|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                     |                                                  |                                                                                                                                                             | 2014                                                                                                                                                      |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 110                                                 | SUBJECT : P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HYSICS                                                                                                                                                                                                                                                                                              | nd on obse                                       | nd to depe                                                                                                                                                  | A physical quantity is four                                                                                                                               |
| 261                                                 | SESSION : MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ORNING                                                                                                                                                                                                                                                                                              | neasurement                                      |                                                                                                                                                             | 10.30 A.M. TO 11.50 A.M.                                                                                                                                  |
| M                                                   | AXIMUM MARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL I                                                                                                                                                                                                                                                                                             | DURATION                                         | N MAXI                                                                                                                                                      | MUM TIME FOR ANSWERING                                                                                                                                    |
|                                                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80 MI                                                                                                                                                                                                                                                                                               | NUTES                                            |                                                                                                                                                             | 70 MINUTES                                                                                                                                                |
|                                                     | MENTION YOU<br>CET NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     | QUESTION BOOKLET DE<br>VERSION CODE SERIA        |                                                                                                                                                             | OKLET DETAILS<br>SERIAL NUMBER                                                                                                                            |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                     | <b>A</b> -                                       | a vector da                                                                                                                                                 | ton ai gniw 548417                                                                                                                                        |
| 4.<br>5.<br><b>DO</b><br>1.<br>2.<br>1.<br>2.<br>3. | should also be shaded com<br>Compulsorily sign at the be<br>NTS:<br>THE TIMING AND MA<br>DAMAGED / MUTILATE<br>The 3 <sup>rd</sup> Bell rings at 10.40<br>• Do not remove the pay<br>• Do not look inside this<br>• Do not look inside this<br>• Do not start answering<br>[IMPO]<br>This question booklet cont<br>(Four different options / ch<br>After the 3 <sup>rd</sup> Bell is rung at<br>check that this booklet does<br>a complete test booklet. Re<br>During the subsequent 70 r<br>• Read each question of<br>• Choose the correct ar<br>each question / state<br>• Completely darken /<br>against the question | ARKS PRIN<br>D/SPOILED<br>a.m., till then<br>ber seal presen<br>question book<br>on the OMR<br><b>RTANT IN</b><br>ains 60 question<br>boices.)<br><b>10.40 a.m.</b> , re<br>not have any to<br>ad each item a<br>minutes:<br>carefully.<br>hower from our<br>ment.<br>shade the rele<br>number on t | of the OMR at<br>TED ON TI                       | ARE OMR A<br>HE OMR A<br>hand side of the<br>ONS TO (<br>question will<br>er seal on the so<br>orn or missing<br>ering on the C<br>the a BLUE<br>wer sheet. | CANDIDATES<br>I have one statement and four distracters<br>right hand side of this question booklet and<br>pages or items etc., if so, get it replaced by |
|                                                     | , content inteniou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or shuting th                                                                                                                                                                                                                                                                                       |                                                  |                                                                                                                                                             |                                                                                                                                                           |
| 4.                                                  | Please note that even a minu<br>by the scanner. Therefore, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     | ink dot on the                                   | OMR answer                                                                                                                                                  | r sheet will also be recognised and recorded<br>e OMR answer sheet.                                                                                       |
| 5.<br>6.                                            | Use the space provided on e<br>for the same.<br>After the <b>last bell is rung</b><br>THUMB IMPRESSION or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | each page of th<br>at 11.50 a.m.,<br>the OMR ans                                                                                                                                                                                                                                                    | e question boo<br>stop writing<br>wer sheet as p | on the OMR<br>er the instruct                                                                                                                               | th Work. Do not use the OMR answer shee<br>answer sheet and affix your LEFT HAND<br>ions.                                                                 |
| 7.                                                  | to you to carry home for sel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | et (Our Copy).<br>f-evaluation.                                                                                                                                                                                                                                                                     | , the invigilato                                 | or will return t                                                                                                                                            | he bottom sheet replica (Candidate's copy)                                                                                                                |
| 9.<br>9                                             | Preserve the replica of the C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | wirk answer st                                                                                                                                                                                                                                                                                      | leet for a mini                                  | mum period o                                                                                                                                                | Turn Ove                                                                                                                                                  |

1

SEAL

|        | Nac                                                                                                                                                                                                                               |           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |          |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|
| 1.     | A physical quantity Q is found to depend on<br>$Q = \frac{x^3y^2}{z}$ . The percentage error in the measure<br>respectively. What is percentage error in the quantum sector $Q$ is found to depend on<br>$Q = \frac{x^3y^2}{z}$ . | m         | ents of x, y                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |          |
|        |                                                                                                                                                                                                                                   |           |                                  | ARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M MUMIXA                                       | 24       |
|        |                                                                                                                                                                                                                                   | n         | 3%                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69                                             |          |
|        | QUESTION BOOKLET DETAILS<br>ERSION CODE SERIAL NUMBER                                                                                                                                                                             |           |                                  | ON YOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |          |
| 2.     | Which of the following is not a vector quantity?                                                                                                                                                                                  |           | and Der p                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and a second                                   |          |
|        | (1) Weight (2                                                                                                                                                                                                                     | )         | Nuclear spi                      | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                | :00      |
| .3     | and shaded in the respective circles on the OMR answer sheet                                                                                                                                                                      | Ba        | has been entere                  | to CET No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Check whether th                               | 1        |
|        | (3) Momentum (4) (3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4                                                                                                                                                               |           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | 2.       |
|        | id be entered on the OMR answer sheet and the respective circl                                                                                                                                                                    |           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The Version Cod<br>should also be sh           |          |
| 3.     | A car moves from A to B with a speed of 30 20 kmph. What is the average speed of the car?                                                                                                                                         | kı        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | of       |
| BR     | (1) 25 kmph (2                                                                                                                                                                                                                    | )         | 1/ Zminh                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE TIMING                                     | 1        |
|        | (3) 50 kmph (4                                                                                                                                                                                                                    | 1         | insdi illi .m.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |          |
|        | A body starts from rest and moves with constant<br>$x_1$ in first half of time and $x_2$ in next half of time,<br>(1) $x_2 = x_1$ (2)                                                                                             | t :<br>tł | $x_2 = 2x_1$                     | for t s. It                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | travels a distar                               | nce<br>s |
| oder . | Space For Rough                                                                                                                                                                                                                   | N         | ork                              | and the second s | <ul> <li>Choose the<br/>cach guesti</li> </ul> |          |
|        | circle with a BLUS OR BLACK INK BALL POINT PI<br>MR answer sheet.<br>vie on the OMR answer sheet is as shown below :                                                                                                              |           | hade the relevi<br>number on the | darken / si<br>question n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Completely<br/>against the</li> </ul> |          |
|        |                                                                                                                                                                                                                                   | Q         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |          |
|        | ot on the OMR answer sheet will also be recognized and record<br>ings of any kind on the OMR answer sheet.<br>stion booklet for Rough Work. Do not use the OMR answer she                                                         |           | oid multiple na                  | berefore, av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | by the scanner, T                              | 4        |
|        | writing on the OMR answer sheet and affix your LEFT HAN                                                                                                                                                                           |           | t 11.50 a.m., st                 | e gavr el Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | for the same.<br>After the last he             | ò        |
|        | heet as per the instructions.<br>room invigilator as it is.                                                                                                                                                                       |           | ER SHEET to I                    | AR ANSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hand over the O8                               |          |
| (YT)   | avigilator will return the bottom sheet replica (Candidate's cor                                                                                                                                                                  |           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | After separating to you to carry in            | 8        |
| A-1    | or a minimum period of ONE year.<br>2                                                                                                                                                                                             |           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | P        |
|        | O and[]                                                                                                                                                                                                                           |           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | q        |

5. A person is driving a vehicle at uniform speed of 5 ms<sup>-1</sup> on a level curved track of radius 5 m. The coefficient of static friction between tyres and road is 0.1. Will the person slip while taking the turn with the same speed ? Take  $g = 10 \text{ ms}^{-2}$ .

Choose the correct statement.

- (1) A person will slip if  $v^2 = 5 \text{ ms}^{-1}$  (2) A person will slip if  $v^2 > 5 \text{ ms}^{-1}$ 
  - (3) A person will slip if  $v^2 < 5 \text{ ms}^{-1}$  (4) A person will not slip if  $v^2 > 10 \text{ ms}^{-1}$
- 6. A stone is thrown vertically at a speed of 30 ms<sup>-1</sup> making an angle of 45° with the horizontal. What is the maximum height reached by the stone ? Take  $g = 10 \text{ ms}^{-2}$ .

| (1) | 30 m | (2)  (2) | 22.5 m | indili |
|-----|------|----------|--------|--------|
| (3) | 15 m | (4)      | 10 m   | 1      |

- 7. A force  $\vec{F} = 5\hat{i} + 2\hat{j} 5\hat{k}$  acts on a particle whose position vector is  $\vec{r} = \hat{i} 2\hat{j} + \hat{k}$ . What is the torque about the origin ?
- (1)  $8\hat{i} + 10\hat{j} + 12\hat{k}$ (2)  $8\hat{i} + 10\hat{j} - 12\hat{k}$ (3)  $8\hat{i} - 10\hat{j} - 8\hat{k}$ (4)  $10\hat{i} - 10\hat{j} - \hat{k}$
- 8. What is a period of revolution of earth satellite ? Ignore the height of satellite above the surface of earth.

Given : (1) The value of gravitational acceleration  $g = 10 \text{ ms}^{-2}$ .

- (2) Radius of earth  $R_E = 6400$  km. Take  $\pi = 3.14$ .
- (1) 85 minutes (2) 156 minutes
- (3) 83.73 minutes (4) 90 minutes

|       | (3)              | 540 112                   | 4) 90 minutes                        | (+)                           | 200 112 8             | (3) 83.73 minute                                               |       |
|-------|------------------|---------------------------|--------------------------------------|-------------------------------|-----------------------|----------------------------------------------------------------|-------|
|       | (1)              | 340 Hz                    | 2) 156 minutes                       | (1)                           | 260 11-               | (1) 85 minutes                                                 |       |
|       | (1)              | 330 Hz                    | n speed of sound =                   | (2)                           | 350 Hz                |                                                                |       |
| 13.   | of frequer       | ncy 340 H                 | z. What is the free                  | juency of w                   | histle heard          | l by a stationary observe                                      |       |
|       |                  |                           |                                      |                               |                       | ms <sup>-1</sup> while blowing a wh                            |       |
|       | (3)              | 200 ms <sup>-1</sup>      |                                      |                               | 0.1 ms <sup>-1</sup>  |                                                                |       |
|       | (1)              |                           | 4) $10\hat{i} - 10\hat{j} - \hat{k}$ |                               |                       | (3) $8\hat{i} - 10\hat{j} - 8\hat{k}$                          |       |
| 12.   |                  | what is the               | e speed of transver                  | se wave ?                     | al.                   | a tension of 100 N is app                                      | plied |
| ai is | if + k. Wha      | S-i=i≥                    | se position vector i                 | article who                   | acts on a p           | A force $\vec{F} = 5\hat{i} + 2\hat{j} - 5\hat{k}$             |       |
|       |                  | 200 ms <sup>-2</sup>      | 2                                    | (2)                           | $0.1 \text{ ms}^{-2}$ |                                                                |       |
|       | the block (1)    | is<br>10 ms <sup>-2</sup> | 4) 10 m                              | (2)                           | 100 ms <sup>-2</sup>  | (3) 15 m                                                       |       |
| 11.   |                  |                           |                                      |                               |                       | tant 1000 Nm <sup>-1</sup> . A bloc<br>he maximum acceleration |       |
|       | 1118-2.          | de g = 10                 | d by the stone ? Ta                  | eight reache                  | el musuixse           | norizonitat. W hat is the h                                    |       |
| the   | (3)              | 270 °C                    | 0 ms <sup>-1</sup> making ar         | (4)                           | 727 °C                | A stone is thrown vert                                         |       |
|       | Given sin<br>(1) | k temperat<br>1000 °C     | $ure = 27 \ ^{\circ}C$ (4)           | < 5 ms <sup>-1</sup> (<br>(2) | Syntiolial<br>90 °C   | (3) A person wil                                               |       |
| 10.   |                  |                           |                                      |                               |                       | red to get 70% efficien                                        | cy?   |
|       |                  |                           |                                      |                               |                       | Choose the correct states                                      |       |
|       | (3)              | 30 h                      | e g = 10 ms <sup>-2</sup> .          | (4) Tak                       | 48 h 48 h             | while taking the turn wit                                      |       |
|       | 1-1              |                           |                                      | (-)                           |                       | 5 mi The coefficient of                                        |       |

