force

(3) 6.25 × 10²⁷

(I) Scalar

33. In n type semiconductor, electrons are majority charge carriers but it does not show any negative charge. The reason is

- (1) electrons are stationary
 - (2) electrons neutralize with holes
 - (3) mobility of electrons is extremely small
 - (4) atom is electrically neutral

34. For the given digital circuit, write the truth table and identify the logic gate it represents :

(1) OR-Gate

(2) NOR-Gate

(3) NAND-Gate

(4) AND-Gate

35. If α -current gain of a transistor is 0.98. What is the value of β -current gain of the transistor ?

(4) Vector

(1) 0.49

(2) 49

(3) 4.9

(4) 5

36. A tuned amplifier circuit is used to generate a carrier frequency of 2 MHz for the of the force is amplitude modulation. The value of \sqrt{LC} is

(1) Weak nuclear force
$$\frac{1}{2 \times 10^6}$$
 (2) Strong nuclear force $\frac{1}{2 \times 10^6}$ (1) (2) Electrical force $\frac{1}{2 \times 10^6}$ (2) (2)

(2)
$$\frac{1}{2 \times 10^6}$$

(3)
$$\frac{1}{3\pi \times 10^6}$$

$$\frac{1}{3\pi \times 10^6}$$

negative charge. The reason is

(L) 0.49

(3) 4.9

37. If a charge on the body is 1 nC, then how many electrons are present on the body?

(1)
$$1.6 \times 10^{19}$$

(2)
$$6.25 \times 10^9$$

(3)
$$6.25 \times 10^{27}$$

(2)
$$6.25 \times 10^9$$

(4) 6.25×10^{28}

38. Two equal and opposite charges of masses m, and m, are accelerated in an uniform electric field through the same distance. What is the ratio of their accelerations if their ratio of masses is $\frac{m_1}{m_2} = 0.5$?

(1)
$$\frac{a_1}{a_2} = 0.5$$
 (2) $\frac{a_1}{a_2} = 1$ (3) $\frac{a_1}{a_2} = 2$ (4) $\frac{a_1}{a_2} = 3$ (5) $\frac{a_1}{a_2} = 3$ (6) $\frac{a_1}{a_2} = 3$ (7) $\frac{a_1}{a_2} = 3$ (8) $\frac{a_1}{a_2} = 3$ (9) $\frac{a_1}{a_2} = 3$ (1)

(2)
$$\frac{a_1}{a_2} = 1$$

(3)
$$\frac{a_1}{a_2} = 2$$

(4)
$$\frac{a_1}{a_2} = 3$$

39. What is the nature of Gaussian surface involved in Gauss law of electrostatic? (2) 49

(1) Scalar (2) Electrical

(3)Magnetic (4) Vector

40.	What is th	e electric	potential at a distance	of 9 cm	from 3 nC?	. The equivalent resist
	(1)	270 V	lues of maistances ?	(2)	3 V	equivalent resistance
	(3)	300 V			30 V	Committee montriage
			(2) 8 Ω, 1 Ω			(1) 4Ω , 6Ω
41.	When a d	ielectric s		een plate	es for the same	or with air as a dielectric. configuration, voltmeter
			of 1.25 V gives balance			
	(3)	8	length is found to be	(4)	10	the cell is replaced by of second cell.?
42.			tor of radius 2 cm is ur			3 nC. What is the electric
	(1)	3×10^6	V m ⁻¹	(2)	3 V m ⁻¹	
	(3)	3×10^4	V m ⁻¹	(4)	$3 \times 10^{-4} \text{ V m}$. A charged particle ex
42			1 1 0	D1 - 1 3		the following statemen
43.			or has colour code Green			e value of the resistor is
	(1)	50 MΩ	etic field is parallel to w	(2)	500 ΜΩ	(2) The partic
	(3)		% MΩ metic field is personal.			Ω
44.	then conn	ected to		d intern	al resistance 0	allel. This combination is 0.5Ω . What is the current
	(1)	4 A	a charged particle?	(2)	$\frac{4}{3}$ A diag and a	magnetic field, what i
		4	(2) Hisprical			(1) Circular
	(3)	$\frac{4}{17}$ A	(4) Helical	(4)	1 A	(3) Linear

45.	The equiv	alent resistar	nce of two resistor	s connected in	series is	6Ω and	their para	llel
	equivalent	t resistance is	$\frac{4}{3}\Omega$. What are the	values of resista	nces ?	270 V	(1)	
	equi, men	10010111100 10	3 V.08 (4)	THE OF THE STATE		300 V	(3)	
	(1)	$4\Omega, 6\Omega$		(2) 8 Ω, 1	Ω			
	4.7		parallel plate capac a plates for the sam the material?		dal is int	electric s	When a di	.1
46.	D. C. Stranger and D. C. Stranger	replaced by a	eriment of a cell of another cell, balance			D. C. L. Commission of the Com		
	(1) e electr	≃ 1.57 V	ormly charged with	(2) ~ 1.67	V to to		A spherica	.3
		≃ 1.47 V		(4) ~ 1.37				
			(2) 3 V m ⁻¹		I-m V	3×10^6	(1)	
47.		l particle expering statement	eriences magnetic f	orce in the prese	ence of m	agnetic fi	eld. Which	of
	al rotaises	The particle	is moving and mag	gnetic field is pe	rpendicu	lar to the	velocity.	
	(2)	The particle	e is moving and mag	gnetic field is pa	rallel to	velocity.		
	(3)	MIG	e is stationary and n		Ω M \otimes	500 ± 59	(E)	
	(4)		is stationary and n		* 1/10 * 1/10 1/10			
			internal resistance					
48.	If a veloc	city has both	perpendicular and the path followed b	parallel compo	onents w	hile movi		h a
	(1)	Circular	11.0	(2) Ellipti	cal	7 N		
	(3)	Linear	A1 (b)	(4) Helica	ıl	V 41	(3)	

				00 turns of wire. If a current of 5 A i field inside the solenoid?	S
(1)	6.28 × 10 ⁻⁴ T	(2)	(2)	6.28 × 10 ⁻³ T gamaid (1)	
(3)	6.28 × 10-7 Tolsons I	(4)	(4)	6.28 × 10 ⁻⁶ T (E)	

- 50. A gyromagnetic ratio of the electron revolving in a circular orbit of hydrogen atom is 8.8×10^{10} C kg⁻¹. What is the mass of the electron? Given charge of the electron = 1.6×10^{-19} C.
 - (1) $1 \times 10^{-29} \text{ kg}$ (2) $0.1 \times 10^{-29} \text{ kg}$ (8)
 - (3) $1.1 \times 10^{-29} \text{ kg}$ (4) $\frac{1}{11} \times 10^{-29} \text{ kg}$
- 51. What is the value of shunt resistance required to convert a galvanometer of resistance 100Ω into an ammeter of range 1A?

A multimeter reads a voltage of a certain A.C. source as 100 V. What is the peak value of

Given: Full scale deflection of the galvanometer is 5 mA.

(1) $\frac{5}{9.95}\Omega$ (2) $\frac{9.95}{5}\Omega$ (2) $\frac{9.95}{5}\Omega$ (2) Ω (3) If Ω (4) Ω (5) Ω (6) Ω (7) Ω (8) Ω (9) Ω (9) Ω (9) Ω (9) Ω (10) Ω (

voltage of A.C. source?

