

### NEET(UG)-2017 TEST PAPER WITH ANSWER & SOLUTIONS (HELD ON SUNDAY 07th MAY, 2017)

| <b>46</b> . | Which one of the following   | ng statements is <b>correct</b> , | 55 |  |
|-------------|------------------------------|-----------------------------------|----|--|
|             | with reference to enzyme     | es ?                              |    |  |
|             | (1) Holoenzyme = Apoer       | nzyme + Coenzyme                  |    |  |
|             | (2) Coenzyme = Apoenzy       | yme + Holoenzyme                  |    |  |
|             | (3) Holoenzyme = Coenz       | zyme + Co-factor                  |    |  |
|             | (4) Apoenzyme = Holoe        | nzyme + Coenzyme                  |    |  |
| Ans.        | (1)                          |                                   |    |  |
| 47.         | A decrease in blood pre      | essure / volume will not          |    |  |
|             | cause the release of :       |                                   |    |  |
|             | (1) Atrial natriuretic facto | or(2) Aldosterone                 |    |  |
|             | (3) ADH                      | (4) Renin                         | An |  |
| Ans.        | (1)                          |                                   | 56 |  |
| <b>48</b> . | Which cells of "Crypts       | of Lieberkuhn" secrete            |    |  |
|             | antibacterial lysozyme ?     |                                   |    |  |
|             | (1) Paneth cells             | (2) Zymogen cells                 |    |  |
|             | (3) Kupffer cells            | (4) Argentaffin cells             |    |  |
| Ans.        | (1)                          |                                   | An |  |
| <b>49</b> . | Which of the following a     | are not polymeric ?               | 57 |  |
|             | (1) Proteins                 | (2) Polysaccharides               |    |  |
|             | (3) Lipids                   | (4) Nucleic acids                 |    |  |
| Ans.        | (3)                          |                                   |    |  |
| 50.         | Functional megaspore in      | an angiosperm develops            | An |  |
|             | into?                        |                                   |    |  |
|             | (1) Endosperm                | (2) Embryo sac                    |    |  |
|             | (3) Embryo                   | (4) Ovule                         |    |  |
| Ans.        | (2)                          |                                   |    |  |
| 51.         | Myelin sheath is produce     | ed by :                           |    |  |
|             | (1) Astrocytes and Schwa     | ann cells                         |    |  |
|             | (2) Oligodendrocytes and     | Osteoclasts                       | An |  |
|             | (3) Osteoclasts and Astro    | •                                 | 59 |  |
|             | (4) Schwann cells and O      | ligodendrocytes                   |    |  |
| Ans.        | <b>、</b> /                   |                                   |    |  |
| 52.         | Attractants and rewards      | -                                 |    |  |
|             | (1) Entomophily              | (2) Hydrophily                    |    |  |
|             | (3) Cleistogamy              | (4) Anemophily                    |    |  |
| Ans.        | (1)                          |                                   |    |  |
| <b>53</b> . | Receptor sites for neuro     | transmitters are present          |    |  |
|             | on :                         |                                   |    |  |
|             | (1) Pre-synaptic membra      | ne                                |    |  |
|             | (2) Tips of axons            |                                   | _  |  |
|             | (3) Post-synaptic membra     |                                   | An |  |
|             | (4) Membrane of synapt       | ic vesicles                       | 60 |  |
| Ans.        | • •                          |                                   |    |  |
| 54.         | Coconut fruit is a :         |                                   |    |  |
|             | (1) Berry                    | (2) Nut                           |    |  |
|             | (3) Capsule                  | (4) Drupe                         |    |  |
| Ans.        | (4)                          |                                   | An |  |
|             |                              |                                   |    |  |