A-1

P

|     |                                      |                                                 | uming to be unifor                                                            |                                     |                                                        |                    |                                |     |
|-----|--------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------|--------------------------------|-----|
|     | (1)                                  | · · ·                                           | The value of v is                                                             |                                     |                                                        |                    |                                |     |
|     | (3)                                  | $2\pi$ rad s <sup>-2</sup>                      | (2) 0.5 ms <sup>-1</sup>                                                      | (4)                                 | $40\pi$ rad s <sup>-2</sup>                            | I ms <sup>-1</sup> | (1)                            |     |
| 15. | A flow of                            | liquid is strea                                 | mline if the Reynol                                                           | ld numb                             | er is                                                  | 2 ms <sup>-1</sup> | (3)                            |     |
|     | (1)                                  | less than 100                                   | 00                                                                            | (2)                                 | greater than                                           | 1000               |                                |     |
|     | (3)                                  | between 200                                     | 0 to 3000 and to so                                                           | (4) ·                               | between 400                                            | 0 to 5000 m        | A cycle ty                     | .0  |
| 16. |                                      | -                                               | and open at both t<br>a 1.1 kHz source ?                                      |                                     | produces har                                           | a madana?          | nich harmon                    | nic |
|     | (1)                                  | Fifth harmon                                    | nic                                                                           | (2)                                 | Fourth harme                                           | onic               |                                |     |
| he  | (3)                                  | Third harmo                                     | nic                                                                           | (1)                                 | Second horm                                            | onio               |                                | .1  |
|     | unigain con                          | 011 90 001 8000                                 | oncave mirror p <sup>2in</sup><br>we mirror ?                                 |                                     | cal length of t                                        |                    |                                | .1. |
|     |                                      |                                                 |                                                                               | he conci                            | cal length of t                                        | . What is fo       | real image                     |     |
|     | In anomal                            |                                                 | f nomin even<br>of water, at what t                                           | temperat                            | cal length of t                                        | of a tad W.        | egami lasn<br>s maximum        |     |
| 17. | In anomal (1)                        | ous expansior                                   | ive mirror ?                                                                  | temperat<br>(2)                     | t to dignal leo<br>ure, the densit                     | . What is fo       | real image                     |     |
|     | In anomal<br>(1)<br>(3)<br>An aeropl | ous expansion<br>4 °C<br>> 4 °C<br>ane executes | f nomin even<br>of water, at what t                                           | temperat<br>(2)<br>(4)              | t to dignal lead<br>ure, the densit<br>< 4 °C<br>10 °C | a with its wi      | s maximum                      | 1?  |
| 17. | In anomal<br>(1)<br>(3)<br>An aeropl | ous expansion<br>4 °C<br>> 4 °C<br>ane executes | f romin over<br>a of water, at what the<br>mo c. ( ( )<br>a horizontal loop a | (2)<br>(4)<br>t a speed<br>g = 10 m | t to dignal lead<br>ure, the densit<br>< 4 °C<br>10 °C | of al had W        | real image<br>mumixem s<br>(3) | 1?  |

P

A-1

| focal lei | ngth of a lens i                                                             |                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                     | is the radius of                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                              | - 10 W                                                                                                                                                                                                      | hat is no                                                                                                                                                                                    | wer of                                                                                                                                                                                                     | a lens in die                                                                                                                                                                                                                                                                                                                       | ontre ?                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (3)       | 10 cm                                                                        | .,10 °C                                                                                                                                                                                                     | (4)                                                                                                                                                                                          | (4)                                                                                                                                                                                                        | 7.5 CHI                                                                                                                                                                                                                                                                                                                             | >4 °C                                                                                                                                                                                                                                                                                                                                                                          | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| eal image | . What is foca                                                               | l length of t                                                                                                                                                                                               | he conca                                                                                                                                                                                     | ve mi                                                                                                                                                                                                      | rror ?                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                     | ALL OF                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nich harn | armonics. Wh                                                                 |                                                                                                                                                                                                             |                                                                                                                                                                                              | both                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |                                                                              | eniy. what                                                                                                                                                                                                  | is the typ                                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                | (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |                                                                              |                                                                                                                                                                                                             |                                                                                                                                                                                              | f al                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (3)       | 2 ms <sup>-1</sup>                                                           |                                                                                                                                                                                                             | dmua bl                                                                                                                                                                                      | (4)                                                                                                                                                                                                        | 1.5 ms <sup>-1</sup>                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                | A flow of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (1)       | 1 ms <sup>-1</sup>                                                           | 40π rad s                                                                                                                                                                                                   |                                                                                                                                                                                              | (2)                                                                                                                                                                                                        | 0.5 ms <sup>-1</sup>                                                                                                                                                                                                                                                                                                                | 2π rad s <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                         | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | ody of m<br>(1)<br>(3)<br>(3)<br>(1)<br>(3)<br>(3)<br>an object<br>eal image | ody of mass 27 kg mov<br>(1) 1 ms <sup>-1</sup><br>(3) 2 ms <sup>-1</sup><br>(3) 2 ms <sup>-1</sup><br>(1) Isothermal<br>(3) Isochoric<br>an object is placed at 20<br>eal image. What is foca<br>(1) 15 cm | ody of mass 27 kg moving with ve<br>(1) 1 ms <sup>-1</sup><br>(3) 2 ms <sup>-1</sup><br>(3) 2 ms <sup>-1</sup><br>(1) Isothermal<br>(3) Isochoric<br>(3) Isochoric<br>(1) 15 cm<br>(3) 10 cm | ody of mass 27 kg moving with velocity v.<br>(1) 1 ms <sup>-1</sup><br>(3) 2 ms <sup>-1</sup><br>(3) 2 ms <sup>-1</sup><br>(4) Isothermal<br>(5) Isochoric<br>(1) Isothermal<br>(3) Isochoric<br>(1) 15 cm | ody of mass 27 kg moving with velocity v. The velocity of mass 27 kg moving with velocity v. The velocity of $(1)$ 1 ms <sup>-1</sup> (2)<br>(3) 2 ms <sup>-1</sup> (4)<br>(3) 2 ms <sup>-1</sup> (4)<br>(1) Isothermal (2)<br>(3) Isochoric (4)<br>(3) Isochoric (4)<br>(4)<br>(5) (6) (2)<br>(6) (2) (2)<br>(7) (2) (3) 10 cm (4) | ody of mass 27 kg moving with velocity v. The value of v is(1) 1 ms <sup>-1</sup> (2) 0.5 ms <sup>-1</sup> (3) 2 ms <sup>-1</sup> (4) 1.5 ms <sup>-1</sup> (3) 2 ms <sup>-1</sup> (4) 1.5 ms <sup>-1</sup> (4) 1.5 ms <sup>-1</sup> (5) 2 ms <sup>-1</sup> (2) Adiabatic(1) Isothermal(2) Adiabatic(3) Isochoric(4) Isobaric(4) Isobaric(5) 10 cm(2) 6.6 cm(3) 10 cm(4) 7.5 cm | <ul> <li>(3) 2 ms<sup>-1</sup></li> <li>(4) 1.5 ms<sup>-1</sup></li> <li>(5) 1.5 ms<sup>-1</sup></li> <li>(6) 1.5 ms<sup>-1</sup></li> <li>(7) 1.5 ms<sup>-1</sup></li> <li>(8) 1.5 ms<sup>-1</sup></li> <li>(9) 1.5 ms<sup>-1</sup></li> <li>(1) 1.5 ms<sup>-1</sup></li> <li>(2) Adiabatic</li> <li>(3) 1.5 cm in front of a concave mirror produces three times at image. What is focal length of the concave mirror ?</li> <li>(1) 1.5 cm</li> <li>(2) 6.6 cm</li> <li>(3) 10 cm</li> <li>(4) 7.5 cm</li> </ul> | ody of mass 27 kg moving with velocity v. The value of v is         (1) 1 ms <sup>-1</sup> (2) 0.5 ms <sup>-1</sup> (3) 2 ms <sup>-1</sup> (4) 1.5 ms <sup>-1</sup> (4) 1.5 ms <sup>-1</sup> (5) cycle tyre bursts suddenly. What is the type of this process ?         (1) Isothermal       (2) Adiabatic         (3) Isochoric       (4) Isobaric         (1) Isothermal       (2) Adiabatic         (3) Isochoric       (4) Isobaric         (1) 15 cm       (2) 6.6 cm         (3) 10 cm       (4) 7.5 cm |

23. A microscope is having objective of focal length 1 cm and eyepiece of focal length 6 cm. If tube length is 30 cm and image is formed at the least distance of distinct vision, what is the magnification produced by the microscope ? Take D = 25 cm.

| (1) | 6  | (4) 0.001227 Å | (2) | 150 |
|-----|----|----------------|-----|-----|
| (3) | 25 | N 12210010 (P) | (4) | 125 |

The maximum kinetic energy of the photoelectrons depends only on

- 24. A fringe width of a certain interference pattern is  $\beta = 0.002$  cm. What is the distance of 5<sup>th</sup> dark fringe from centre ?
  - (1)  $1 \times 10^{-2}$  cm (2)  $11 \times 10^{-2}$  cm
  - (3)  $1.1 \times 10^{-2}$  cm (4)  $3.28 \times 10^{6}$  cm (4)  $3.28 \times 10^{6}$  cm

25. Diameter of the objective of a telescope is 200 cm. What is the resolving power of a telescope ? Take wavelength of light = 5000 Å.

| $6.56 \times 10^{6}$ |        |     | $3.28 \times 10^{5}$ | at is the energy of |
|----------------------|--------|-----|----------------------|---------------------|
| $1 \times 10^{6}$    | 3.4 eV |     | $3.28 \times 10^{6}$ | (1) 1.51 eV         |
|                      | Veb.   | (4) |                      | VA 52 5 (5)         |

26. A polarized light of intensity  $I_0$  is passed through another polarizer whose pass axis makes an angle of 60° with the pass axis of the former. What is the intensity of emergent polarized light from second polarizer?

| (1) | $I = I_o$   | ) $\lambda T = \overline{2}$ |     | (2) | $I = I_0/6$       | $\lambda T = I$          | (1) |
|-----|-------------|------------------------------|-----|-----|-------------------|--------------------------|-----|
| (3) | $I = I_o/5$ | $\lambda = \log 2T$          | (4) | (4) | I <sub>o</sub> /4 | $\lambda T = \log_{0} 2$ | (8) |

**Space For Rough Work** 

P

| (1)                                               | of 100 Volt ?                                                                                     | ke D =                | ope ? Ta             | (2)                                        | 1.227 Å                                                            | on produc            |                                         | the ntagmi                                        |      |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------------------|--------------------------------------------------------------------|----------------------|-----------------------------------------|---------------------------------------------------|------|
| (3)                                               | 0.1227 Å                                                                                          | 150                   |                      |                                            | 0.001227                                                           |                      |                                         |                                                   |      |
| AND STREET                                        |                                                                                                   | 125                   | (4)                  |                                            |                                                                    |                      | 25                                      | (3)                                               |      |
| 28. The maxi                                      | mum kinetic energ                                                                                 | gy of the             | e photoe             | lectron                                    | s depends o                                                        | only on              |                                         |                                                   |      |
| l(f)nce of 5 <sup>th</sup>                        | potential                                                                                         | = 0.002               | ern is ß             | (2)                                        | frequency                                                          | of a certai          | dibiv                                   | A fringe v                                        |      |
| (3)                                               | incident angle                                                                                    |                       |                      | (4)                                        | pressure                                                           | n centre ?           | ioni o                                  | lark fring                                        | 2    |
|                                                   | ) <sup>-2</sup> стп                                                                               | 11 × 11               | (2)                  |                                            |                                                                    | 10 <sup>-2</sup> cm  | 1×                                      | (1)                                               |      |
| electroma                                         | PHELIC WAVE /                                                                                     |                       |                      |                                            |                                                                    |                      |                                         |                                                   |      |
| (1)<br>s power of a                               | Paschen series<br>Lyman series                                                                    | m. Wh                 | is 200 c             | (2)<br>(4)                                 | Pfund ser<br>Balmer se                                             | ies<br>eries         | of th<br>? Tak                          | Diameter<br>elescope                              | 1    |
| (1)<br>(3)                                        | Paschen series<br>Lyman series                                                                    | 3.28 ×                | ) Å.<br>- (2)        | xxxx(4)                                    | Balmer se                                                          | eries<br>istovew s   | 7 Tak<br>6.56                           | Diameter<br>elescope<br>(1)                       | I .1 |
| (1)<br>(3)                                        | Paschen series<br>Lyman series<br>he energy of the el                                             | 3.28 ×                | evolving             | (4) g in thir                              | Balmer se                                                          | eries<br>ressed in e | 7 Tak<br>6.56                           | elescope                                          | 1.3  |
| (1)<br>(3)<br><b>30.</b> What is th               | Paschen series<br>Lyman series<br>he energy of the el<br>1.51 eV                                  | ectron r              | evolving             | (4)<br>g in thir<br>(2)                    | Balmer so<br>d orbit exp                                           | eries<br>ressed in e | Tak<br>Yak                              | elescope                                          | I .1 |
| (1)<br>(3)<br><b>30.</b> What is th<br>(1)<br>(3) | Paschen series<br>Lyman series<br>he energy of the el<br>1.51 eV                                  | ectron r              | evolving             | (4)<br>g in thir<br>(2)<br>(4)             | Balmer so<br>d orbit exp<br>3.4 eV<br>4 eV                         | eries<br>ressed in e | ? Tak<br>? V<br>1 ×                     | elescope<br>(1)<br>(3)                            |      |
| (1)<br>(3)<br>30. What is th<br>(1)<br>(3)        | Paschen series<br>Lyman series<br>he energy of the el<br>1.51 eV<br>4.53 eV                       | ectron r<br>fe (T) an | evolving<br>nd decay | (4)<br>g in thir<br>(2)<br>(4)<br>y consta | Balmer so<br>d orbit exp<br>3.4 eV<br>4 eV                         | ressed in e          | 7 Tak<br>6.56<br>? Vs<br>I ×<br>ed ligi | elescope<br>(1)<br>(3)<br>A polarize<br>un angle  |      |
| (1)<br>(3)<br>30. What is th<br>(1)<br>(3)        | Paschen series<br>Lyman series<br>he energy of the el<br>1.51 eV<br>4.53 eV<br>on between half li | ectron r              | evolving<br>nd decay | (4)<br>g in thir<br>(2)<br>(4)<br>y consta | Balmer so<br>d orbit exp<br>3.4  eV<br>4  eV<br>ant $(\lambda)$ is | ressed in a          | 7 Tak<br>6.56<br>? Vs<br>I ×<br>ed ligi | elescope<br>(1)<br>(3)<br>A polarize<br>polarized |      |