(3) 141.4 V

- 52. A circular coil of radius 10 cm and 100 turns carries a current 1A. What is the magnetic moment of the coil?
 - (1) $3.142 \times 10^4 \text{ A m}^2 \times \frac{2}{\pi}$ (4) (2) $10^4 \text{ A m}^2 \times \frac{2}{\pi}$ (8)
 - (3) $3.142 \text{ A} \text{ m}^2$ (4) $3 \text{ A} \text{ m}^2$

						at is the class of	
(1)	Diamagnetic	6.28 × 10		(2)	Parama	gnetic	10°C. (1)
(3)	Ferromagnetic	6.28 × 19	(4)	(4)	Ferroele	ectric 01 × 85.8	(8)
					4. 337		
THE THE PERSON NAMED IN	d of inductance oid?					t is the magnetic	
THE THE PERSON NAMED IN	oid? on on						is 8.8 ×
in a soleno	oid? o v nov		mass of	(2)		1010 C kg-1.	is 8.8 × electron =

- SI. What is the value of shund 100 V 100 V 100 V 100 O into an ammeter of range (1) resistance 100 Ω into an ammeter of range (1)
 - (3) 141.4 V
- Given: Full scale deflection of the gevanometer is 5 mA.

A series LCR circuit contains inductance 5 mH, capacitance 2 μ F and resistance 10 Ω . If a frequency A.C. source is varied, what is the frequency at which maximum power is dissipated?

- (1) $\frac{10^5}{\pi}$ Hz (2) $\frac{10^{-5}}{\pi}$ Hz (3) $\frac{2}{\pi} \times 10^5$ Hz (4) $\frac{5}{\pi} \times 10^3$ Hz (7)

(3) 3.142 A m2

57. A step down transformer has 50 turns on secondary and 1000 turns on primary winding. If a transformer is connected to 220 V 1A A.C. source, what is output current of the transformer?

(1)
$$\frac{1}{20}$$
 A

(2) 20 A

(3) 100 A

(4) 2 A

58. The average power dissipated in A.C. circuit is 2 watt. If a current flowing through a circuit is 2 A and impedance is 1 Ω , what is the power factor of the AC circuit?

(1) 0.5

(2)

(3) 0

(4) $\frac{1}{\sqrt{2}}$

59. A plane electromagnetic wave of frequency 20 MHz travels through a space along x direction. If the electric field vector at a certain point in space is 6 V m⁻¹, what is the magnetic field vector at that point?

(1) $2 \times 10^{-8} \text{ T}$

(2) $\frac{1}{2} \times 10^{-8} \,\mathrm{T}$

(3) 2T

(4) $\frac{1}{2}$ T

60. Two capacitors of 10 PF and 20 PF are connected to 200 V and 100 V sources respectively. If they are connected by the wire, what is the common potential of the capacitors?

(1) 133.3 volt

(2) 150 volt

(3) 300 volt

(4) 400 volt

- 57. A step down transformer has 50 turns on secondary and 1000 turns on primary winding. If a transformer is connected to 220 V IA A.C. source, what is output current of the
 - (I) 1 A
 - (3) 100 A

- The average power dissipated in A.C. circuit is 2 watt. If a current flowing through a circuit is 2 A and impedance is 1 Ω , what is the power factor of the AC circuit ?

capacitors?

60.

- 133.3 volt

2014

(Given $R = 0.082 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}$)

SUBJECT : CHEMISTRY	25 cm of oxals 2 CAC impletely neutralised to			
SESSION : AFTERNOON	TIME: 02.30 P.M. TO 03.50 P.M.			

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

SION CODE	SERIAL NUMBER
unit up legioti	751905
	-1

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 2.30 p.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 2.40 p.m., till then; Data of all lazzov basolo entil 01 a mi ODaO to g 02
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- This question booklet contains 60 questions and each question will have one statement and four distracters.
 (Four different options / choices.)
- After the 3rd Bell is rung at 2.40 p.m., remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- During the subsequent 70 minutes:
 - · Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN
 against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- After the last bell is rung at 3.50 p.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 8. After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

2010

- 25 cm3 of oxalic acid completely neutralised 0.064 g of sodium hydroxide. Molarity of the oxalic acid solution is (1) 0.045

OVIDA (3) 4 0.064 THE MUNICAM

(4) 0.015

STEUVING 08

2. The statement that is NOT correct is

TO MINUTES

- (1) Energies of stationary states in hydrogen like atoms is inversely proportional to the square of the principal quantum number.
- The radius of the first orbit of He+ is half that of the first orbit of hydrogen (2)atom.
- Angular quantum number signifies the shape of the orbital.
- Total number of nodes for 3s orbital is three.
- 3. For the equilibrium:

 $CaCO_{3(s)} = CaO_{(s)} + CO_{2(g)}; K_p = 1.64 \text{ atm at } 1000 \text{ K}$

50 g of CaCO3 in a 10 litre closed vessel is heated to 1000 K. Percentage of CaCO3 that remains unreacted at equilibrium is

(Given $R = 0.082 L atm K^{-1} mol^{-1}$)

After the 3rd Ball le rung ut 2.40 p.m., remove

- Conversion of oxygen into ozone is non-spontaneous at
 - high temperature (1)

low temperature (2)

TRUMB THERESSION on the OM'S answer sheet as per the instructions

all temperatures

room temperature

Space For Rough Work Carroet Method of shading the circle on the OMR suswer sheet is at shown below :

the space provided on each page of the question booklet for Rough Work. Do not use the

After separating the top sheet (Our Copy), the lavigitated will return the bottom sheet replica (Candidate's copy)

- 5. Density of carbon monoxide is maximum at
 - (1) 0.5 atm and 273 K
- (2) 4 atm and 500 K
- (3) 2 atm and 600 K
- (4) 6 atm and 1092 K

Gold Sel is not

11. For an ideal binary liquid mixture

- 10. Carbocation as an intermediate is likely to be formed in the reaction: The acid strength of active methylene group in
 - (a) CH₃COCH₂COOC₂H₅ high release HO NOH + snotsoA (1)

 - (c) C₂H₅OOCCH₂COOC₂H₅ decreases as goodlo-2 (E)
 - (1) a>b>c
- lodoole fedin \leftarrow (2) $_{\text{H}}$ (c > a > b $_{\text{observed}}$ (b)
- (3) a>c>b

- A metallic oxide reacts with water to form its hydroxide, hydrogen peroxide and also liberates oxygen. The metallic oxide could be (2) $\operatorname{Na_2O_2^{(zim)}} O = \underset{(zim)}{\mathbb{Z}} \Delta$ (E)
 - KO2 (xim)

(3) CaO

- 12. For hydrogen oxygen fuel Col (4) Li20
- $X \xrightarrow{\text{Ozonolysis}} Y + Z$

Y can be obtained by Etard's reaction, Z undergoes disproportionation reaction with concentrated alkali. X could be

(1)
$$\bigcirc$$
 $CH = CH_2$
(3) \bigcirc $C = CH$

(2)
$$CH = C$$
 CH_3 CH_3

E° for the cell is approximately,

$$(4) \quad \bigcirc CH = CH - CH_3 \quad (1)$$

9.	Gold Sol	is not		Density of carbon monoxide is maxi-	
-	(1)	a lyophobic colloid	(2)		
	(3)	a macro molecular colloid	(4)		
10.	Carbocat	ion as an intermediate is likely to		and the second control of the contro	
	(1)	Acetone + HCN $\xrightarrow{\text{OH}}$ acet	onecyano	(a) CH ₂ COCH ₂ COCC _H ₃ ninbyh	
	(2)	Hexane $\xrightarrow{\text{Anny. A/Cl}_3/\text{HCl}}$	2-methyl	pentane (H) CH ₂ COCH ₂ COCH ₃	
	(3)	Propene + $Cl_2 \xrightarrow{h\nu}$ 2-chloro	propane	(c) C ₂ H ₂ OOCCH ₂ COOC ₂ H ₃ doon	
	(4)	Ethylbromide + Aq KOH	→ ethyl a	(1) a>b>c lohola (3) a>c>b	
11.	For an id	eal binary liquid mixture		0.44.4 (0)	
		And the second s	mol (2)	$\Delta S > 0$; $\Delta G < 0$ silleren A	
	(3)	$\Delta S_{(mix)} = 0 ; \Delta G_{(mix)} = 0$	(4)	$\Delta S_{\text{(mix)}} > 0$; $\Delta G_{\text{(mix)}} < 0$ $\Delta V_{\text{(mix)}} = 0$; $\Delta G_{\text{(mix)}} > 0$	
12.		ogen - oxygen fuel cell at one atn		(3) CaO (Σ)	
	H _{2(e}	$+\frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(l)}; \Delta G^\circ = -2e$	40 kJ		
		or the cell is approximately,		X Ozonolysis Y + Z (Reductive)	2
di	w no (Giv	ven F = 96,500 C)	notion, Z	Y can be obtained by Etard's re-	
	(1)	1.24 V	(2)		
	(3)	2.48 V	(4)	2.5 V	
13.	Which or	ne of these is not known ?		(I) (O)	
201		CuI _{2-HO} = HO	(2)	CuBr _{2 HO = O}	