|     | Adult human RBCs are enucleated. Which of the following statement(s) is/are <b>most appropriate</b> |                              |  |
|-----|-----------------------------------------------------------------------------------------------------|------------------------------|--|
|     | explanation for this feature ?                                                                      |                              |  |
|     | (a) They do not need to r                                                                           | -                            |  |
|     | (b) They are somatic cells                                                                          |                              |  |
|     | (c) They do not metaboliz                                                                           |                              |  |
|     | (d) All their internal space                                                                        | e is available for oxygen    |  |
|     | transport                                                                                           | (0) $()$ $()$ $1$ $(1)$      |  |
|     | (1) only (a)                                                                                        | (2) (a), (c) and (d)         |  |
|     | (3) (b) and (c)                                                                                     | (4) only (d)                 |  |
| is. | (4)                                                                                                 |                              |  |
|     | Capacitation occurs in : (1) Epididymis                                                             |                              |  |
|     | (2) Vas deferens                                                                                    |                              |  |
|     | (3) Female reproductive t                                                                           | ract                         |  |
|     | (4) Rete testis                                                                                     |                              |  |
| s.  | (3)                                                                                                 |                              |  |
|     | Which of the following are                                                                          | e found in extreme saline    |  |
|     | conditions?                                                                                         |                              |  |
|     | (1) Eubacteria                                                                                      | (2) Cyanobacteria            |  |
|     | (3) Mycobacteria                                                                                    | (4) Archaebacteria           |  |
|     | (4)                                                                                                 |                              |  |
| 5.  | Asymptote in a logistic g                                                                           | rowth curve is obtained      |  |
|     | when :                                                                                              |                              |  |
|     | (1) $K = N$                                                                                         |                              |  |
|     | (2) $K > N$                                                                                         |                              |  |
|     | <ul><li>(3) K &lt; N</li><li>(4) The value of 'r' appr</li></ul>                                    | oachas zaro                  |  |
| S   | (1) (1)                                                                                             | Uderles zero                 |  |
| ).  | Artificial selection to obta                                                                        | ain cows vielding higher     |  |
| •   | milk output represents :                                                                            | in conceptioning ingride     |  |
|     | (1) Directional as it pu                                                                            | shes the mean of the         |  |
|     | character in one dire                                                                               | ction                        |  |
|     | (2) Disruptive as it splits the                                                                     | population into two, one     |  |
|     | yielding higher outp                                                                                | ut and the other lower       |  |
|     | output                                                                                              |                              |  |
|     | (3) Stabilizing followed by                                                                         | -                            |  |
|     |                                                                                                     | luce higher yielding cows    |  |
|     | (4) Stabilizing selection as                                                                        | it stabilizes this character |  |
| _   | in the population                                                                                   |                              |  |
| IS. | (1)<br>Select the mismatch :                                                                        |                              |  |
|     |                                                                                                     | whize                        |  |
|     | <ul><li>(1) <i>Rhodospirillum</i> - Mycc</li><li>(2) <i>Anabaena</i> - Nitrogen</li></ul>           |                              |  |
|     | (3) <i>Rhizobium</i> - Alfalfa                                                                      |                              |  |
|     | (4) Frankia - Alnus                                                                                 |                              |  |
| s.  | (1) (1)                                                                                             |                              |  |
|     |                                                                                                     |                              |  |