8

- 32. A force between two protons is same as the force between proton and neutron. The nature of the force is
  - (1) Weak nuclear force
- (2) Strong nuclear force
- Electrical force (3)

- (4) Gravitational force

37. If a charge on the body is 1 nC, then how many ele

(3)  $6.25 \times 10^{27}$ 

- 33. In n type semiconductor, electrons are majority charge carriers but it does not show any negative charge. The reason is
  - (1) electrons are stationary
    - (2) electrons neutralize with holes
    - (3) mobility of electrons is extremely small
    - (4) atom is electrically neutral

34. For the given digital circuit, write the truth table and identify the logic gate it represents :



35. If  $\alpha$ -current gain of a transistor is 0.98. What is the value of  $\beta$ -current gain of the transistor ?

| (1) | 0.49 | (2) Electrical | (2) 49 | (1) Scalar |
|-----|------|----------------|--------|------------|
| (3) | 4.9  | (4) Vector     | (4) 5  |            |

- 36. A tuned amplifier circuit is used to generate a carrier frequency of 2 MHz for the amplitude modulation. The value of √LC is

  (1) 1/(2π × 10<sup>6</sup>)
  (2) 1/(2 × 10<sup>6</sup>)
  (3) 1/(3π × 10<sup>6</sup>)
  (4) 1/(4π × 10<sup>6</sup>)

  37. If a charge on the body is 1 nC, then how many electrons are present on the body ?
  - (1)  $1.6 \times 10^{19}$ (2)  $6.25 \times 10^{9}$ (3)  $6.25 \times 10^{27}$ (4)  $6.25 \times 10^{28}$

**38.** Two equal and opposite charges of masses  $m_1$  and  $m_2$  are accelerated in an uniform electric field through the same distance. What is the ratio of their accelerations if their

ratio of masses is 
$$\frac{m_1}{m_2} = 0.5$$
 ?

(1) 
$$\frac{a_1}{a_2} = 0.5$$
  
(2)  $\frac{a_1}{a_2} = 1$   
(3)  $\frac{a_1}{a_2} = 2$   
(4)  $\frac{a_1}{a_2} = 3$   
(5)  $\frac{a_1}{a_2} = 3$ 

**39.** What is the nature of Gaussian surface involved in Gauss law of electrostatic ?

| (1) | Scalar   | (2) 49 | (2) | Electrical | 0.49 | (1) |
|-----|----------|--------|-----|------------|------|-----|
| (3) | Magnetic | (4) 5  | (4) | Vector     | 4.9  |     |

|      |            |                           |                                           | (/))         | 1 0                    |                                     |                                     |     |
|------|------------|---------------------------|-------------------------------------------|--------------|------------------------|-------------------------------------|-------------------------------------|-----|
|      | (0)        | $\frac{4}{17}$ A          | 2) Elliptical                             |              | 1 A                    | Circular                            | (1)                                 |     |
|      | (1)        |                           | narged particle ?                         | (2) by a cl  | $\frac{4}{3}A$         | field, what is t                    | magnetic                            |     |
|      | flowing th | rough the b               | battery ?                                 |              | perpendicul            | city has both                       | If a velo                           |     |
|      |            |                           | battery of emf 2V                         |              |                        |                                     |                                     | nt  |
| 44.  |            |                           | stances 2 $\Omega$ and                    |              | -                      |                                     |                                     |     |
|      |            |                           | tic field is perpend                      | and magnet   | s stationary           | The particle                        |                                     |     |
|      | (3)        |                           | field is parallel to $\Omega M$           |              |                        |                                     | (2)                                 |     |
|      | (1)        |                           |                                           |              |                        | Coronitati on r                     | (1)                                 |     |
| 43.  | A carbon f | ilm resistor              | has colour code G                         | reen Black   |                        |                                     |                                     |     |
|      | eke which  | 5 4 10 1                  | n the presence or                         | aste force n |                        | d particle exper-<br>ving statement |                                     | .13 |
|      |            |                           | n the presence of                         |              |                        | m <sup>-1</sup>                     |                                     |     |
|      |            | $3 \times 10^6 \text{ V}$ |                                           |              | 3 V m <sup>-1</sup>    | 1 11.1 -                            |                                     |     |
| 42.  | -          |                           | r of radius 2 cm i<br>3 cm from the cen   |              | -                      | in 3 nC. what is $\sqrt{1}$         |                                     | IC  |
| 10   | Annhari    | l and to sta              | X 10.10- (1                               |              | abana da d             | 4 2 .C                              | (he down                            |     |
|      | (3)        | 8 -40 cm. 8               | ngth is found to b                        | (4)          | 10 <sup>10</sup> today | replaced by an                      | the cell is of second               |     |
| 11 . |            |                           | 1.25 V gives bala                         |              |                        | niometer expen                      | In a poter                          | 3   |
|      |            |                           | b is introduced be<br>e dielectric consta | -            |                        | me configuration                    | on, voltmet                         | er  |
| 41.  |            |                           | V when connected                          |              |                        |                                     | and the second second second second |     |
|      |            |                           | Ω1,Ω8 (3                                  |              |                        | - 4 Ω, 6 Ω                          |                                     |     |
|      | (3)        | 300 V                     |                                           | (4)          | 30 V                   |                                     |                                     |     |
|      | (1)        | 270 V                     | of resistances ?                          | (2)          | 3 V                    | t resistance is 7                   | equivalen                           |     |

Y

45. The equivalent resistance of two resistors connected in series is 6  $\Omega$  and their parallel

equivalent resistance is  $\frac{4}{3}\Omega$ . What are the values of resistances ?

 $4\Omega, 6\Omega$ (1)

# (2) $8\Omega, 1\Omega$

300 V

41. A voltmeter reads 4 V wh $\Omega \simeq \Omega \simeq \Omega \simeq (4)$  a parallel plate capacito  $\Omega \propto \Omega \Omega \simeq \Omega \simeq 0$  bielectric. When a dielectric slab is introduced between plates for the same configuration, voltmeter reads 2 V. What is the dielectric constant of the material ?

**46.** In a potentiometer experiment of a cell of emf 1.25 V gives balancing length of 30 cm. If the cell is replaced by another cell, balancing length is found to be 40 cm. What is the emf of second cell ?

(1) 
$$\simeq 1.57$$
 V and  $\simeq 1.67$  V (2)  $\simeq 1.67$  V (3)  $\simeq 1.47$  V (3)  $\simeq 1.47$  V (4)  $\simeq 1.37$  V (5)  $\simeq 1.37$  V (5)  $\simeq 1.47$  V (5)  $\simeq 1.47$  V (5)  $\simeq 1.37$  V (5)

**47.** A charged particle experiences magnetic force in the presence of magnetic field. Which of the following statement is correct ?

(1) The particle is moving and magnetic field is perpendicular to the velocity.

- (2) The particle is moving and magnetic field is parallel to velocity.
- (3) The particle is stationary and magnetic field is perpendicular.

(4) The particle is stationary and magnetic field is parallel.

then connected to a battery of emf 2V and internal resistance 0.5  $\Omega$ . What is the current

**48.** If a velocity has both perpendicular and parallel components while moving through a magnetic field, what is the path followed by a charged particle ?

| (1) | Circular |            | (2) | Elliptical |  |
|-----|----------|------------|-----|------------|--|
| (3) | Linear   | (4) IA (4) | (4) | Helical    |  |

|      |            | 3.142 A m <sup>2</sup>                   | **                              | (4)      | 3 A m <sup>2</sup>                        |                           |               |     |
|------|------------|------------------------------------------|---------------------------------|----------|-------------------------------------------|---------------------------|---------------|-----|
|      | (-)        |                                          | 45                              |          |                                           | 11. 1. 2                  |               |     |
|      | (1)        | $3.142 \times 10^4$ A m                  | $(4)  \frac{c}{\pi} \times 1^2$ | (2)      | 10 <sup>4</sup> A m <sup>2</sup> H 4      | $\frac{L}{\pi} \times 10$ | (3)           |     |
|      |            | of the coil?                             | 2                               |          |                                           | 0                         |               |     |
| 34.  |            |                                          | cm and 100 tu                   | ins cari | les a current IA.                         | what I                    | s the magne   | uc  |
| 52.  | A giroula  | coil of radius 10                        | om and 100 to                   |          | ias a current 1 A                         | What :                    | a the magne   | tio |
|      |            |                                          |                                 |          |                                           |                           |               |     |
|      | (3)        | 0.5 12                                   |                                 | (4)      | 0.05 12                                   | 5                         | dissipated    |     |
| pi . | 19WOO DAVO | 0.5 Ω and 15 Y                           | is the frequence                | terior   |                                           | D.A.V                     | a frequenc    | -   |
|      | (1)        | $\frac{5}{9.95}\Omega$                   | stipsgep Hm                     | (2)      | $\overline{5}^{\Omega}$                   | CR cit                    | A series I    |     |
|      |            | 5                                        |                                 |          | 9.95                                      |                           |               |     |
|      | Given : Fi | ull scale deflection                     | of the galvano                  | meter is | 5 mA.                                     | 7.191                     | (0)           |     |
|      |            | o an ammeter of ra                       | 2005 (13                        |          | V                                         | 141.4                     | (8)           |     |
| 51.  |            | he value of shunt                        | V 13174                         | uired to | convert a galva                           | nomete                    | r of resistan | ice |
|      | 111        | 1 1 6 1                                  |                                 |          |                                           |                           | voltage of    |     |
|      | peak value | 100 V. What is the                       | I.C. source as                  | A nienos |                                           |                           |               | 55. |
|      | (3)        | $1.1 \times 10^{-29} \text{ kg}$         |                                 | (4)      | $\frac{1}{11} \times 10^{-29} \text{ kg}$ |                           |               |     |
|      |            | 20                                       |                                 |          |                                           |                           |               |     |
|      | (1)        | $1 \times 10^{-29} \text{ kg}$           | (4) 51                          | (2)      | $0.1 \times 10^{-29} \text{ kg}$          | 43                        | (2)           |     |
|      | electron = | $1.6 \times 10^{-19}$ C.                 | (2) 1 J                         |          |                                           | 2.1                       | (1)           |     |
|      |            | 10 <sup>10</sup> C kg <sup>-1</sup> . W  | hat is the m                    | ass of   | the electron ? (                          | Jiven                     | charge of t   | he  |
| 50.  |            | agnetic ratio of th                      |                                 |          |                                           |                           | -             |     |
|      |            |                                          |                                 |          |                                           |                           |               |     |
|      | (5)        |                                          |                                 | (1)      |                                           |                           |               |     |
|      | (3)        | $6.28 \times 10^{-7} \text{ T}^{-10}$    | (4) Ferro                       | (4)      | 6.28 × 10 <sup>-6</sup> T                 | Ferro                     | (8)           |     |
|      | (1)        | $6.28 \times 10^{-4} \text{ T}$          | (2) Paran                       | (2)      | $6.28 \times 10^{-3} \text{ T}$           | Diam                      | (1)           |     |
|      |            |                                          |                                 |          |                                           |                           |               |     |
|      | passed thr | ough this solenoid                       | , what is the m                 | agnetic  | field inside the so                       | lenoid                    | malerial ?    |     |
| 49.  |            | d has length 0.4 c<br>ough this solenoid |                                 |          |                                           |                           |               | is  |

P

- 53. A susceptibility of a certain magnetic material is 400. What is the class of the magnetic material? biometos and abiant blait biant blait blait biant blait blait
  - Diamagnetic (2) Paramagnetic
  - (3) Ferromagnetic (4) Ferroelectric

(1)

54. A solenoid of inductance 2H carries a current of 1 A. What is the magnetic energy stored in a solenoid ?

- (1) 2 J (3) 4 J (3) 4 J (4) 5 J (5)  $2^{2} - 01 \times 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} + 10^{-29} +$
- 55. A multimeter reads a voltage of a certain A.C. source as 100 V. What is the peak value of voltage of A.C. source ?

| (1) | 200 V                   | at is the value of shund $V 001_{A}$ (2) into an anneter of range $A$ | . Wh |
|-----|-------------------------|-----------------------------------------------------------------------|------|
| (3) | 141.4 V Am 2 ai totomon | (4) 400 V (4)                                                         |      |

56. A series LCR circuit contains inductance 5 mH, capacitance 2  $\mu$ F and resistance 10  $\Omega$ . If a frequency A.C. source is varied, what is the frequency at which maximum power is dissipated ?