(4) (4) CuF₂

(3) CuCl₂

14. The correct statement	is
---------------------------	----

- The extent of actinoid contraction is almost the same as lanthanoid contraction. (1)
- Ce⁺⁴ in aqueous solution is not known. (2)
- The earlier members of lanthanoid series resemble calcium in their chemical (3)properties. O-2-natasq (2)
- In general, lanthanoids and actinoids do not show variable oxidation states. (4)

15. P
$$\frac{1. \text{ CH}_3\text{MgBr}}{2. \text{ H}_3\text{O}^+}$$
 R $\frac{1. \text{ dil. NaOH}}{2. \Delta}$ 4-methylpent-3-en-2-one

(2) $\log \frac{1}{n}, \log k$

(2) 83.14 kJ mol-1

P is

ethanamine (1)

- (3) propanone
- $\frac{1}{2}$ gol, $\frac{1}{n}$ (4) ethanal (4) ethanenitrile

16. When $CH_2 = CH - O - CH_2 - CH_3$ reacts with one mole of HI, one of the products formed

(1) ethanol (Given R = 8.314.1 Km Infanchis

iodoethene

17. 0.44 g of a monohydric alcohol when added to methylmagnesium iodide in ether liberates at S.T.P., 112 cm³ of methane. With PCC the same alcohol forms a carbonyl compound that answers silver mirror test. The monohydric alcohol is

(1) (CH₃)₃C - CH₂OH

- (CH₃)₂CH CH₂OH
- (3) CH₃ CH CH₂ CH₃ (4) CH₃ CH CH₂ CH₂ CH₃

(4) sitration, buildnation, reduction

(3) nitration redHOson, bromination

- (1) 2-methylbutan-3-ol
- (2) Pentan-2-olasirisgorg
- (3) 3-methylbutan-2-ol (4) 2-methylbutan-2-ol
- 19. For Freundlich isotherm a graph of $\log \frac{x}{m}$ is plotted against $\log P$. The slope of the line and its y-axis intercept, respectively corresponds to
 - (1) $\log \frac{1}{n}$, k

(2) $\log \frac{1}{n}$, $\log k$

- 20. A plot of $\frac{1}{T}$ Vs. k for a reaction gives the slope -1×10^4 K. The energy of activation for the reaction is

(Given $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)

- (1) 1.202 kJ mol⁻¹
- (2) 83.14 kJ mol⁻¹ (E)

(3) 8314 J mol⁻¹

- 21. The IUPAC name of the complex ion formed when gold dissolves in aquaregia is
 - (1) tetrachloridoaurate(I) (2)
 - dichloridoaurate(III) II .. 9.T. 2 is
 - tetrachloridoaurate(III)
- tetrachloridoaurate(II) (4)
- 22. The correct sequence of reactions to be performed to convert benzene into m-bromoaniline is
 - bromination, nitration, reduction
- reduction, nitration, bromination (2)

(1) (CH₂)₂C - CH₂OH

- nitration, reduction, bromination (3)
- (4) nitration, bromination, reduction

- 24. $A_{(g)} \xrightarrow{\Delta} P_{(g)} + Q_{(g)} + R_{(g)}$, follows first order kinetics with a half life of 69.3 s at 500 °C. Starting from the gas 'A' enclosed in a container at 500 °C and at a pressure of 0.4 atm, the total pressure of the system after 230 s will be 1.12 atm slom of T and regording (2) of water at 5
 - 1.32 atm (1)

(3) 1.15 atm

- 1.22 atm (4)
- 25. $MnO_2 + HCl \xrightarrow{\Delta} A_{(g)}$ (4)

$$_{\rm ii}$$
 , $B_{(l)} + U_{(s)} \longrightarrow C_{(g)} + D_{(g)}$ as some and axiliate on behinder OnMX M £0.0 to amploy

The gases A, B, C and D are respectively

- (1) Cl_2 , CIF_3 , UF_6 , CIF (2) O_2 , O_2F_2 , U_2O_3 , OF_2

601×1 (1)

- (3) Cl_2 , CIF, UF_6 , CIF_3 (4) O_2 , OF_2 , U_2O_3 , O_2F_2

	(3)	C ₆ H ₅ CH(OH)CH ₃	(4)	$C_6H_5C \equiv CH$	
			.ou-(O)		
27.		le of ammonia was c HCl, (b) 1M CH ₃ COOH	completely absor	rbed in one litre	
	The decre	easing order for the pH of	the resulting solu	utions is	
	(Given K	$_{b}(NH_{3}) = 4.74)$			
	(1)	a>b>c	(2)	c>b>a	
76		b > c > a kinetics with a half life		b>a>c	Zd. A _{tol} $\stackrel{\Delta}{\longrightarrow}$
	5.5 mg of		n 180 g of water	at 273 K and one at g of water at 5 atm ni	m pressure due to itrogen pressure is
	(1)	1.22 atm 6-01 × 1	(4)	1×10 ⁻⁴	
	(3)	1 × 10 ⁻⁶	(4)	1 × 10 ⁻³	
29.		of 0.04 M K ₂ Cr ₂ O ₇ in according to 0.03 M KMnO ₄ required to the diam is	ed to oxidize the		gas to sulphur, in
	(1)	80 cm ³ 0.0 10 0	(S) (2)	120 cm ³ 4U , 400	
	(3)	60 cm ³ . O.U 700	(4)	90 cm ³	(3) (2)
_		Sp	ace For Rough W	ork	
		X - H - I - I			

(1) $C_6H_5CH_3$ (1) (2) C_6H_6 (2) C_6H_6

26. Acetophenone cannot be prepared easily starting from

30. The compound that reacts the fastest with sodium methoxide is also yearly basely use 34.

- 31. The pair of compounds having identical shapes for their molecules is

 - (1) BCl₂, ClF₃, house of company (2) SO₂, CO₂, box
 - (3) CH₄, SF₄

- (4) XeF₂, ZnCl₂
- 32. Conductivity of a saturated solution of a sparingly soluble salt AB at 298 K is 1.85×10^{-5} S m⁻¹. Solubility product of the salt AB at 298 K is reduced a mort attention and attention attention and attention attention and attention and attention and attention and atten

Given
$$\Lambda_{\rm m}^{\circ}(AB) = 140 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$$

(1) 1.32×10^{-12}

unpaired electron in their's subshell is

(3) 5.7×10^{-12}

- 33. An incorrect statement with respect to S_N1 and S_N2 mechanisms for alkyl halide is
 - (1) Competing reaction for an S_N2 reaction is rearrangement.
 - A weak nucleophile and a protic solvent increases the rate or favours S_N1 reaction.
 - (3) A strong nucleophile in an aprotic solvent increases the rate or favours S_N2 reaction.
 - S_N1 reactions can be catalysed by some Lewis acids.