10 -

| path to success            |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |                                   | CODE - X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 61.                        | <ul> <li>carotene rich food :</li> <li>Select the best optic</li> <li>statements :</li> <li>(a) Vitamin A derivatives</li> <li>(b) The photopigment</li> <li>(c) Retinal is a derivative</li> <li>(d) Retinal is a light abso photopigments</li> <li>Options :</li> <li>(1) (a), (c) and (d)</li> </ul> | e of Vitamin A<br>rbing part of all the visual<br>(2) (a) and (c)                                                                                                                                                                                  | 67.<br>Ans.<br>68.                | <ul> <li>Which of the following facilitates opening of stomatal aperture ?</li> <li>(1) Decrease in turgidity of guard cells</li> <li>(2) Radial orientation of cellulose microfibrils in the cell wall of guard cells</li> <li>(3) Longitudinal orientation of cellulose microfibrils in the cell wall of guard cells</li> <li>(4) Contraction of outer wall of guard cells</li> <li>(2)</li> <li>(2)</li> <li>(3) Longinvillea thorns are the modifications of :</li> <li>(1) Adventitious root</li> <li>(2) Stem</li> <li>(3) Leaf</li> <li>(4) Stipules</li> </ul> |
| Ans.                       | (3) (b), (c) and (d)<br>(1)                                                                                                                                                                                                                                                                             | (4) (a) and (b)                                                                                                                                                                                                                                    | Ans.                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ans.<br>62.                | The DNA fragments sep<br>can be visualised after s<br>(1) Acetocarmine<br>(3) Ethidium bromide                                                                                                                                                                                                          | barated on an agarose gel<br>taining with :<br>(2) Aniline blue<br>(4) Bromophenol blue                                                                                                                                                            | 69.                               | <ul> <li>Which one of the following is related to Ex-situ conservation of threatened animals and plants ?</li> <li>(1) Biodiversity hot spots</li> <li>(2) Amazon rainforest</li> <li>(3) Himalayan region</li> <li>(4) Wildlife safari parks</li> </ul>                                                                                                                                                                                                                                                                                                               |
| 63.                        | The hepatic portal ve                                                                                                                                                                                                                                                                                   | in drains blood to liver                                                                                                                                                                                                                           | Ans.                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ans.<br>64.<br>Ans.<br>65. | The vascular cambium of<br>(1) Primary phloem<br>(3) Periderm<br>(2)<br>Thalassemia and sickle of<br>to a problem in globin r                                                                                                                                                                           | <ul> <li>(2) Kidneys</li> <li>(4) Heart</li> <li>normally gives rise to :</li> <li>(2) Secondary xylem</li> <li>(4) Phelloderm</li> <li>ell anemia are caused due nolecule synthesis. Select</li> </ul>                                            | 70.<br>Ans.<br>71.<br>Ans.<br>72. | <ul> <li>A disease caused by an autosomal primary non-disjunction is :</li> <li>(1) Klinefelter's Syndrome(2) Turner's Syndrome</li> <li>(3) Sickel Cell Anemia (4) Down's Syndrome</li> </ul>                                                                                                                                                                                                                                                                                                                                                                         |
| Ans.<br>66.                | <ul> <li>chain synthesis</li> <li>(2) Thalassemia is due to molecules</li> <li>(3) Sickel cell anemia problem of globin m</li> <li>(4) Both are due to a que chain synthesis</li> <li>(2)</li> <li>The genotypes of a husb I<sup>A</sup> i</li> <li>Among the blood types of a synthesis</li> </ul>     | antitative defect in globin<br>to less synthesis of globin<br>is due to a quantitative<br>nolecules<br>ualitative defect in globin<br>and and Wife are I <sup>A</sup> I <sup>B</sup> and<br>f their children, how many<br>phenotypes are possible? | Ans.<br>73.                       | <ul><li>(1) Less than zero</li><li>(2) More than zero but less than one</li><li>(3) More than one</li><li>(4) Zero</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ans.                       | <ul> <li>(1) 3 genotypes ; 4 phe</li> <li>(2) 4 genotypes ; 3 phe</li> <li>(3) 4 genotypes ; 4 phe</li> <li>(4) 3 genotypes ; 3 phe</li> </ul>                                                                                                                                                          | enotypes<br>enotypes<br>enotypes                                                                                                                                                                                                                   | Ans.                              | <ul> <li>(3) Condensation → arrangement at equator → centromere division → segregation → telophase</li> <li>(4) Condensation → nuclear membrane disassembly → crossing over → segregation → telophase</li> <li>(1)</li> </ul>                                                                                                                                                                                                                                                                                                                                          |