(1) 
$$\frac{10^5}{\pi}$$
 Hz  
(2)  $\frac{10^{-5}}{\pi}$  Hz  
(3)  $\frac{2}{\pi} \times 10^5$  Hz  
(4)  $\frac{5}{\pi} \times 10^3$  Hz  
(5)  $\frac{10^{-5}}{\pi}$  Hz  
(6)

**Space For Rough Work** 

A-1

51.

**57.** A step down transformer has 50 turns on secondary and 1000 turns on primary winding. If a transformer is connected to 220 V 1A A.C. source, what is output current of the transformer ?

| (1) | $\frac{1}{20}$ A | (2) | 20 A |
|-----|------------------|-----|------|
| (3) | 100 A            | (4) | 2 A  |

58. The average power dissipated in A.C. circuit is 2 watt. If a current flowing through a circuit is 2 A and impedance is 1  $\Omega$ , what is the power factor of the AC circuit ?

| (1) 0.5 | (2) | 1                    |
|---------|-----|----------------------|
| (3) 0   | (4) | $\frac{1}{\sqrt{2}}$ |

59. A plane electromagnetic wave of frequency 20 MHz travels through a space along x direction. If the electric field vector at a certain point in space is 6 V m<sup>-1</sup>, what is the magnetic field vector at that point?

| (1) | $2 \times 10^{-8} \mathrm{T}$ | (3 | 2) | $\frac{1}{2} \times 10^{-8} \mathrm{T}$ |
|-----|-------------------------------|----|----|-----------------------------------------|
| (3) | 2T                            | (4 | 4) | $\frac{1}{2}T$                          |

60. Two capacitors of 10 PF and 20 PF are connected to 200 V and 100 V sources respectively. If they are connected by the wire, what is the common potential of the capacitors ?

| (1) | 133.3 volt | (2) | 150 volt |  |
|-----|------------|-----|----------|--|
| (3) | 300 volt   | (4) | 400 volt |  |

P

57. A step down transformer has 50 turns on secondary and 1000 turns on primary winding. If a transformer is connected to 220 V IA A.C. source, what is output current of the transformer?



The average power dissipated in A.C. circuit is 2 watt. If a current flowing through a circuit is 2 A and impedance is 1  $\Omega$ , what is the power factor of the AC circuit ?



Space For Rough Work

A-1

SEAL

P

| SUBJECT : CHEMISTRY |                        |            |              | 25 cm <sup>3</sup> of oxals a <b>YAG</b> mpletely neutralised |                          |  |  |
|---------------------|------------------------|------------|--------------|---------------------------------------------------------------|--------------------------|--|--|
|                     | SESSION : AFT          | ERNO       | ON           | TIME :                                                        | 02.30 P.M. TO 03.50 P.M. |  |  |
| MA                  | XIMUM MARKS            | TOTAI      | DURATION     | MAX                                                           | IMUM TIME FOR ANSWERIN   |  |  |
|                     | 60                     | 80 N       | IINUTES      |                                                               | 70 MINUTES               |  |  |
|                     | MENTION YOU            | JR         | QUEST        | IONBO                                                         | OKLET DETAILS            |  |  |
| ot li               | CET NUMBEI             | atoms is   | VERSION      | CODE                                                          | STATE SERIAL NUMBER      |  |  |
| nagen               | e first orbit of hydro | the of the | <b>A</b> - 1 | icipal qu<br>rst orbit                                        | 751905                   |  |  |

nn11.

- This Question Booklet is issued to you by the invigilator after the 2<sup>nd</sup> Bell i.e., after 2.30 p.m. 2.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided. 5.

### DON'TS:

- THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE 1 DAMAGED / MUTILATED / SPOILED.
- 2. The 3rd Bell rings at 2.40 p.m., till then; botsod at lease bosolo entil 01 a at ODeD to 2 02
  - Do not remove the paper seal present on the right hand side of this question booklet.
    - Do not look inside this question booklet.
    - (Given R = 0.082 L atm  $K^{-1}$  mol<sup>-1</sup>) Do not start answering on the OMR answer sheet.

# **IMPORTANT INSTRUCTIONS TO CANDIDATES**

- This question booklet contains 60 questions and each question will have one statement and four distracters. 1. (Four different options / choices.)
- After the 3rd Bell is rung at 2.40 p.m., remove the paper seal on the right hand side of this question booklet and 2 check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet. Conversion of oxygen into ozone is non-spontineour
- 3. During the subsequent 70 minutes:
  - Read each question carefully.
  - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
  - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below :



- 4. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet 5 for the same.
- After the last bell is rung at 3.50 p.m., stop writing on the OMR answer sheet and affix your LEFT HAND 6. THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- Hand over the OMR ANSWER SHEET to the room invigilator as it is. 7.
- After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.



**Turn Over** 



| 25 cm <sup>3</sup> of oxalic acid completely neu                                               | tralised 0.064                             | g of sodium                   | hydroxide. Molarity of                                                                                                                                                                                                                                                                                                          | th   |
|------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| oxalic acid solution is                                                                        |                                            |                               |                                                                                                                                                                                                                                                                                                                                 |      |
| (1) 0.045 M.9 06.20 3M                                                                         | (2)                                        | 0.032                         | SESSION : AFTE                                                                                                                                                                                                                                                                                                                  |      |
| 0/193 (3) / 0.064 SMIT MUMIZAM                                                                 | иоп(4)                                     | 0.015                         | XIMUM MARKS                                                                                                                                                                                                                                                                                                                     | N    |
| 70 MINUTES                                                                                     |                                            | IVIEN 08                      |                                                                                                                                                                                                                                                                                                                                 |      |
| The statement that is NOT correct is                                                           | OUESTIO                                    |                               | MENTION YOUR                                                                                                                                                                                                                                                                                                                    |      |
| (1) Energies of stationary state<br>the square of the principal                                |                                            | like atoms                    |                                                                                                                                                                                                                                                                                                                                 | l to |
| (2) The radius of the first orbatom.                                                           |                                            |                               |                                                                                                                                                                                                                                                                                                                                 | 80   |
| (3) Angular quantum number s                                                                   | signifies the sl                           | hape of the                   | orbital.                                                                                                                                                                                                                                                                                                                        |      |
| (4) Total number of nodes for                                                                  | 3s orbital is th                           | ree.                          | The Social Number of this que                                                                                                                                                                                                                                                                                                   |      |
| in the OMR answer sheet and the respective circles                                             |                                            |                               |                                                                                                                                                                                                                                                                                                                                 |      |
| For the equilibrium :                                                                          |                                            |                               | Compulsorily sign at the botte                                                                                                                                                                                                                                                                                                  |      |
| $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}; K_p =$                                  |                                            |                               |                                                                                                                                                                                                                                                                                                                                 |      |
| (1) 50 237ACIC/AO OT (<br>(3) 40                                                               | (2)                                        | 20<br>60                      | Do not start answering or<br>IMPORI<br>This question booklet contain<br>(Four different equions / choic                                                                                                                                                                                                                         |      |
| Conversion of oxygen into ozone is no                                                          |                                            | is at                         |                                                                                                                                                                                                                                                                                                                                 |      |
| Conversion of oxygen into ozone is not                                                         | on-spontaneou                              | is at                         |                                                                                                                                                                                                                                                                                                                                 |      |
| Conversion of oxygen into ozone is not (1) high temperature (3) all temperatures               | on-spontaneou                              | is at<br>low temp<br>room tem | erature                                                                                                                                                                                                                                                                                                                         |      |
| Conversion of oxygen into ozone is no<br>(1) high temperature<br>(3) all temperatures<br>Space | on-spontaneou<br>(2)<br>(4)<br>For Rough W | is at<br>low temp<br>room tem | erature                                                                                                                                                                                                                                                                                                                         |      |
| Conversion of oxygen into ozone is no<br>(1) high temperature<br>(3) all temperatures          | on-spontaneou<br>(2)<br>(4)<br>For Rough W | is at<br>low temp<br>room tem | erature                                                                                                                                                                                                                                                                                                                         |      |
| Conversion of oxygen into ozone is no<br>(1) high temperature<br>(3) all temperatures<br>Space | on-spontaneou<br>(2)<br>(4)<br>For Rough W | is at<br>low temp<br>room tem | erature<br>perature                                                                                                                                                                                                                                                                                                             |      |
| Conversion of oxygen into ozone is no<br>(1) high temperature<br>(3) all temperatures<br>Space | on-spontaneou<br>(2)<br>(4)<br>For Rough W | is at<br>low temp<br>room tem | erature<br>perature<br>best des                                                                                                                                                                                                                                                             |      |
| Conversion of oxygen into ozone is no<br>(1) high temperature<br>(3) all temperatures<br>Space | on-spontaneou<br>(2)<br>(4)<br>For Rough W | is at<br>low temp<br>room tem | Complete real booklet does no<br>a complete real booklet. Read<br>erature<br>Prature<br>perature<br>against the question mo<br>against the question mo<br>against the question mo<br>against the question mo<br>of the same.<br>Dist the same ball is rang at<br>Aler the lest ball is rang at<br>Aler the lest ball is rang at |      |



C

A-1

9. Gold Sol is not Density of carbon monoxide is maximum at a lyophobic colloid negatively charged colloid (1)(2)a macro molecular colloid (4) a multimolecular colloid (3)10. Carbocation as an intermediate is likely to be formed in the reaction : 6. The acid strength of active methylene group in Acetone + HCN  $\xrightarrow{-OH}$  acetonecyanohydrin Anhy. A/Cl<sub>3</sub> / HCl Hexane  $\xrightarrow{}$  2-methyl pentane (1) (2)Propene +  $Cl_2 \xrightarrow{h\nu} 2$ -chloropropane and H<sub>2</sub>OOO<sub>2</sub>HOOO<sub>2</sub>HOOO<sub>2</sub>H<sub>2</sub>O (3) (3)Ethylbromide + Aq KOH  $\longrightarrow$  ethyl alcohol 0 < d < s (1) (4) (4) b>a>c (3) a>c>b 11. For an ideal binary liquid mixture (1)  $\Delta H_{(mix)} = 0$ ;  $\Delta S_{(mix)} < 0$ (2)  $\Delta S_{(mix)} > 0$ ;  $\Delta G_{(mix)} < 0$ (3)  $\Delta S_{(mix)} = 0$ ;  $\Delta G_{(mix)} = 0$ (4)  $\Delta V_{(mix)} = 0$ ;  $\Delta G_{(mix)} > 0$ (3) CaO 12. For hydrogen - oxygen fuel cell at one atm and 298 K  $H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(l)}; \Delta G^\circ = -240 \text{ kJ}$  $X \xrightarrow{Ozonolysis} Y + Z$ E° for the cell is approximately, At with Given F = 96,500 C and Given F = 96,500 C and Given F = 96,500 C(1) 1.24 V (2)1.26 Viluoo X .iltalis betarteeonoo (3) (4) 2.48 V 2.5 V Which one of these is not known ? 13. (1)  $CuI_{2-HO} = HO$ (2) CuBr<sub>2</sub> (3) CuCl<sub>2</sub> (4) CuF,



48

### 14. The correct statement is

- The extent of actinoid contraction is almost the same as lanthanoid contraction. (1)
- Ce<sup>+4</sup> in aqueous solution is not known. (2)
- The earlier members of lanthanoid series resemble calcium in their chemical (3) (2) Pentan-2-ol. seitregorg
- In general, lanthanoids and actinoids do not show variable oxidation states. (4)

**15.** P 
$$\frac{1. \text{CH}_3\text{MgBr}}{2. \text{H}_3\text{O}^+}$$
 R  $\frac{1. \text{dil. NaOH}}{2. \Delta}$  4-methylpent-3-en-2-one  
P is  
(1) ethanamine  
(3) propanone  
(4) ethanenitrile

16. When  $CH_2 = CH - O - CH_2 - CH_3$  reacts with one mole of HI, one of the products formed is

> ethanal (1)ethanol (2)iodoethene (3)ethane (4)

17. 0.44 g of a monohydric alcohol when added to methylmagnesium iodide in ether liberates at S.T.P., 112 cm<sup>3</sup> of methane. With PCC the same alcohol forms a carbonyl compound that answers silver mirror test. The monohydric alcohol is

(1)  $(CH_3)_3C - CH_2OH$ 

 $(CH_3)_2CH - CH_2OH$ (2)

(1) <sup>b</sup>romination, n tration, reduction

(3)  $CH_3 - CH - CH_2 - CH_3$  (4)  $CH_3 - CH - CH_2 - CH_2 - CH_3$ (2) reduction, nitration, bromination (4) nitration, broHOnation, reduction