34.	Butylated	d hydroxy toluene as a fo	ood additive acts a	at reacts the fastez		1' ,0
	(1)	flavouring agent	(2)	emulsifier	19	
	(3)	antioxidant	(4)	colouring agent	(0)	
35.	Terylene	is NOT a			DM	
	(1)	polyester fibre	(2)	step growth poly	ymer	
	(3)	copolymer	(4)	chain growth po	lymer	
36.	The corre	ect statement is				
	(1)	One mole each of be cyclohexane and 2/3 m			d gives 1/3 mo	ole of
	(2)	It is easier to hydrogen	nate benzene when	compared to cycl	ohexene.	T .1
	(3)	Cyclohexadiene and cy hydrogenation of benz			ease during contr	rolled
	(4)	Hydrogenation of benz	zene to cyclohexai	ne is an endotherm	ic process.	
	× 10° 5 m					
37.		he elements from atomic electron in their s subsho	-11 :-	the number of ele		ve an
	(1)	7 21-01×47.1	(2)	0	(1) 1.32×	
	(3)	4 SI-01 × 27	(4)	6	(3) 5.7×1	
38.	The state	ment that is NOT correc	tis 2 bas 1 2 or	ment with respect	incorrect state	
	(1)	Van der Waals consta for real gases.	nt 'a' measures e	xtent of intermole	cular attractive f	orces
	(2)	Boyle point depends o	n the nature of rea	al gas.		
	(3)	Compressibility factor				iour.
	(4)	Critical temperature is first occurs.		perature at which		a gas
_		S	pace For Rough W	Vork		

39.	The corre	ct arrangement for the ior	s in the increa	sin	g order of the	eir radii is	Iodoform	.14.
	(1)	Ca ⁺² , K ⁺ , S ⁻² HO - HO	(S) (2	2)	Cl-, F-, S-2	CH,CHO		
		Na ⁺ , Cr, Ca ⁺²) HO	Na ⁺ , A <i>l</i> ⁺³ , I	Be ⁺²	(8)	
40.		ect arrangement of the spe nd oxygen in them is	cies in the dec	теа	sing order of	the bond le	ngth betwe	een
		CO ₂ , HCO ₂ , CO, CO ₃		2)	CO, CO ₃ ⁻² ,	CO ₂ , HCO ₂		24
	(3)	CO, CO ₂ , HCO ₂ , CO ₃ ⁻²	(2)	() E	CO_3^{-2} , HCO	₂ , CO ₂ , CO	(1)	
41.	The speci	ies that is not hydrolysed i	n water is		anedml void			
	(1)	BaO ₂	(2	2)	CaC ₂			
	(3)	12504 010A	(A) 1. Conc. I	l) }←	Mg ₃ N ₂		C ₆ H ₅ CO	
42.	For the p	roperties mentioned, the c	orrect trend fo	r th	e different sp	pecies is in		
	(1)	inert pair effect – $Al > 0$	Ga > In					
	(2)	first ionization enthalpy	-B > Al > Tl				(1)	
	(3)	strength as Lewis acid -	$BCl_3 > AlCl_3$	>(GaCl ₃ module		(3)	
	(4)	oxidising property – Al	$^{3} > In^{+3} > Tl^{+3}$	3				
43.	A correct	statement is			toemoo TOP		The state	47.
	(1)	[MnBr ₄] ⁻² is tetrahedral	, active.	lle				
.1	inu ser(2)	[Ni(NH ₃) ₆] ⁺² is an inner		ex.				
	(3)	[Co(NH ₃) ₆] ⁺² is parama	ghetic.onifolis	ni	etose sugars			

(4) [CoBr₂(en)₂] exhibits linkage isomerism.

44	Iodoform	reaction	io	anewered	box	011	ovcont
rded.	HITOTOPOL	reaction	18	answered	Dy	all,	except

- (1) CH₃CHO 2 7 7 (0)
- (2) CH₃ CH₂ CH₂OH
- (3) CH₃ CH CH₂ COOH The correct arrangement of the species in the decreasing order of HO bond length between
 - (4) CH₃ CH₂ OH

45. A crystalline solid XY₃ has ccp arrangement for its element Y. X occupies

- 33% of tetrahedral voids (1)
- 33% of octahedral voids (2)
- 66% of tetrahedral voids
- (4) 66% of octahedral voids

46.
$$C_6H_5COOH \xrightarrow{1. NH_3} P \xrightarrow{NaOBr} Q \xrightarrow{1. Conc. H_2SO_4} (E)$$

$$\xrightarrow{2. heat to 460 K} R'$$

'R' is

- sulphanilamide (1)
- (2) p-bromo sulphanilamide

(1) [MaBr., This remainedral.

- o-bromo sulphanilic acid (4) sulphanilic acid

oxidising property - Ai*3 > In*3 > III*3

42. For the properties mentioned, the correct trend for the different species is in

47. The statement that is NOT correct is

- Carbohydrates are optically active. (1)
- Lactose has glycosidic linkage between C₄ of glucose and C₁ of galactose unit. (2)
- (3)Aldose or ketose sugars in alkaline medium do not isomerise.
- Penta acetate of glucose does not react with hydroxylamine. (4)

(i) Ac (ii) Soc (iii) Me (iv) Tol (3)	i - d, ii - b, iii - i - c, iii - a, iii -	(a (c) (c) (c) (c) (d)	Sto) Fr c) H d) K	tephen riedel-Cr VZ olbe's	rafts			
(ii) Soc (iii) Me (iv) Tol (3)	thyl cyanide luene i - d, ii - b, iii - i - c, iii - a, iii -	(c) (c) (c) (d) (v) (b)	b) Fr c) H d) K	riedel-Cr VZ olbe's	is NOT correct is			
(iii) Me (iv) Tol (iv) (1) (3)	thyl cyanide luene i - d, ii - b, iii - i - c, ii - a, iii -	(c (c, iv – a d, iv – b	H (s) H	VZ olbe's	is NOT correct is			
(iv) Tol. (1) (3)	i - d, ii - b, iii - i - c, iii - a, iii -	c, iv – a d, iv – b	d) K	olbe's				
(3)	i - d, ii - b, iii - i - c, iii - a, iii -	c, iv – a	y of in	(2)				
(3) aou idg	i - c,iii - a, iii -	d, iv – b			i-c, ii-d, iii-	o in h		
ght iron.	cent iron to wrou		extra			- a, 1v - b		
				21 25(4)	i - b, ii - c, iii -	- a, iv - d		
The state		HEADON OF	basu's					
	ment that is NOT	correct is	bloom					
(1)	In solid state PC	l ₅ exists as	[PCI	4]+[PCl6	J-			
(2)	Phosphorous aci phosphine.	d on heati	ng dis	proportio	onates to give me	etaphosph	oric acid a	ind
(3)	Hypophosphoro	us acid red	luces s	silver nit	rate to silver.			
(4)	Pure phosphine	is non-infl	amma	ble.		₩ 08		
with bot	h aqueous sodium	m hydrox	ide ar	nd amm	onia and an ot	her ion t	hat forms	
(1)	Zn^{+2} , Al^{+3}	4.5 Å	(2)	(2)	Al ⁺³ , Cu ⁺²			
(3)	Pb ⁺² , Cu ⁺²			(4)	Cu ⁺² , Zn ⁺²			
is obtaine	ed. X and Z could	be, respect	tively		ole, E is 1,067 V.			
(1)	Na ₂ SO ₄ , H ₂ S	4		(2)	Na ₂ SO ₄ , SO ₂		(1)	
	(1) (2) (3) (4) In which with bot co-ordina (1) (3) A crystal KMnO ₄ . is obtained	(1) In solid state PC (2) Phosphorous aci phosphine. (3) Hypophosphorous (4) Pure phosphine in the pairs of with both aqueous sodius co-ordination compound or (1) Zn ⁺² , Al ⁺³ (3) Pb ⁺² , Cu ⁺² A crystalline solid X react KMnO ₄ . When a gas 'Z' is is obtained. X and Z could	(1) In solid state PCl ₅ exists as (2) Phosphorous acid on heating phosphine. (3) Hypophosphorous acid red (4) Pure phosphine is non-influent with both aqueous sodium hydroxico-ordination compound only with aqueous co-ordination compound only with aqueous acid red (1) Zn ⁺² , Al ⁺³ (3) Pb ⁺² , Cu ⁺² A crystalline solid X reacts with diskino ₄ . When a gas 'Z' is slowly pais obtained. X and Z could be, respectively.	The statement that is NOT correct is (1) In solid state PCl ₅ exists as [PCl (2) Phosphorous acid on heating disphosphine. (3) Hypophosphorous acid reduces (4) Pure phosphine is non-inflamma In which one of the pairs of ion given, there with both aqueous sodium hydroxide as co-ordination compound only with aqueous (1) Zn ⁺² , Al ⁺³ (3) Pb ⁺² , Cu ⁺² A crystalline solid X reacts with dil. HC KMnO ₄ . When a gas 'Z' is slowly passed is obtained. X and Z could be, respectively	The statement that is NOT correct is (1) In solid state PCl ₅ exists as [PCl ₄] ⁺ [PCl ₆ (2) Phosphorous acid on heating disproportion phosphine. (3) Hypophosphorous acid reduces silver nit (4) Pure phosphine is non-inflammable. In which one of the pairs of ion given, there is an ion with both aqueous sodium hydroxide and amm co-ordination compound only with aqueous sodium (1) Zn ⁺² , Al ⁺³ (2) (3) Pb ⁺² , Cu ⁺² (4) A crystalline solid X reacts with dil. HCl to liber KMnO ₄ . When a gas 'Z' is slowly passed into an a is obtained. X and Z could be, respectively	The statement that is NOT correct is (1) In solid state PCl ₅ exists as [PCl ₄] ⁺ [PCl ₆] ⁻ (2) Phosphorous acid on heating disproportionates to give me phosphine. (3) Hypophosphorous acid reduces silver nitrate to silver. (4) Pure phosphine is non-inflammable. In which one of the pairs of ion given, there is an ion that forms a convict both aqueous sodium hydroxide and ammonia and an otico-ordination compound only with aqueous sodium hydroxide? (1) Zn ⁺² , Al ⁺³ (2) Al ⁺³ , Cu ⁺² (3) Pb ⁺² , Cu ⁺² (4) Cu ⁺² , Zn ⁺² A crystalline solid X reacts with dil. HCl to liberate a gas Y. Y KMnO ₄ . When a gas 'Z' is slowly passed into an aqueous solution is obtained. X and Z could be, respectively	(1) In solid state PCl ₅ exists as [PCl ₄] ⁺ [PCl ₆] ⁻ (2) Phosphorous acid on heating disproportionates to give metaphosphine. (3) Hypophosphorous acid reduces silver nitrate to silver. (4) Pure phosphine is non-inflammable. In which one of the pairs of ion given, there is an ion that forms a co-ordination with both aqueous sodium hydroxide and ammonia and an other ion to co-ordination compound only with aqueous sodium hydroxide? (1) Zn ⁺² , Al ⁺³ (2) Al ⁺³ , Cu ⁺² (3) Pb ⁺² , Cu ⁺² (4) Cu ⁺² , Zn ⁺² A crystalline solid X reacts with dil. HCl to liberate a gas Y. Y decolouring KMnO ₄ . When a gas 'Z' is slowly passed into an aqueous solution of Y, collisis obtained. X and Z could be, respectively	The statement that is NOT correct is (1) In solid state PCl ₅ exists as [PCl ₄] ⁺ [PCl ₆] ⁻ (2) Phosphorous acid on heating disproportionates to give metaphosphoric acid a phosphine. (3) Hypophosphorous acid reduces silver nitrate to silver. (4) Pure phosphine is non-inflammable. In which one of the pairs of ion given, there is an ion that forms a co-ordination compound with both aqueous sodium hydroxide and ammonia and an other ion that forms co-ordination compound only with aqueous sodium hydroxide? (1) Zn ⁺² , Al ⁺³ (2) Al ⁺³ , Cu ⁺² (3) Pb ⁺² , Cu ⁺² (4) Cu ⁺² , Zn ⁺² A crystalline solid X reacts with dil. HCl to liberate a gas Y. Y decolourises acidiff KMnO ₄ . When a gas 'Z' is slowly passed into an aqueous solution of Y, colloidal sulplis obtained. X and Z could be, respectively

(4) Na₂SO₃, H₂S

(4), 5

(3) Na₂S, SO₃

52.			pound 'A' (C ₇ H ₉				*		benzyl
			en gas. The numb						
	(1)	7			(2)	6	dic acid	Ace	(i)
	(3)	5		Friedel-Cn	(4)	3	ium phenate	Sod	(ii)
				ZAH			thyl cyanide) Met	
53.	The state	ment that	t is NOT correct i	Kolbe's a			98130	Tol	vi)
	(1)	Collect	ors enhance the v	vettability o	f mir	neral parti	icles during froth	flotati	on.
	(2)	Copper	from its low grad	de ores is ex	tract	ed by hy	drometallurgy.		
	(3)	A furna	ace lined with Ha	ematite is u	sed to	convert	cast iron to wrou	ght iro	n.
	(4)	In vapo	our phase refining	, metal sho	uld fo	orm a vol	atile compound.	e state:	s9. The
			*				In solid state PC		
54.	A solutio	n of 1.25	g of 'P' in 50 g						nass of
- 130			= 1.86 K kg mol	Committee of the second		CONTRACTOR OF THE PARTY	CHEMIC THREE SUCKAS AND PROCESSORS AS A CO.		and or
	(1)	60 %		s silver nit	(2)	75 %	Нурорноврного	(8)	
	(3)	80 %		.aldin	(4)	65 %	Pure phosphine	(4)	
55.	Cs - Cs	internucle	by single CsCl i ear distance is ea Cl ion pair. The s	qual to leng	th of	the side	of the cube corr	espond	ding to
	(1)	4.3 Å		(2)	(2)	4.5 Å	Zn+2, A/+3	(1)	
	(3)	4.4 Å	Cu+2, Zn+2	(4)	(4)	4 Å			
56.	For Cr ₂ C	$D_7^{-2} + 14H$	$^{+}$ + 6e $^{-}$ \rightarrow 2Cr $^{+}$	3 + 7H ₂ O;	E° =	1.33 V	At $[Ct_2O_7] = 4$.5 mill	limole,
	$[Cr^{+3}] =$	15 millim	nole, E is 1.067 V	. The pH of	the s	solution i	s nearly equal to	btaine	o al
	(1)	3	Na2SO4. SO2		(2)	4	Na,SO, H,S	(1)	
	(3)	2	Na ₂ SO ₃ , H ₂ S	(4)	(4)	5	Na ₂ S, SO ₃		
			Spa	ce For Rou	gh W	ork			