(3) pitration, redHonon, bromination

**Space For Rough Work** 

C

 $H + CH_3MgBr \xrightarrow{\text{ether}} A' \xrightarrow{H_3O^+} B$  is a statement of a statement of  $A' \xrightarrow{H_3O^+} B$  is a statement of A'The correct statement is 18. Ce<sup>+4</sup> in aqueous solution is not known. The IUPAC name of 'B' is series presented to another of 'B' is (1) 2-methylbutan-3-ol (2) Pentan-2-olasinagong (3) 3-methylbutan-2-ol (4) 2-methylbutan-2-ol (4)19. For Freundlich isotherm a graph of  $\log \frac{x}{m}$  is plotted against log P. The slope of the line and 2 H.O<sup>+</sup> R 2 A 15. P its y-axis intercept, respectively corresponds to (2)  $\log \frac{1}{n}$ ,  $\log k$ (1)  $\log \frac{1}{n}$ , k (1) ethanamine  $k \operatorname{gol}, \frac{1}{n}$  (4) ethanami (3) propanone (4) ethanemi (3)  $\frac{1}{n}$ , k 20. A plot of  $\frac{1}{T}$  Vs. k for a reaction gives the slope  $-1 \times 10^4$  K. The energy of activation for the reaction is (Given  $R = 8.314 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$ ) (2) 83.14 kJ mol<sup>-1</sup> (4)  $12.02 \text{ J mol}^{-1}$  ensite (8) (1)  $1.202 \text{ kJ mol}^{-1}$ (3)  $8314 \text{ J mol}^{-1}$  (4) 21. The IUPAC name of the complex ion formed when gold dissolves in aquaregia is (1) tetrachloridoaurate(I) (2) dichloridoaurate(III) tetrachloridoaurate(II) tetrachloridoaurate(III) (4) (3)(1) (CH<sub>2</sub>)<sub>2</sub>C - CH<sub>2</sub>OH 22. The correct sequence of reactions to be performed to convert benzene into m-bromoaniline is bromination, nitration, reduction reduction, nitration, bromination (1)(2)nitration, reduction, bromination (4) nitration, bromination, reduction (3)

**Space For Rough Work** 

A-1



C

**26.** Acetophenone cannot be prepared easily starting from

- (1)  $C_6H_5CH_3$  (nonlong rolean) Y (2)  $C_6H_6$  (2)  $C_6H_6$
- (3) C<sub>6</sub>H<sub>5</sub>CH(OH)CH<sub>3</sub>
- (4)  $C_6H_5C \equiv CH$
- One mole of ammonia was completely absorbed in one litre solution each of 27. (a) 1M HCl, (b) 1M CH<sub>3</sub>COOH and (c) 1M H<sub>2</sub>SO<sub>4</sub> at 298 K.

The decreasing order for the pH of the resulting solutions is

(Given  $K_{h}(NH_{3}) = 4.74$ )

(1) a > b > c

(2) c > b > a (4)

(3) b > c > a

(4) b > a > c $A_{(e)} \xrightarrow{\Delta} P_{(e)} + Q_{(e)} + R_{(p)}$ ; follows first order kinetics with a half life of 69.3 s at

- 500 °C. Starting from the gas 'A' enclosed in a container at 500 °C and at a pressure of 0.4 28. 5.5 mg of nitrogen gas dissolves in 180 g of water at 273 K and one atm pressure due to nitrogen gas. The mole fraction of nitrogen in 180 g of water at 5 atm nitrogen pressure is approximately
  - (2)  $1 \times 10^{-4}$ (1)  $1 \times 10^{-5}$ (4)  $1 \times 10^{-3}$  OH + OM 20 (3)  $1 \times 10^{-6}$
- 29. 50 cm<sup>3</sup> of 0.04 M  $K_2Cr_2O_7$  in acidic medium oxidizes a sample of  $H_2S$  gas to sulphur. Volume of 0.03 M KMnO<sub>4</sub> required to oxidize the same amount of H<sub>2</sub>S gas to sulphur, in acidic medium is
  - $80 \text{ cm}^3$  O U T O O (2) (2)  $120 \text{ cm}^3$  T T O O (1) (1)
  - (3)  $60 \text{ cm}^3$  0.0 30 (4) (4)  $90 \text{ cm}^3$  30 30 (5)

**Space For Rough Work** 

A-1



Critical temperature is the lowest temperature at which induction

(4) S<sub>N</sub>1 reactions can be catalysed by some Lewis acids.

### **Space For Rough Work**

C

34. Butylated hydroxy toluene as a food additive acts as the state and attend to be added and the offer attended and the state attended at

- (1) flavouring agent
- (3) antioxidant

- (2) emulsifier
- (4) colouring agent

## 35. Terylene is NOT a

- (1) polyester fibre
- (3) copolymer

- (2) step growth polymer
- (4) chain growth polymer

# **36.** The correct statement is

- (1) One mole each of benzene and hydrogen when reacted gives 1/3 mole of cyclohexane and 2/3 mole unreacted hydrogen.
- (2) It is easier to hydrogenate benzene when compared to cyclohexene.
- (3) Cyclohexadiene and cyclohexene cannot be isolated with ease during controlled hydrogenation of benzene.
- (4) Hydrogenation of benzene to cyclohexane is an endothermic process.

**37.** Among the elements from atomic number 1 to 36, the number of elements which have an unpaired electron in their s subshell is

| (1) 7 | (2) $1.74 \times 10^{-12}$ | (2) 9 | (1) $1.32 \times 10^{-12}$ |
|-------|----------------------------|-------|----------------------------|
| (3) 4 | (L) 75 10-12               | (4) 6 | (3) $5.7 \times 10^{-12}$  |

# 38. The statement that is NOT correct is going 1 2 of the statement is a source of the statement is a s

- (1) Van der Waals constant 'a' measures extent of intermolecular attractive forces for real gases.
- (2) Boyle point depends on the nature of real gas.
- (3) Compressibility factor measures the deviation of real gas from ideal behaviour.
- (4) Critical temperature is the lowest temperature at which liquefaction of a gas first occurs.

The correct arrangement for the ions in the increasing order of their radii is a molobol ...... 39. (1)  $Ca^{+2}, K^{+}, S^{-2}_{CHO} = HO$  (2)  $C\Gamma, F^{-}, S^{-2}$  OHD HO (1) (3)  $Na^+, Cl^-, Ca^{+2}$  (4)  $Na^+, Al^{+3}, Be^{+2}$ The correct arrangement of the species in the decreasing order of the bond length between 40. carbon and oxygen in them is (1)  $CO_2$ ,  $HCO_2^-$ , CO,  $CO_3^{-2}$  (2) CO,  $CO_3^{-2}$ ,  $CO_2$ ,  $HCO_2^{-2}$ (3)  $CO, CO_2, HCO_2, CO_3^{-2}$  (4)  $CO_3^{-2}, HCO_2, CO_2, CO_2$ The species that is not hydrolysed in water is 41. (1) BaO<sub>2</sub> (2) CaC<sub>2</sub> 46.  $C_6H_5COOH \xrightarrow{1. MH} P \xrightarrow{2. \Delta} P \xrightarrow{0} Q$  (4) 1. Conc. H<sub>2</sub>SO<sub>4</sub> R. (3) P<sub>4</sub>O<sub>10</sub> 42. For the properties mentioned, the correct trend for the different species is in inert pair effect -Al > Ga > In(1)(2) first ionization enthalpy -B > Al > Tlstrength as Lewis acid  $-BCl_3 > AlCl_3 > GaCl_3$  includes on ord-o (3)oxidising property  $-Al^{+3} > In^{+3} > Tl^{+3}$ (4)47. The statement that is NOT correct is 43. A correct statement is Carbohydrates are optically active.  $[MnBr_4]^{-2}$  is tetrahedral. (1)(2)  $[Ni(NH_3)_6]^{+2}$  is an inner orbital complex. [Co(NH<sub>3</sub>)<sub>6</sub>]<sup>+2</sup> is paramagnetic. (3)[CoBr<sub>2</sub>(en)<sub>2</sub>]<sup>-</sup> exhibits linkage isomerism. (4)

### **Space For Rough Work**

C

A-1

44. Iodoform reaction is answered by all, except of manoi and not managements to moo ad T 39. (1) CH<sub>3</sub>CHO <sup>2-2</sup>, 7, 10 (2) (2)  $CH_3 - CH_2 - CH_2OH$ (3)  $CH_3 - CH - CH_2 - COOH$  (4)  $CH_3 - CH_2 - OH$  (5) The correct arrangement of the species in the decreasing order of HO head length between 45. A crystalline solid  $XY_3$  has ccp arrangement for its element Y. X occupies 33% of octahedral voids 33% of tetrahedral voids (2) (1)(4) 66% of octahedral voids 66% of tetrahedral voids (3)The speci 41. 46.  $C_6H_5COOH \xrightarrow{1. NH_3} P \xrightarrow{NaOBr} Q \xrightarrow{1. Conc. H_2SO_4} R'$ (3) P4010 42. For the properties mentioned, the correct trend for the different species is in 'R' is inert pair effect – AI > Ga > In(2) p-bromo sulphanilamide sulphanilamide (1)o-bromo sulphanilic acid (4) - sulphanilic acid (3)oxidising property - Al<sup>+3</sup> > In<sup>+3</sup> > TV<sup>+3</sup> The statement that is NOT correct is 47. 43. Carbohydrates are optically active. (1)(1) [MnBr<sub>4</sub>]<sup>-2</sup> is tetrahedral. Lactose has glycosidic linkage between  $C_4$  of glucose and  $C_1$  of galactose unit. (2)(3)Aldose or ketose sugars in alkaline medium do not isomerise.

(4) Penta acetate of glucose does not react with hydroxylamine.

#### **Space For Rough Work**

12

| 48. Match th  | e reactant in Column                                                | – I with th  | he reaction i        | n Column – II :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |     |
|---------------|---------------------------------------------------------------------|--------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----|
| ei ' <i>1</i> | s for the compound 'A                                               | s possible   | er d <b>i</b> isomer |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |     |
| (i) Ac        | etic acid                                                           | ) (a)        | Stephen              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |     |
| (ii) So       | dium phenate                                                        | ( <b>b</b> ) | Friedel-Ci           | afts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |     |
| (iii) Me      | ethyl cyanide                                                       | (c)          | HVZ                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |     |
| (iv) To       | luene                                                               | (d)          | Kolbe's              | s NOT correct is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The statement that i         |     |
| (1) tion.     | i-d, $ii-b$ , $iii-c$ ,                                             | iv – a im    | e(2) sility of       | i – c, ii – d, iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - a, iv - b (1)              |     |
| (3)           | i-c, $ii-a$ , $iii-d$ , $i$                                         | v-lbuoen     | e(4)es is ext        | i – b, ii – c, iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - a, iv - d (1)              |     |
| ght iron.     | vert cast iron to wroug                                             | ed to con    |                      | e lined with Hae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3) A furnac                 |     |
| 49. The state | ment that is NOT con                                                | rect is 1 bl | metal shou           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |     |
| (1)           | In solid state PCl <sub>5</sub> e                                   | xists as []  | $PCl_4]^+[PCl_6]$    | ]-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |     |
| (2) mass of   | Phosphorous acid o phosphine.                                       | n heating    | disproporti          | onates to give m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | etaphosphoric acid           | and |
| (3)           | Hypophosphorous a                                                   | cid reduc    | es silver nit        | rate to silver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |     |
| (4)           | Pure phosphine is n                                                 | on-inflam    | mable.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3) 80 %                     |     |
| with bot      | one of the pairs of io<br>h aqueous sodium l<br>ation compound only | nydroxide    | and amm              | onia and an of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CALL CONTRACTOR CONTRACTOR A | s a |
| (1)           | $Zn^{+2}$ , $Al^{+3}$                                               | (2) 4.5      | (2)                  | A <i>l</i> <sup>+3</sup> , Cu <sup>+2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |     |
| (3)           |                                                                     | (4) 4 Å      |                      | Cu <sup>+2</sup> , Zn <sup>+2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |     |
|               | lline solid X reacts w<br>When a gas 'Z' is slo                     |              |                      | Product spread and the second s |                              |     |
| is obtaine    | ed. X and Z could be,                                               | respective   | ely Hq adf           | le, E is 1.067 V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $[Cr^{+3}] = 15$ millimo     |     |
| (1)           | Na <sub>2</sub> SO <sub>4</sub> , H <sub>2</sub> S                  | (2). 4       | (2)                  | $Na_2SO_4, SO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1) 3                        |     |
| (3)           | Na <sub>2</sub> S, SO <sub>3</sub>                                  | (4) 5        | (4)                  | $Na_2SO_3, H_2S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3) 2                        |     |