57.	1.78 g of	an optically activ	e L-amino acid (A) is tre	eated with NaNO ₂ /HCl at 0 °C. 448 cm ³
		en was at STP is ne molar mass of t		rotein has 0.25% of this amino acid by
	(1)	34,500 g mol ⁻¹	(2)	35,600 g mol ⁻¹
	(3)	36,500 g mol ⁻¹	(4)	35,400 g mol ⁻¹
58.			and CaO requires 100 coxide in the mixture is a	cm ³ of 2.5 M HCl to react completely.
	(Given:	molar mass of Bat	O = 153)	
	(1)	55.1	(2)	47.4
	(3)	52.6	(4)	44.9
59.			ed at 298 K from the c	combustion of one kg of coke and by
	(Assume	coke to be 100%	carbon.)	
	(Given e	enthalpies of com	nbustion of CO ₂ , CO a	and H ₂ as 393.5 kJ, 285 kJ, 285 kJ
	respectiv	ely all at 298 K.)		
	(1)	0.69:1	(2)	0.96:1
	(3)	0.79:1	(4)	0.86:1
60.	140 A fo	or 482.5 s decrease		s is electrolytically refined. A current of e by 22.26 g and increased the mass of copper is
	(Given n	molar mass Fe = 5	5.5 g mol ⁻¹ , molar mass	$Cu = 63.54 \text{ g mol}^{-1}$
	(1)	0.85	(2)	0.90
	(3)	0.95	(4)	0.97

- cof nitrogen was at STP is evolved. A sample of protein has 0.25% of this amino acid by mass. The molar mass of the protein is
 - (1) 34,500 g mol⁻¹
 - Total & no

- (2) 35,600 g mol⁻¹
- 10 g of a mixture of BaO and CaO requires 100 cm³ of 2.5 M HC/ to react completely. The percentage of calcium oxide in the mixture is approximately

(Given : molar mass of BaO = 153)

(1) 55.1

- 23
- (4) 44.9

47.4

- The notation of the combustion of the combustion of the coke and by burning the obtained from kg of coke is to be 100% carbon.)

 (Given the combustion of CO₂, CO and H₂ as the the kL, 285 kL respectively.)

 (1) 0.96

 (2) 0.96
- containing Fe. Au, Ag as impurities is cally refined. A count of a decreased the mass of the anode countries is and increased the configuration in impure

(Given molar mass Fe = 55.5 g mol 1, molar mass Cu = 63.54 g mol 1)

1) 0.85

Impun

(3) 0.95

- (2) 0,90
- (4) 0.97

SEAL

SUBJECT : MATHEMATICS	DAY-1
SESSION : AFTERNOON	TIME: 02.30 P.M. TO 03.50 P.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

QUESTION BOOKLET DETAILS			
VERSION CODE		SERIAL NUMBER	
	A-1	348481	
	A - 1	l.	

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 2.30 p.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DON'TS:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 2.40 p.m., till then;
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have one statement and four distracters.

 (Four different options / choices.)
 - 2. After the 3rd Bell is rung at 2.40 p.m., remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
 - 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN
 against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- After the last bell is rung at 3.50 p.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy)
 to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

2010

- Let S be the set of all real numbers. A relation R has been defined on S by $aRb \Leftrightarrow |a-b| \le 1$, then R is
 - (1) reflexive and transitive but not symmetric
 - (2) an equivalence relation SYERING
 - symmetric and transitive but not reflexive
 - (4) reflexive and symmetric but not transitive
- 2. For any two real numbers, an operation * defined by a * b = 1 + ab is
 - (1) commutative but not associative
 - associative but not commutative
 - (3) neither commutative nor associative
 - both commutative and associative
- 3. Let $f: N \to N$ defined by $f(n) = \frac{n}{2}$ if n is even

then f is

(1) one-one and onto

- (2) one-one but not onto
- onto but not one-one
- neither one-one nor onto
- Suppose $f(x) = (x + 1)^2$ for $x \ge -1$. If g(x) is a function whose graph is the reflection of the graph of f(x) in the line y = x, then g(x) = x
 - (1) $-\sqrt{x-1}$ (2) $\sqrt{x-1}$

Space For Rough Work

Please note that even a market interested into dot on the OMR answer sheet will also be recombed and recorded

The domain of the function $f(x) = \sqrt{\cos x}$ is $(1) \quad \left[0, \frac{\pi}{2}\right] \qquad (2) \quad \left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right] \qquad 01$ 5.

(1)
$$\left[0,\frac{\pi}{2}\right]$$

(2)
$$\left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right]$$

(3)
$$\left[\frac{3\pi}{2}, 2\pi\right]$$

(3)
$$\left[\frac{3\pi}{2}, 2\pi\right]$$
 (4) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ (5)

In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 6. students play both the games, then the number of students who play neither is

(1) 0

(2) 35

(4) 25

Given $0 \le x \le \frac{1}{2}$ then the value of $0 = (A \setminus ba)$ A tada data X tabab to zintam as it A 11...11

$$\tan \left[\sin^{-1} \left\{ \frac{x}{\sqrt{2}} + \frac{\sqrt{1 - x^2}}{\sqrt{2}} \right\} - \sin^{-1} x \right]$$
 is

(1) $\sqrt{3}$

(2) $\frac{1}{\sqrt{3}}$

- If any two tows or cold-ns(4) a determinant are identical, the 1 (18) and of the

8. The value of sin (2 sin⁻¹ 0.8) is equal to

(1) sin 1.2°

(2) 0.96

- adi lo selev (3) = 0.48 sanadorses sus lusaments b (4) sin 1.6° o) aven evi yaz 11

9. If A is 3 × 4 matrix and B is a matrix such that A'B and BA' are both defined, then B is of the type

3×4

(2) 3×3

(3) 4×4

(4) 4×3

10. The symmetric part of the matrix
$$A = \begin{pmatrix} 1 & 2 & 4 \\ 6 & 8 & 2 \\ 2 & -2 & 7 \end{pmatrix}$$
 is

- 11. If A is a matrix of order 3, such that A (adj A) = 10 I, then |adj A| = 10 I and 10 I and 10 I and 10 I are 10 I are 10 I and 10 I are 10 I and 10 I are 10 I and 10 I are 10 I ar
 - (1) 10

(3) 1

- (2) 10 I (4) 100 (4) 100 (1) (5)
- Consider the following statements:
 - If any two rows or columns of a determinant are identical, then the value of the determinant is zero.
 - If the corresponding rows and columns of a determinant are interchanged, then the (b) value of the determinant does not change.
 - If any two rows (or columns) of a determinant are interchanged, then the value of the determinant changes in sign.

Which of these are correct? In the same date without a state of the xisten 4 × 6 × 6 × 6 × 6

(1) (a) and (b)

(2) (b) and (c)

(3) (a) and (c)

(4) (a), (b) and (c)

13. The inverse of the matrix
$$A = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
 is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is upon $\begin{bmatrix} 2 &$

$$(3) \quad \frac{1}{24} \left[\begin{array}{cccc} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{array} \right]$$

(3)
$$\frac{1}{24}\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 (4) $\frac{1}{24}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (5) (6) (7)

14. If a, b and c are in A.P., then the value of
$$\begin{vmatrix} x+2 & x+3 & x+a \\ x+4 & x+5 & x+b \\ x+6 & x+7 & x+c \end{vmatrix}$$
 is $\begin{vmatrix} 1 & x+2 & x+3 & x+a \\ x+4 & x+5 & x+b \\ x+6 & x+7 & x+c \end{vmatrix}$

(1)
$$x - (a + b + c)$$

(1)
$$x - (a + b + c)$$
 (2) $9x^2 + a + b + c$ (3) 0 (4) $a + b + c$

$$(4)$$
 $a + b + c$

15. The local minimum value of the function f' given by
$$f(x) = 3 + |x|, x \in \mathbb{R}$$
 is

(1) 3

(4) 1

$$(3) -1$$

- A gardener is digging a plot of land. As he gets tired, he works more slowly. After 't' minutes he is digging at a rate of $\frac{2}{\sqrt{t}}$ square metres per minute. How long will it take him to dig an area of 40 square metres?
 - (1) 10 minutes

(2) 40 minutes

(3) 100 minutes

- (4) 30 minutes 0 0 2 7
- The area of the region bounded by the lines y = mx, x = 1, x = 2, and x axis is 6 sq. units, then 'm' is

- (1) 1 (2) 4 (4) 2 (5) 19. Area of the region bounded by two parabolas $y = x^2$ and $x = y^2$ is (1) $\frac{1}{3}$ (2) 3 (3) $\frac{1}{4}$ (4) $\frac{1}{4}$ (4) 4 (4) 4 (5) $\frac{1}{4}$ (5) $\frac{1}{4}$ (6) $\frac{1}{4}$ (7) $\frac{1}{4}$ (8) $\frac{1}{4}$ (9) $\frac{1}{4}$ (1) $\frac{1}{4}$ (1) $\frac{1}{4}$ (2) $\frac{1}{4}$ (3) $\frac{1}{4}$ (4) $\frac{1}{4}$ (4) $\frac{1}{4}$ (5) $\frac{1}{4}$ (6) $\frac{1}{4}$ (7) $\frac{1}{4}$ (8) $\frac{1}{4}$ (9) $\frac{1}{4}$ (1) $\frac{1}{4}$ (1) $\frac{1}{4}$ (2) $\frac{1}{4}$ (3) $\frac{1}{4}$ (4) $\frac{1}{4}$ (4) $\frac{1}{4}$ (5) $\frac{1}{4}$ (6) $\frac{1}{4}$ (7) $\frac{1}{4}$ (8) $\frac{1}{4}$ (9) $\frac{1}{4}$ (1) $\frac{1}{4}$ (1) $\frac{1}{4}$ (2) $\frac{1}{4}$ (3) $\frac{1}{4}$ (4) $\frac{1}{4}$ (4) $\frac{1}{4}$ (5) $\frac{1}{4}$ (7) $\frac{1}{4}$ (8) $\frac{1}{4}$ (9) $\frac{1}{4}$ (1) $\frac{1}{4$

- 20. The order and degree of the differential equation $y = x \frac{dy}{dx} + \frac{2}{dy}$ is

- (1) 1, 3 = x, $|x| + E = (x)^2 x^2 + (2) x^2 + (1)^2 x^2 + (2) x^2 + (3) x^2 + (4) x^2 + (4)$
- 21. The general solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = 3x$ is
 - (1) $y = x + \frac{c}{x}$ (2) $y = x^2 + \frac{c}{x}$ (3) $y = x \frac{c}{x}$ (4) $y = x^2 \frac{c}{x}$ (5) $y = x + \frac{c}{x}$ (6) $y = x + \frac{c}{x}$ (7) $y = x + \frac{c}{x}$ (9) $y = x + \frac{c}{x}$ (1)

- The distance of the point P(a, b, c) from the x-axis is
 - (1) $\sqrt{b^2 + c^2}$

(2) $\sqrt{a^2 + c^2}$ If to parties a si A (1)

(3) $\sqrt{a^2 + b^2}$

- (ii) $A \cap B = \Phi$ are respectively a (b)
- 23. Equation of the plane perpendicular to the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and passing through the point (2, 3, 4) is 4) is (1) x + 2y + 3z = 9(2) x + 2y + 3z = 20(3) 2x + 3y + z = 17(4) 3x + 2y + z = 16

- 24. The line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ is parallel to the plane

- (1) 3x + 4y + 5z = 7 (2) (2) x + y + z = 2 (3) 2x + 3y + 4z = 0 (4) 2x + y 2z = 0
- The angle between two diagonals of a cube is
 - (1) 30°

(2) 45° most so a snog and yillidedown

- (3) $\cos^{-1}\left(\frac{1}{3}\right)$ (2) (4) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (1)
- 26. Lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-K}$ and $\frac{x-1}{K} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if
 - (1) K = 0
- (2) K = -1
- (3) K = 2
- (4) K = 3

27.	A an	d B a	re two	events su	ich that P	$(A)\neq 0,$	P(B/A)	if				
	(i)	A is	a subs	et of B								
	(ii)	An	$B = \Phi$	are resp	ectively							
		(1)	0 and	1				1, 0				
		(3)	1, 1				(4)	0, 0				
28.	Two	dice :	are thro	own simu	ıltaneousl	y. The p	robabil	ity of o	btaining a to	otal sco	re of 5 is	
		(1)	18		x + 2y + 3		(2)	12				
		(3)	1/9				(4)	$\frac{1}{36}$				
29.	If the	even	its A ar	nd B are	independe	ent if P($A') = \frac{2}{3}$	and P($B') = \frac{2}{7}, \text{ then}$	P(A	B) is equ	al to
			-									
		(1)	21				(2)	21				
		(3)	$\frac{4}{21}$				(4)	$\frac{1}{21}$				
30.					o, out of w		are def	to also ective.	A sample of		s is draw	n. The
		(1)	$\left(\frac{1}{10}\right)^5$				(2)	$\left(\frac{1}{2}\right)^5$				
		(3)					(4)	$\left(\frac{9}{10}\right)^5$	5			
								1-1	+ k̂ and 2î +			

Space For Rough Work

(2) $\sqrt{3}$

(4) 4

(1) $\sqrt{2}$

(3) 3

(1) K = 0

32.	If \vec{a} and \vec{b}	are two	unit vectors	inclined at	an angle $\frac{\pi}{3}$,	then the	value of a	$\vec{a} + \vec{b}$	is
-----	----------------------------	---------	--------------	-------------	----------------------------	----------	------------	---------------------	----

greater than 1 (1)

(2) less than 1

equal to 1 (3)

(4) equal to 0

(1) 1

37. In a minigle ABC, alb cos C - c cc 1(2)

(3) 0

 $(4) \quad 2 \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right]$

If $x + y \le 2$, $x \ge 0$, $y \ge 0$ the point at which maximum value of 3x + 2y attained will be

- If α and β are two different $\min \{\frac{1}{2}, \frac{1}{2}\}$ mumbers with $|\beta| = 1$, then $|\beta| = 1$ then $|\beta| = 1$
 - (3) (0, 2)

(4) (2,0)

If $\sin \theta = \sin \alpha$, then

- (1) $\frac{\theta + \alpha}{2}$ is any odd multiple of $\frac{\pi}{2}$ and $\frac{\theta \alpha}{2}$ is any multiple of π .
- (2) $\frac{\theta + \alpha}{2}$ is any even multiple of $\frac{\pi}{2}$ and $\frac{\theta \alpha}{2}$ is any odd multiple of π .
- (3) $\frac{\theta + \alpha}{2}$ is any multiple of $\frac{\pi}{2}$ and $\frac{\theta \alpha}{2}$ is any odd multiple of π .
 - (4) $\frac{\theta + \alpha}{2}$ is any multiple of $\frac{\pi}{2}$ and $\frac{\theta \alpha}{2}$ is any even multiple of π .