**C**)

A-1

|             |                                                                     |                                                                                                          | en gas. The numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                                   |
|-------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------|
|             | (1)                                                                 | 7                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                                                                         | tic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | (i)                               |
|             | (3)                                                                 | 5                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Priedel-Cri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4))                                                                                                         | 3                                                                                       | ium phenate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sod                                       | (ii)                              |
|             |                                                                     |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ZAH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c)                                                                                                          |                                                                                         | thyl cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Met                                       | (iii)                             |
| 53.         | The state                                                           | ment that                                                                                                | is NOT correct i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kolbe's a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              |                                                                                         | Suche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tol                                       | $(\forall i)$                     |
|             | (1)                                                                 | Collecto                                                                                                 | ors enhance the w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vettability o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f min                                                                                                        | eral partic                                                                             | eles during froth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | flota                                     | tion.                             |
|             | (2)                                                                 | Copper                                                                                                   | from its low grad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | de ores is ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tracte                                                                                                       | ed by hyd                                                                               | rometallurgy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3)                                       |                                   |
|             | (3)                                                                 | A furnad                                                                                                 | ce lined with Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ematite is u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sed to                                                                                                       | convert o                                                                               | cast iron to wrou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ight i                                    | ron.                              |
|             | (4)                                                                 | In vapou                                                                                                 | ir phase refining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , metal shou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uld fo                                                                                                       | rm a vola                                                                               | tile compound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | staten                                    | 9. The                            |
|             |                                                                     |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Cl_4$ ] <sup>+</sup> [PCl_6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | as [P                                                                                                        | Cl <sub>5</sub> exists                                                                  | In solid state P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1)                                       |                                   |
|             | (1)                                                                 | 60 %                                                                                                     | 1.86 K kg mol <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (8)                                       |                                   |
|             |                                                                     |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                                   |
|             | (3)                                                                 | 80 %                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                                                                         | Pure phosphine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                   |
| s a         | (3)<br>Volume o<br>Cs - Cs<br>volume o                              | occupied 1                                                                                               | by single CsCl i<br>ar distance is eq<br>l ion pair. The s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on pair in a<br>qual to leng<br>mallest Cs t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4)<br>a crys<br>th of<br>to Cs                                                                              | 65 %<br>tal is 7.01<br>the side                                                         | $14 \times 10^{-23}$ cm <sup>3</sup> .<br>of the cube correct of | (A)<br>The<br>respo                       | smallest<br>nding to              |
| s a         | (3)<br>Volume o<br>Cs - Cs<br>volume o<br>(1)                       | occupied 1<br>internucle<br>f one CsC                                                                    | by single CsCl i<br>ar distance is ec<br>l ion pair. The s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on pair in a<br>qual to leng<br>mallest Cs t<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)<br>a crys<br>th of<br>to Cs<br>(2)                                                                       | 65 %<br>tal is 7.01<br>the side<br>internucle                                           | $14 \times 10^{-23}$ cm <sup>3</sup> .<br>of the cube correct of | (1)<br>The<br>respo<br>early<br>(1)       | smallest<br>nding to              |
| 56.         | (3)<br>Volume o<br>Cs - Cs<br>volume o<br>(1)<br>(3)<br>For $Cr_2O$ | beccupied 1<br>internucle<br>f one CsC<br>4.3 Å<br>4.4 Å<br>$^{-2}_{7}$ + 14H <sup>+</sup>               | by single CsCl is<br>ar distance is equivalent to be a constraint of the set of | on pair in a qual to leng mallest Cs t<br>(2)<br>$^{3} + 7H_{2}O;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>(4)</li> <li>i crys</li> <li>th of</li> <li>o Cs</li> <li>(2)</li> <li>(4)</li> <li>E° =</li> </ul> | 65 %<br>tal is 7.01<br>the side<br>internucle<br>4.5 Å<br>4 Å<br>1.33 V A               | At $[Cr_2O_7^{-2}] = A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)<br>The<br>respo<br>arly<br>(1)<br>(2) | smallest<br>nding to<br>illimole, |
| 56.         | (3)<br>Volume o<br>Cs - Cs<br>volume o<br>(1)<br>(3)<br>For $Cr_2O$ | beccupied 1<br>internucle<br>f one CsC<br>4.3 Å<br>4.4 Å<br>$^{-2}_{7}$ + 14H <sup>+</sup>               | by single CsCl i<br>ar distance is eq<br>l ion pair. The s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on pair in a qual to leng mallest Cs t<br>(2)<br>$^{3} + 7H_{2}O;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>(4)</li> <li>i crys</li> <li>th of</li> <li>o Cs</li> <li>(2)</li> <li>(4)</li> <li>E° =</li> </ul> | 65 %<br>tal is 7.01<br>the side<br>internucle<br>4.5 Å<br>4 Å<br>1.33 V A               | At $[Cr_2O_7^{-2}] = A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)<br>The<br>respo<br>arly<br>(1)<br>(2) | smallest<br>nding to<br>illimole, |
| 56 <b>.</b> | (3)<br>Volume o<br>Cs - Cs<br>volume o<br>(1)<br>(3)<br>For $Cr_2O$ | beccupied 1<br>internucle<br>f one CsC<br>4.3 Å<br>4.4 Å<br>$^{-2}_{7}$ + 14H <sup>+</sup><br>15 millimo | by single CsCl is<br>ar distance is equivalent to be a constraint of the set of | on pair in a qual to leng mallest Cs t<br>(2) $(2)$ $(3)$ $(4)$ $(4)$ $(3)$ $(4)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ $(5)$ | <ul> <li>(4)</li> <li>i crys</li> <li>th of</li> <li>o Cs</li> <li>(2)</li> <li>(4)</li> <li>E° =</li> </ul> | 65 %<br>tal is 7.01<br>the side<br>internucle<br>4.5 Å<br>4 Å<br>1.33 V A<br>olution is | At $[Cr_2O_7^{-2}] = A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ()<br>The<br>respo<br>arly<br>(1)<br>(2)  | smallest<br>nding to<br>illimole, |

14

**C**)

57. 1.78 g of an optically active L-amino acid (A) is treated with NaNO<sub>2</sub>/HCl at 0 °C. 448 cm<sup>3</sup> of nitrogen was at STP is evolved. A sample of protein has 0.25% of this amino acid by mass. The molar mass of the protein is

| (1) | 34,500 g mol <sup>-1</sup> | (2) | 35,600 g mol <sup>-1</sup> |
|-----|----------------------------|-----|----------------------------|
| (3) | 36,500 g mol <sup>-1</sup> | (4) | 35,400 g mol <sup>-1</sup> |

**58.** 10 g of a mixture of BaO and CaO requires 100 cm<sup>3</sup> of 2.5 M HCl to react completely. The percentage of calcium oxide in the mixture is approximately

(Given : molar mass of BaO = 153)

| (1) | 55.1 | (2 | ) | 47.4 |
|-----|------|----|---|------|
| (3) | 52.6 | (4 | ) | 44.9 |

**59.** The ratio of heats liberated at 298 K from the combustion of one kg of coke and by burning water gas obtained from kg of coke is

(Assume coke to be 100% carbon.)

C

(Given enthalpies of combustion of  $CO_2$ , CO and  $H_2$  as 393.5 kJ, 285 kJ, 285 kJ respectively all at 298 K.)

| (1) | 0.69:1 | (2) | 0.96:1 |
|-----|--------|-----|--------|
| (3) | 0.79:1 | (4) | 0.86:1 |

**60.** Impure copper containing Fe, Au, Ag as impurities is electrolytically refined. A current of 140 A for 482.5 s decreased the mass of the anode by 22.26 g and increased the mass of cathode by 22.011 g. Percentage of iron in impure copper is

(Given molar mass  $Fe = 55.5 \text{ g mol}^{-1}$ , molar mass  $Cu = 63.54 \text{ g mol}^{-1}$ )

| (1) | 0.85 | (2) | 0.90 |  |
|-----|------|-----|------|--|
| (3) | 0.95 | (4) | 0.97 |  |

• • 57. • 1.78 g of an optically active L-amino acid (A) is treated with NaNO<sub>2</sub>/HC/ at 0 °C. 448 cm<sup>3</sup> of nitrogen was at STP is evolved. A sample of protein has 0.25% of this amino acid by mass. The molar mass of the protein is

| 35,600 g mol <sup>-1</sup> | (2) | ) 34,500 g mol <sup>-1</sup> | (I) |
|----------------------------|-----|------------------------------|-----|
|                            | (4) |                              |     |

8. 10 g of a mixture of BaO and CaO requires 100 cm<sup>3</sup> of 2.5 M HCl to react completely. The percentage of calcium oxide in the mixture is approximately

(Given : molar mass of BaO = 153)

Th

C

|               | 47,4                  |                                                          | 55.1           |                                          |
|---------------|-----------------------|----------------------------------------------------------|----------------|------------------------------------------|
|               | 44.9                  |                                                          | 52.6           | (3)                                      |
| A             |                       |                                                          |                |                                          |
| of setting to | combustion            | sobtained at 298 K from the sobtained from kg of coke is |                | ie n                                     |
|               |                       |                                                          | and the second | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |
|               | and H <sub>2</sub> as | s of combustion of CO2, CO                               | oir an the     | ave so                                   |
|               |                       | ( 298 K.)                                                | a              | spec                                     |
|               | 0.96                  | 1 (2)                                                    |                |                                          |

Nas

kJ, 285 kJ

containing Fe. Au, Ag as impurities is a concept cally refined. A constant of 5 s decreased the mass of the anode a start of and increased the start of the second second

(Given molar mass Fe = 55.5 g mol<sup>-1</sup>, molar mass Cu = 63.54 g mol<sup>-1</sup>)

(2) 0.90(4) 0.97

|                           |       |                  |      | 2014                           |      |
|---------------------------|-------|------------------|------|--------------------------------|------|
|                           |       |                  |      | Mating of two -1 - 1 of a c    |      |
| SESSION : MO              |       | (2) Cross bid    |      | 10.30 A.M. TO 11.50 A.         | M.   |
| MAXIMUM MARKS             | TOTAI | DURATION         | MAXI | MUM TIME FOR ANSWEP            | RING |
| 60                        | 80 N  | IINUTES          |      | 70 MINUTES                     |      |
| MENTION YOU<br>CET NUMBER |       | QUEST<br>VERSION |      | OKLET DETAILS<br>SERIAL NUMBER | .1   |
|                           |       | A - 1            | -    | 149073                         |      |

### DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2<sup>nd</sup> Bell i.e., after 10.30 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

### DON'TS:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 10.40 a.m., till then;
  - Do not remove the paper seal present on the right hand side of this question booklet.
  - Do not look inside this question booklet.
  - Do not start answering on the OMR answer sheet.

# IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have one statement and four distracters. (Four different options / choices.)
- 2. After the 3<sup>rd</sup> Bell is rung at 10.40 a.m., remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
  - · Read each question carefully, technologic assesses not not support of P A trametat?
  - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
  - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below :

(3) Statement A is correct and (4) (6) (1) wrong

- 4. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- 5. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 6. After the last bell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 8. After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.



2014 Mating of two varieties of a cattle breed like Red Dane which have no common ancestors 1. on either side of their pedigree up to 4-6 generations is an example for MA (1) Inbreeding (2) Cross breeding (4) Inter-specific hybridization (3) Out crossing Identify the hormones 'A', 'B' and 'C' that are labelled in the given flow chart : 2. SERIAL NUMBER HYPOTHALAMUS A PITUITARY B THE TIMING AND MARKS PRINT **OVARY** TESTIS **OVUM** ANDROGENS A – GnRH, B – ICSH, C – FSH (1)(2) A - GH, B - FSH, C - LH(3) A - GnRH, B - PRL, C - ICSH (4) replaced by A - GnRH, B - FSH, C - LH 3. Statement A: Photorespiration decreases photosynthetic output. Statement B: In photorespiratory pathway, neither ATP nor NADPH is produced. (1) Both the statements A and B are correct. (2) Both the statements A and B are wrong. (3)Statement A is correct and statement B is wrong. (4) Statement B is correct and statement A is wrong. Space For Rough Work B A-10 mmT 2

4. Identify the incorrect statement from the following :

- (1) The reservoir pool for phosphorous cycle is earth's crust whereas atmosphere is the reservoir pool for carbon cycle.
- (2) During carbon cycle and phosphorous cycle, there is very little respiratory release of carbon and phosphorous respectively.
- (3) Atmospheric inputs of phosphorous through rainfall are much smaller than carbon inputs.
- (4) Gaseous exchanges of phosphorous between organism and environment are negligible.

5. The result of the following reaction/experiment carried out by Avery et. al. on *Streptococcus pneumoniae* has proved conclusively that DNA is the genetic material;

- (1) Live 'R' strain + DNA from 'S' strain + DNAase vo been on follow aCUI .01
- (2) Heat killed 'R' strain + DNA from 'S' strain + DNAase (1)
- (3) Live 'R' strain + DNA from 'S' strain + RNAase to add about (1)
- (4) Live 'R' strain + Denatured DNA of 'S' strain + protease
- (4) release conner ions in the atorus that increase phasiceviosis of spenns.
- 6. Match the storage products listed under Column-I with the organisms given under Column-II; choose the appropriate option from the given choices.

|    | (    | Colun   | nn – I |        |     |      | Col | umn –   | II   |      |     |     |  |
|----|------|---------|--------|--------|-----|------|-----|---------|------|------|-----|-----|--|
| Α. | Gly  | cogen   |        |        |     | p. 2 | Sar | gassum  |      |      |     |     |  |
| B. | Pyre | enoids  |        |        |     | q    | Nos | toc     |      |      |     |     |  |
| C. | Lam  | ninarin | and n  | nannit | ol  | r.   | Pol | vsiphon | ia   |      |     | (2) |  |
| D. | Flor | idean   | starch |        |     | s.   | Spu | rogyra  |      |      |     |     |  |
|    |      |         |        |        |     | t.   | Aga | ricus   |      |      |     |     |  |
|    | (1)  | A-r,    | B-s,   | С-р,   | D-t |      | (2) | A-s,    | B-r, | C-t, | D-q |     |  |
|    | (3)  | A-t,    | B-s,   | С-р,   | D-r |      | (4) | A-q,    | В-р, | C-s, | D-r |     |  |

- 7. Identify the desirable characteristics for a plasmid used in rDNA technology from the following :
  - A. Ability to multiply and express outside the host in a bioreactor
  - B. A highly active promoter
  - C. A site at which replication can be initiated
  - D. One or more identifiable marker genes
  - E. One or more unique restriction sites
    - (1) A, C and E only (2) B, C and E only
    - (3) A, C, D and E only (4) B, C, D and E only

Which compounds were used by Miller in his experiment for obtaining amino acids and 8. other organic substances ?

(1) Carbon dioxide, water vapour and methane loog normal and ai

- (2) Methane, ammonia, water vapour and hydrogen cyanide
  - (3) Ammonia, methane, hydrogen and water vapour
- (4) Ammonia, methane and carbon dioxide

Which of the following is true for eutrophicated water body? 9.

- (1) High mineral content (2) High oxygen content
- (3) Rich species diversity (4) Low organic content

# 10.

- IUDs which are used by females \_\_\_\_\_. act as spermicidal jellies and a second state the second (1)
  - block the entry of sperms into vagina (2)
  - are implanted under the skin and they release progestogen and estrogen (3)
  - (4)release copper ions in the uterus that increase phagocytosis of sperms

- 11. Which of the following hormones are secreted in large quantities during pregnancy in women?
  - (1) hCG, progesterone, estradiol and FSH
  - (2) hCG, hPL, progesterone, estrogen and LH
  - LH, estrogen and estradiol (3)

Earthworm

- hCG and hPL (4)
- The kind of coelom represented in the diagram given below is characteristic of : 12.

| ct |  |  |  |
|----|--|--|--|
|    |  |  |  |
|    |  |  |  |

(1)

(3)

- > Endoderm
- Mesoderm
- (2) Cockroach
- Round worm (4) Tape worm
13. With respect to angiosperms, identify the incorrect pair from the following :

- (1) Antipodals  $-2n^{10}$  data to individual and senone any much of the senone of the
- (2) Vegetative cell of male gametophyte n
- (3) Primary endosperm nucleus 3n
- (5) Trimary endosperin nucleus 5
- 14. Statement A : For a particular character in an individual, each gamete gets only one allele.
  - Statement B: Chromatids of a chromosome split (separate) and move towards opposite poles during anaphase of mitosis.

    - (2) Both the statements are correct and B is not the reason for A.
    - (3) Statement A is correct and statement B is wrong.
    - (4) Statement B is correct and statement A is wrong.
- 15. Internal bleeding, muscular pain, blockage of the intestinal passage and anaemia are some of the symptoms caused due to infection by
  - (1) Wuchereria (2) Trichophyton
  - (3) Ascaris (4) Plasmodium
- **16.** RNA interference which is employed in making tobacco plant resistant to *Meloidegyne incognita* is essentially involved in \_\_\_\_\_.
  - (1) preventing the process of translation of mRNA
  - (2) preventing the process of transcription and the process of transcription (2)
  - (3) preventing the process of replication of DNA  $(\xi)$
  - (4) preventing the process of splicing of hnRNA (4)

- (1) They can conform to the changes in the environment.
- (2) They can reduce metabolic activity and go into a state of dormancy during unfavourable conditions in the environment.
- (3) They have the ability to maintain constant body temperature.
  - (4) They can take care of their young ones as they have mammary glands to suckle them.

| 18. | Which one of the following hormones also produces anti-inflammatory reactions in man |
|-----|--------------------------------------------------------------------------------------|
|     | and suppresses the immune response in addition to its primary functions ?            |

| (1)                   | Cortisol | (2) Thymosin                                                                |
|-----------------------|----------|-----------------------------------------------------------------------------|
| and the second second |          | The second statement of the second statement of the second statement of the |

(3) Thyrocalcitonin

(4) Erythropoietin

19. Match the microbial products listed under Column-I with the related microbes given under Column-II; choose the appropriate option from the given choices.

|          | Column – I                              | 14. Statement A: |
|----------|-----------------------------------------|------------------|
| А.       | Citric acid p. Methanobacterium         |                  |
| orBosite | Cyclosporin A q. Monascus purpureus     |                  |
| C.       | Statin r. Aspergillus niger and an alog |                  |
| D.       | Gobar gas S. Trichoderma polysporum     |                  |
|          | t. Clostridium butylicum                |                  |
|          | (1) A-r, B-s, C-q, D-p                  |                  |
|          | (2) A-t, B-q, C-s, D-r                  |                  |
|          | (3) A-q, B-s, C-t, D-r                  |                  |
|          | (4) A-r, B-s, C-q, D-t                  |                  |

#### Marchantia is considered as a heterothallic plant because it is 20.

- (1) Heterogametic (2) Bisexual
- (3) Monoecious (4) Dioecious

21. Identify the set of characteristics related to plants belonging to family Fabaceae from the following :

- (1) Actinomorphic flower, syncarpous ovary and marginal placentation)
- (2) Persistent calyx, epipetalous stamens and leguminous fruit
- Papilionaceous corolla, axile placentation and leguminous fruit (3)
- Vexillary aestivation of corolla, diadelphous stamens and monocarpellary, (4)unilocular ovary

One of the following statements is incorrect with reference to biodiversity. Identify it. 22.

- (1) Biodiversity increases from higher altitudes to lower altitudes.
- (2) Depletion in genetic diversity of crop plants is mainly due to the introduction of better varieties with high yield, disease resistance, etc.
  - The richest reservoirs of animal and plant life (species richness) with few or no (3) threatened species are called "biodiversity hotspots".
  - Biodiversity decreases from the equator to polar regions. (4)

- 23. In castor and maize plants, \_\_\_\_\_.
  - autogamy is prevented but not geitonogamy (1)
  - (2) both autogamy and geitonogamy are prevented
  - (3) male and female flowers are borne by different plants
  - (4) the anthers and stigma are placed at different positions to encourage cross pollination

In garden pea, round shape of seeds is dominant over wrinkled shape. A pea plant 24. heterozygous for round shape of seed is selfed and 1600 seeds produced during the cross are subsequently germinated. How many seedlings would have the parental phenotype?

- (1) 1600 (2) 800
- (3) 400
- 29. During somatic hybridization in p (4) 1200

25. Which of the following events would occur in 'Lac-operon' of E. coli when the growth medium has high concentration of lactose?

- been book (1) The structural genes fail to produce polycistronic mRNA. (4)
  - The repressor protein binds to RNA polymerase and prevents translation. (2)
  - (3) The repressor protein attaches to the promoter sequence and derepresses the Statement B: The development in cockroach is hemimetabole operator.
  - (4) The inducer molecule binds to repressor protein and RNA polymerase binds to
  - A tol promoter sequence. Instantion and a has A strangestation that (C)

The mature infective stages of malarial parasite which are transferred from mosquito to 26. man are

- (1) Sporozoites (2) Merozoites
  - (3) Trophozoites (4) Gametocytes of San hab and E
- 27. One of the following refers to Allen's rule :
  - (1) If the stressful conditions are localized or remain only for a short duration, an
- organism either migrates or suspends itself.
  - Mammals from colder climates have shorter ears and limbs to minimize heat (2)loss.
  - (3) An organism can move from a stressful habitat to a more hospitable area and return when the stressful period is over.
  - (4) Low atmospheric pressure in higher altitudes results in altitude sickness.

| 28. Identit | fy the DNA segment which is not a palindromic sequence is a star bas not as a line of the sector and the sector |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (           | (1) autogamy is prevented but not geitonogamy 'S OTTAAD '6 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | (2) both autogamy and gettonogamy are prevented '2 DAATTO'E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (           | (2) male and female flowers are borne by different (8) and (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | (4) the anthers and stigma are placed at different/2.000000 'S upon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (           | (3) 5' GGATCC 3' notanillog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 3' GGTACC 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| pea plant   | 24. In garden pea, round shape of seeds is dominant o's DDDDDDD'te (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | 3' CGCCGGCG 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | are subsequently germinated. How many seedlings would have the parental phen<br>(1) 1600 (2) 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29. During  | g somatic hybridization in plants, 004 (E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | (1) somaclones are produced in large numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | (2) the apical meristems are cultured to get virus-free plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| the growth  | (3) the cell walls and the middle lamella are digested before fusing the cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | (4) crop plants with higher levels of vitamins, proteins and minerals are hybridised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | (2) The repressor protein binds to RNA polymerase and prevents transla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | <b>ment A</b> : The secretion of collaterial gland forms the egg case in cockroach.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | ment B: The development in cockroach is hemimetabolous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| be binds to | (1) Both the statements A and B are correct and B is the reason for $A_{(4)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | (2) Both the statements A and B are correct and B is not the reason for A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | (3) Statement A is correct and statement B is wrong.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| losquito to | (4) Statement B is correct and statement A is wrong, at a substant statement of C. 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | ant produces flowers when exposed only to alternating periods of 5 hours light and rs dark in a 24 – hour cycle, then the plant should be a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | (1) Short day plant (2) Long day plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | (3) Short-long day plant (4) Day neutral plant gravellel of the model  |
|             | (1) If the stressful conditions are localized or remain only for a short di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | re was no carbon dioxide in the earth's atmosphere, the temperature of the earth's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | (2) Mammals from colder climates have shorter e.r.s and li ed bluow e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | (1) same as the present level .220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| e area and  | (2) more than the present level and a more as a more than the present level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | (3) less than the present level 20 et borring luft as the order muter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 288.        | (4) dependent on the oxygen content in the atmosphere would (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | Space For Rough Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

A-1

8

B

| 33. | One  | of the |                  |         |         |                |                   |                   |     | ised due to |            |                      | lickle cell | 7. 8  |
|-----|------|--------|------------------|---------|---------|----------------|-------------------|-------------------|-----|-------------|------------|----------------------|-------------|-------|
|     |      | (1)    | They             | exhib   | it the  | proper         | ty of c           | ontact in         | nhi | ibition.    |            |                      | (1)         |       |
|     |      | (2)    |                  |         |         |                |                   |                   |     |             |            |                      |             |       |
|     |      | (3)    | They             | exhib   | it mas  | ss prol        | iferatio          | n                 |     |             |            | Valit                |             |       |
|     |      | (4)    | They             | are pr  | oduce   | ed whe         | en cellu          | lar onco          | oge | enes of no  | rmal cells | s are a              | ctivated.   |       |
| 34. | The  |        |                  |         |         | luring         |                   |                   |     |             |            |                      |             |       |
| Juo |      | (1)    | S-p              | hase o  | f cell  | cycle          | duced             | 2) G <sub>1</sub> | 102 | phase of o  | ell cycle  | i.A.                 | itatemen    | 8. 8  |
|     |      | (3)    | G <sub>2</sub> - | phase   | of cel  | l cycle        |                   | 4) Pr             | opl | hase of ce  | ll cycle   |                      |             |       |
|     |      |        |                  |         |         |                |                   |                   |     | NA in hun   |            | : B :                | tatemen     |       |
| 35. | Mate | ch the | items            | s liste | d und   | ler Col        | lumn-I            | with th           | hos | se given u  | inder Co   | lumn-                | II; choos   | e the |
|     | appr | opriat | e optic          | on from | n the   | given          | choices           | B are 4           |     |             |            |                      |             |       |
|     |      |        | C                | Colum   | n – I   |                |                   |                   |     | Colu        | mn – II    |                      |             |       |
|     | Α.   | Resi   | dual V           | olum    | e (RV   | )              | i H ma            | P.                |     | 4000 ml     | – 4600 m   | 1                    |             |       |
|     | В.   |        |                  |         |         |                | (IRV)             | Q.                |     |             | – 1200 m   | ıl                   |             |       |
|     | C.   | Vita   | l Capa           | city (  | VC)     |                |                   | R.                |     |             | – 1100 m   |                      |             |       |
|     | D.   | Exp    | iratory          | Reser   | rve V   | olume          | (ERV)             | S.                |     | 3000 ml     | – 3500 m   | 1 <sup>nn er i</sup> |             |       |
|     | E.   | Insp   | iratory          | / Capa  | city (  | IC)            |                   | (S) T.            |     | 2500 ml     | - 3000 m   | Ball                 | (1)         |       |
|     |      |        | A                | B       | C       | ni <b>D</b> gi | ib ED             | (4)               |     |             |            |                      | (3)         |       |
|     |      | (1)    | Q                | R       | S       | Т              | Р                 |                   |     |             |            |                      |             |       |
|     | viin | (2)    | R                | Tix     | P       | Q              | S                 |                   |     |             |            |                      |             |       |
|     |      | (3)    | Т                | Q       | S       | R              |                   |                   |     |             |            |                      |             |       |
|     |      | (4)    | Q                | Т       | Р       | R              | S                 | (A)               |     |             |            |                      |             |       |
| 36. | Whi  | ch of  | the fol          | lowin   | g state | ements         | is corr           | ect?              |     |             |            |                      |             |       |
|     |      | (1)    | Elaio            | plasts  | store   | starch         | where             | as aleur          | op  | lasts store | proteins.  |                      |             |       |
|     |      | (2)    | Acro             | centri  | c chro  | mosor          | nes hav           | e only            | on  | e arm.      |            |                      |             |       |
|     |      | (3)    |                  |         |         |                |                   |                   |     | asal body.  |            |                      |             |       |
|     |      | (4)    |                  |         |         |                | ns into<br>omatoj |                   |     | plasm in    | cyanobac   | teria                |             | ntain |

9

B

A-1

37. Sickle cell anaemia is caused due to the substitution of \_\_\_\_\_.

(1) Valine at the 6<sup>th</sup> position of alpha globin chain by glutamic acid

(2) Glutamic acid at the 6<sup>th</sup> position of beta globin chain by valine

(3) Valine at the 6<sup>th</sup> position of beta globin chain by glutamine

(4) Glycine at the 6<sup>th</sup> position of alpha globin chain by glutamic acid

4. The centrosome deplicates during the

**38.** Statement A: The primary transcript produced in eukaryotes is translated without undergoing any modification or processing.