36.	If $\tan x = \frac{3}{4}$, $\pi < x$	$<\frac{3\pi}{2}$; then the value of $\cos\frac{x}{2}$	is
-----	---------------------------------------	---	----

(1)
$$\frac{3}{\sqrt{10}}$$

(1) greater than 1 (2)
$$-\frac{3}{\sqrt{10}}$$
 (2) less than 1 (3) equal to 0 (4) (4) (4)

(3)
$$-\frac{1}{\sqrt{10}}$$

(4)
$$\frac{1}{\sqrt{10}}$$

$$(1)$$
 a^2

38. If
$$\alpha$$
 and β are two different comlex numbers with $|\beta| = 1$, then $\left| \frac{\beta - \alpha}{1 - \overline{\alpha}\beta} \right|$ is equal to

(3)
$$\frac{1}{2}$$

39. The set A =
$$\{x : |2x + 3| < 7\}$$
 is equal to the set to algorithm above as $\frac{x^2 + 6}{x^2}$

(1)
$$B = \{x : -3 < x < 7\}$$

(2)
$$C = \{x : -13 < 2x < 4\}$$

(3)
$$D = \{x : 0 < x + 5 < 7\}$$
 $D = \{x : -7 < x < 7\} + 0$

(4)
$$E = \{x: -7 < x < 7\}$$

(4)
$$\frac{\theta + \alpha}{2}$$
 is any multiple $\frac{\pi}{2}$ (2) $\frac{\theta - \alpha}{2}$ is any even multiple of $\frac{336}{2}$ (1)

Space For Rough Work

41. If 21^{st} and 22^{nd} terms in the expansion of $(1+x)^{44}$ are equal, then x is equal to (2) $\frac{23}{24}$ (4) $\frac{7}{8}$

(1)
$$\frac{21}{22}$$

(2)
$$\frac{23}{24}$$

(3)
$$\frac{8}{7}$$

Consider an infinite geometric series with first term 'a' and common ratio 'r'. If the sum is 42. 4 and the second term is $\frac{3}{4}$, then

(1)
$$a = \frac{4}{7}$$
, $r = \frac{3}{7}$

(2)
$$a = 3$$
, $r = \frac{1}{4}$
(4) $a = \frac{3}{2}$, $r = \frac{1}{2}$

(3)
$$a = 2$$
, $r = \frac{3}{8}$

(4)
$$a = \frac{3}{2}$$
, $r = \frac{1}{2}$

A straight line passes through the points (5, 0) and (0, 3). The length of perpendicular from 43. the point (4, 4) on the line is

(1)
$$\frac{\sqrt{17}}{2}$$

(2)
$$\sqrt{\frac{17}{2}}$$

(3)
$$\frac{15}{\sqrt{34}}$$

$$1 = x$$
 in oldering (4) if $\frac{17}{2}$ a stourngood reduction

Equation of circle with centre (-a, -b) and radius $\sqrt{a^2 - b^2}$ is 44.

(1)
$$x^2 + y^2 - 2ax - 2by - 2b^2 = 0$$

(2)
$$x^2 + y^2 - 2ax + 2by + 2a^2 = 0$$

(3)
$$x^2 + y^2 + 2ax + 2by + 2b^2 = 0$$

(4)
$$x^2 + y^2 - 2ax - 2by + 2b^2 = 0$$

The area of the triangle formed by the lines joining the vertex of the parabola $x^2 = 12y$ to the 45. ends of Latus rectum is

18 sq. units

(2) 19 sq. units

(3) 20 sq. units

(4) 17 sq. units

- 46. If the coefficient of variation and standard deviation are 60 and 21 respectively, the arithmetic mean of distribution is
 - 30 (1)

(2) 21

(3) 60

- (4) 35
- 47. The function represented by the following graph is

- Differentiable but not continuous at x = 1
- Neither continuous nor differentiable at x = 1(2)
- Continuous but not differentiable at x = 1(3)
- Continuous and differentiable at x = 1
- If f(x) = 1 $2K \quad x = 0$

- (3) $x^2 + y^2 + 2ax + 2by + 2b^2 = 0$
- is continuous at x = 0, then the value of K is
- The area of the mangle formed $\frac{3\pi}{5}$ (2) $\frac{3\pi}{5}$ (1) $\frac{3\pi}{10}$ (1)

- elinu pe QI = (S)elinu pe VI = (A) (4) $\frac{3\pi}{2}$

49.		e of the followin where b > 1?	g is not correct	for the f	eatures of	exponential f	unction giv	en by		
	(1)	The domain of	the function is I	R, the set	of real num	nbers.				
	(2)	The range of th								
	(3)	For very large r	negative values	of x, the	function is	very close to	0.			
	(4)	The point (1, 0)	is always on the	e graph	of the funct	ion.				
50.	If $y = (1 +$	$(x)(1+x^2)(1+x^2)$	(x^4) , then $\frac{dy}{dx}$ at x	= 1 is			(1)			
	(1)	28		(2)	0					
	(3)	20		(4)	1					
		alxa y thiw 0 si ^{-1}x) ² , then $(x^2 +$	0				The tange tun 0 is			
	(1)		(2) $\frac{1}{3}$							
	(3)	4		(4)						
			(4) -3							
52.	If $f(x) = x^2$	$^{3} \text{ and } g(x) = x^{3} -$	$4x \text{ in } -2 \le x \le 2$, then co	nsider the s	tatements:				
	(a)	f(x) and $g(x)$ satisfy mean value theorem.								
	(b)	f(x) and $g(x)$ be	th satisfy Rolle	's theore	m. Vd bor					

- (c) Only g(x) satisfies Rolle's theorem.

Of these statements

- (1) (a) alone is correct. (2) (a) and (c) are correct.
- (3) (a) and (b) are correct. (4) None is correct. (8)

- 53. Which of the following is not a correct statement?

 - (1) $\sqrt{3}$ is a prime. (2) The sun is a star.
 - (3) Mathematics is interesting. (4) $\sqrt{2}$ is irrational.
- 54. If the function f(x) satisfies $\lim_{x \to 1} \frac{f(x) 2}{x^2 1} = \pi$, then $\lim_{x \to 1} f(x) = \pi$
 - (1) 2

 $2i = x \cdot x(2) \cdot 3i \cdot (x+1) \cdot (x+1) \cdot (x+1) = x \cdot 11$

(3) 1

- 0 (4) 0
- The tangent to the curve $y = x^3 + 1$ at (1, 2) makes an angle θ with y axis, then the value of $\tan \theta$ is
 - (1) 3

(2) $\frac{1}{3}$

(3) $-\frac{1}{3}$

(4) - 3

If the function f(x) defined by

$$f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1$$
, then $f'(0) =$

- (1) 100 co en (2) box (2) (2) -1 corres al secta (3) (1)
- (3) 100 f'(0) (4) 1 (5)

57. If
$$f(x) = f(\pi + e - x)$$
 and $\int_{e}^{\pi} f(x) dx = \frac{2}{e + \pi}$, then $\int_{e}^{\pi} xf(x) dx$ is equal to

 $(1) \quad \frac{\pi + e}{2}$

 $(2) \quad \frac{\pi - e}{2}$

(3) $\pi - e$

(4) 1

58. If linear function
$$f(x)$$
 and $g(x)$ satisfy

$$\int [(3x - 1)\cos x + (1 - 2x)\sin x] dx = f(x)\cos x + g(x)\sin x + C, \text{ then}$$

(1) f(x) = 3x - 5

(2) g(x) = 3 + x

(3) f(x) = 3(x-1)

(4) g(x) = 3(x-1)

$$\int_{-\pi/4}^{\pi/4} \log(\sec \theta - \tan \theta) d\theta \text{ is}$$

(1) $\frac{\pi}{4}$

(2) $\frac{\pi}{2}$

(3) 0

(4) π

60.
$$\int \frac{\sin 2x}{\sin^2 x + 2\cos^2 x} \, dx =$$

- (1) $\log (1 + \cos^2 x) + C$
- (2) $\log (1 + \tan^2 x) + C$
- (3) $-\log(1 + \sin^2 x) + C$
- (4) $-\log(1+\cos^2 x) + C$

57. If
$$f(x) = f(\pi + e - x)$$
 and $\int_{e}^{\pi} f(x) dx = \frac{2}{e + \pi}$, then $\int_{e}^{\pi} x f(x) dx$ is equal to

(1) $\frac{\pi + e}{2}$

(2) $\frac{\pi - e}{2}$

(3) $\pi - e$

(4) 1

58. If linear function f(x) and g(x) satisfy

Space For Rough Work