Statement B: The hnRNA in humans has exons and introns.

Both the statements A and B are correct.

- (2) Both the statements A and B are wrong.<sup>1</sup> more and more noise and more noise and an and a standard and a standa
- (3) Statement B is correct and statement A is wrong.

.2

(4) Statement A is correct and statement B is wrong.

**39.** Knee joint is an example for

- (1) Ball and socket joint (2) Hinge joint
- (3) Pivot joint (4) Gliding joint
- **40.** Carefully read the following reactions carried out by nitrogen fixing bacteria. Identify the statement about these equations which is not true :

 $2NH_3 + 3O_2 \rightarrow 2NO_2^- + 2H^+ + 2H_2O \dots(A)$ 

 $2NO_2^- + O_2 \rightarrow 2NO_3^- \dots (B)$ 

- (1) Step (A) is carried out by Nitrosomonas or Nitrococcus.
- (2) Step (B) is carried out by *Nitrobacter*.
- (3) Both the steps (A) and (B) can be called nitrification.
- (4) Both the steps occur only in photoautotrophs.



A-1

41. Match the vegetative propagules listed under Column-I with the plants given under Column-II; choose the appropriate option from the given choices.

|    | Column – I  |              | Column – II )                              | (1)           |    |
|----|-------------|--------------|--------------------------------------------|---------------|----|
| Α. | Rhizome     | p.           | Agave (A) A: [                             | (8)           |    |
| Β. | Offset      | q.           | Bryophyllum                                |               |    |
| C. | Sucker      | r.           | Ginger wollow the found the follow range   | . Identify th | 46 |
| D. | Leaf buds   | n li ess. lo | Chrysanthemum leon a group to bimsty 9     |               |    |
|    |             | triainet. m  | Eichhornia smood bas reduced to ebimsty 9. | (2)           |    |
|    | (1) A-r, B- | -s, C-p, I   | Pyramid of biomass in sea is generally p-o |               |    |
|    | (2) A-s, B  | -t, C-q, I   | J=T                                        |               |    |
|    | (3) A-r, B  | -t, C-s, I   | Food chains are generally short with few o | . (4)         |    |
|    |             | -p, C-t, I   |                                            |               |    |
|    |             |              |                                            |               |    |

42. One of the following causes population explosion :

- (1) Decrease in death rate, maternal mortality rate and infant mortality rate
- (2) Decrease in death rate and increase in maternal mortality rate
- (3) Decrease in infant mortality rate and increase in death rate
- (4) Decrease in infant mortality rate and decrease in the number of people in reproductive age

43.

B

are the most abundant proteins in the living world.

- (1) Ribozyme of plants and collagen of animals
- (3) PEPcase of plants and keratin of animals Q , p-O , g-B , t-A (4)
- (4) Alcohol dehydrogenase of plants and melanin of animals

48. Down's syndrome is an example for

A-1

- 44. One of the chief reasons among the following for the depletion in the number of species making it endangered is \_\_\_\_\_. (2)
  - (1) Greenhouse effect (2) Habitat destruction (2) (2)
  - (3) Over-hunting and poaching (4) Competition and predation J (4)

45. In humans, what is the ratio of number of gametes produced from one male primary sex cell to the number of gametes produced from one female primary sex cell?

| (1) 1:1 | • (2) – 11#3#0⊃ | Column - I |
|---------|-----------------|------------|
| (3) 1:4 | (4) 4:10gA      |            |
|         | q. Bryophvilum  |            |

**46.** Identify the incorrect statement from the following:

- (1) Pyramid of energy is mostly upright, but sometimes it may be inverted.
- (2) Pyramids of number and biomass may be either upright or inverted.
- (3) Pyramid of biomass in sea is generally inverted as the biomass of fish far exceeds that of phytoplanktons.
- (4) Food chains are generally short with few trophic levels as only 10% of the energy is transferred to each trophic level from the lower trophic level.

47. Match the organic compounds listed under Column-I with the explanation given under Column-II; choose the appropriate option from the given choices.

- Crease III nmuloo naternal mortality rate and I nmuloo ality rate .
- A. Phosphoenol pyruvate (PEP) p. 6 carbon compound
- B. Ribulose biphosphate (RuBP) q. 2 carbon compound
- C. Oxaloacetic acid (OAA) r. 4 carbon compound
  - D. Acetyl co-enzyme A s. 5 carbon compound

# t. 3 – carbon compound

- (1) A-r, B-s, C-t, D-p anivil adt ni anterior problem de most au ....
- (1) Ribozyme of plants and collagen of animation D-t (1)
- (2) RuBisCO of plants and collagen of animal p-q (2) RuBisCO of plants and collagen of animal p-q
- (3) PEPcase of plants and keratin of animals n-d, p-d, A-t, (4)

(4) Alcohol dehydrogenase of plants and melanin of animals

# **48.** Down's syndrome is an example for

One of the chief reasons among the followemozomoral xes to vbiolquenAnb(1) if species

- (2) Aneuploidy of autosome
- (3) Syndrome caused due to gene mutation

| 49. | The interacommensa | action between the organisms of one of the following pairs is an                                  |             | fore |
|-----|--------------------|---------------------------------------------------------------------------------------------------|-------------|------|
|     |                    | Wasps and fig tree (2) Cuckoo and crow                                                            | (1)         |      |
|     | (3)                | Cattle or sheep and grass (4) Orchid and mango tree                                               | (2)         |      |
|     |                    | A mesh-like structure formed by the association of bacter                                         | (8)         |      |
| 50. | The germ           | pores in the pollen grain are the regions                                                         |             |      |
|     |                    | That can withstand high temperature and strong acids and alkalie                                  | s(4)        |      |
|     | (2)                | Through which sperms are released into the female gametophyte                                     |             |      |
|     | (3)                | Which are made up of lignin and suberin                                                           | ADA defi    | 55.  |
|     | (4)                | Which lack sporopollenin with the set beastrand                                                   | (1)         |      |
|     |                    | inability of the immune system to function normally                                               | (2)         |      |
| 51. | Heroin is          | Chromosomal disorders                                                                             | (8)         |      |
|     | (1)                | A cannabinoid                                                                                     | (4)         |      |
|     | (2)                | Diacetylmorphine (chemically) of oron of bloir of a second                                        | (           |      |
|     | (3)                | Commonly called 'coke' or 'crack'                                                                 |             |      |
|     | (4)                | Used to treat mental illnesses like depression and insomnia                                       |             | 56.  |
|     | TT1 6              | Bacterial blight (2) Yellow mosaic virus                                                          |             |      |
| 52. |                    | Bougainvillea and tendrils of Cucurbita are examples for                                          | -(8)        |      |
|     | (1)                | Convergent evolution(2)Divergent evolutionAdaptive radiation(4)Co-evolution                       |             |      |
|     | (3)                | Adaptive radiation (4) Co-evolution                                                               | The globu   | 57.  |
| 53. |                    | the steps of DNA fingerprinting are given below. Identify the co                                  | rrect seque | ence |
|     | Α.                 | Electrophoresis of DNA fragments                                                                  | (8)         |      |
|     | В.                 | Hybridisation with DNA probe                                                                      | (4)         |      |
|     | C.                 | Digestion of DNA by RENs                                                                          |             |      |
|     | D.                 | Autoradiography                                                                                   | EcoRI is    | 58.  |
|     | E.                 | Blotting of DNA fragments to nitrocellulose membrane                                              |             | 100  |
|     | (1)                | C - A - E - B - D                                                                                 | (1)         |      |
|     | (2)                | A - C - E - D - B                                                                                 | (2)         |      |
|     | (3)                | used to join two DNA fragments $D - A - A - A - A - A$                                            | (3)         |      |
|     | (4)                | the abbreviation for bacterium Escherichia $c\mathbf{Q}_i - \mathbf{R} - \mathbf{N} - \mathbf{A}$ | (4)         |      |

#### Space For Rough Work

A-1

|      | (1)        | The primary sludge produced in sewage treatment              | maileanommoo |      |
|------|------------|--------------------------------------------------------------|--------------|------|
|      | (2)        | A type of biofortified food                                  |              |      |
|      | (3)        | A mesh-like structure formed by the association of b         |              | ngal |
|      |            | filaments in sewage treatment                                |              |      |
|      | (4)        | The effluent in primary treatment tank obtained during sewa  |              |      |
|      |            | ough which sperms are released into the female gametophyte   |              |      |
| 55.  | ADA defi   | ciency results in and a base magil to que observe a doi      |              |      |
|      | (1)        | Increased risk of infertility                                |              |      |
|      | (2)        | Inability of the immune system to function normally          | Heroin is    |      |
|      | (3)        | Chromosomal disorders                                        | (1) A a      |      |
| •    | (4)        | Decrease in the yield of crop plants                         |              |      |
|      |            |                                                              |              |      |
| 56.  | Parbhani l | kranti, a variety of bhindi (lady's finger), is resistant to | (4) (196     |      |
|      | (1)        | Bacterial blight (2) Yellow mosaic virus                     |              |      |
|      | (3)        | Black rot eligness and (4) Leaf curl                         |              | 52.  |
|      |            | vergent evolution (2) Divergent evolution                    |              |      |
| 57.  | The globu  | lar head of myosin contains                                  |              |      |
| ence | n(1)t sequ | Calcium ions in large quantities                             |              | .53. |
|      | (2)        | Troponin : novig a                                           |              |      |
|      | (3)        | ATPase enzyme anomgen AMC to aisonologoto                    |              |      |
|      | (4)        | ATP Pridisation with DNA probe                               |              |      |
|      |            | estion of DNA by RENs                                        |              |      |
| 58.  | EcoRI is   | oradiography                                                 |              |      |
|      | (1)        | a restriction enzyme                                         |              |      |
|      | (2)        | a plasmid a plasmid a plasmid                                |              |      |
|      | (2)        | used to join two DNA fragments                               |              |      |
|      | (4)        | the abbreviation for bacterium <i>Escherichia coli</i>       |              |      |
|      | (-)        | the above viation for bacterialli Escherichia con            |              |      |

**59.** 'Roquefort cheese' is ripened by using a

- (1) Type of yeast (2) Fungus
- (3) Bacterium (4) Cyanobacteria
- **60.** In this diagram showing the L.S. of an embryo of grass, identify the answer having the correct combination of alphabets with the right part :



- A Root cap, B Coleoptile, C Scutellum, D Coleorhiza, E Epiblast, F - Shoot apex
- (2) A Shoot apex, B Epiblast, C Coleorhiza, D Scutellum, E Coleoptile, F – Radicle
- (3) A Epiblast, B Scutellum, C Coleoptile, D Radicle, E Coleorhiza, F – Shoot apex
- (4) A Epiblast, B Radicle, C Coleoptile, D Scutellum, E Coleorhiza, F – Shoot apex

- Roquefort cheese' is ripened by using a
- (1) Type of yeast (2) Fungu
- um (4) Cyanobacte
- In this diagram showing the L.S. of an embryo of grass, identify the answer having the correct combination of alphabets with the right part :



- A Shoot apex, B Epiblast, C Colcorhiza, D Scutellum, E Colcoptile, F - Radicle
- A Epiblast, B Scutellum, C Coleoptile, D Radicle, E Coleorhiza, F – Shoot apex
- (4) A Epiblast, B Radicle, C Coleoptile, D Scutellum, E Coleorhiza, F - Shoot apex

Space For Rough Work

16