### NEET(UG)-2017

| • •                       | -                                                                                                                                                                                                                                                                                                                                                           | 81.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | An impor<br>share with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) Downstream process    |                                                                                                                                                                                                                                                                                                                                                             | (1) Ventra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (2) Bioprocessing         | -                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2) Pharyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (3) Postproduction proce  | essing                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3) Pharyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (4) Upstream processing   |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4) Absend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (1)                       |                                                                                                                                                                                                                                                                                                                                                             | Ans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A temporary endocrine g   | gland in the human body                                                                                                                                                                                                                                                                                                                                     | 82.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| is :                      |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | came from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (1) Corpus cardiacum      | (2) corpus luteum                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1) Hershe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (3) Corpus allatum        | (4) Pineal gland                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2) Avery,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (2)                       |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3) Hargol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Which of the following is | s made up of dead cells?                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4) Griffith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (1) Collenchyma           | (2) Phellem                                                                                                                                                                                                                                                                                                                                                 | Ans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (3) Phloem                | (4) Xylem parenchyma                                                                                                                                                                                                                                                                                                                                        | 83.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Among th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (2)                       |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | not consid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| An example of colonial    | alga is :                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pea ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (1) Volvox                | (2) Ulothrix                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1) Trichor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (3) Spirogyra             | (4) Chlorella                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2) Seed -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (1)                       |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3) Pod –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | expressed protein before<br>(1) Downstream process<br>(2) Bioprocessing<br>(3) Postproduction proce<br>(4) Upstream processing<br>(1)<br>A temporary endocrine g<br>is :<br>(1) Corpus cardiacum<br>(3) Corpus allatum<br>(2)<br>Which of the following is<br>(1) Collenchyma<br>(3) Phloem<br>(2)<br>An example of colonial<br>(1) Volvox<br>(3) Spirogyra | <ul> <li>(3) Postproduction processing</li> <li>(4) Upstream processing</li> <li>(1) <ul> <li>A temporary endocrine gland in the human body is :</li> <li>(1) Corpus cardiacum</li> <li>(2) corpus luteum</li> <li>(3) Corpus allatum</li> <li>(4) Pineal gland</li> </ul> </li> <li>(2) <ul> <li>Which of the following is made up of dead cells?</li> <li>(1) Collenchyma</li> <li>(2) Phellem</li> <li>(3) Phloem</li> <li>(4) Xylem parenchyma</li> </ul> </li> <li>(2) <ul> <li>An example of colonial alga is :</li> <li>(1) Volvox</li> <li>(2) Ulothrix</li> <li>(3) Spirogyra</li> <li>(4) Chlorella</li> </ul> </li> </ul> | expressed protein before marketing is called :<br>(1) Downstream processing<br>(2) Bioprocessing<br>(3) Postproduction processing<br>(4) Upstream processing<br>(1)<br>A temporary endocrine gland in the human body<br>is :<br>(1) Corpus cardiacum (2) corpus luteum<br>(3) Corpus allatum (4) Pineal gland<br>(2)<br>Which of the following is made up of dead cells?<br>(1) Collenchyma (2) Phellem<br>(3) Phloem (4) Xylem parenchyma<br>(2)<br>An example of colonial alga is :<br>(1) Volvox (2) Ulothrix<br>(3) Spirogyra (4) Chlorella |

**78.** Match the following sexually transmitted diseases (Column-I) with their causative agent (Column-II) and select the correct option :

| Column-I |           |           |       | Colun     | nn-II          |
|----------|-----------|-----------|-------|-----------|----------------|
| (a)      | Gonorrhe  | Gonorrhea |       | HIV       |                |
| (b)      | Syphilis  |           | (ii)  | Neisseria | ł              |
| (c)      | Genital V | Varts     | (iii) | Treponen  | ıa             |
| (d)      | AIDS      |           | (iv)  | Human pa  | apilloma-Virus |
| •        | (a)       | (b)       |       | (c)       | (d)            |
|          | (1) iii   | iv        |       | i         | ii             |
|          | (2) iv    | ii        |       | iii       | i              |
|          | (3) iv    | iii       |       | ii        | i              |
|          | (4) ii    | iii       |       | iv        | i              |

Ans. (4)

- **79.** The function of copper ions in copper releasing IUD's is :
  - (1) They inhibit gametogenesis
  - (2) They make uterus unsuitable for implantation
  - (3) They inhibt ovulation
  - (4) The suppress sperm motility and fertilising capacity of sperms

Ans. (4)

- **80.** Which of the following in sewage treatment removes suspended solids ?
  - (1) Secondary treatment (2) Primary treatment
  - (3) Sludge treatment (4) Tertiary treatment

#### Ans. (2)

12 -

| path to success | CAREER INSTITUTE |
|-----------------|------------------|
|                 |                  |

|   | 81.  | An important characteri                       | stic that Hemichordates                                 |  |  |
|---|------|-----------------------------------------------|---------------------------------------------------------|--|--|
|   |      | share with Chordates is                       | :                                                       |  |  |
|   |      | (1) Ventral tubular nerve                     | cord                                                    |  |  |
|   |      | (2) Pharynx with gill slits                   | 3                                                       |  |  |
|   |      | (3) Pharynx without gill                      | slits                                                   |  |  |
|   |      | (4) Absence of notochor                       | d                                                       |  |  |
|   | Ans. | (2)                                           |                                                         |  |  |
|   | 82.  | The final proof for DNA                       | as the genetic material                                 |  |  |
|   |      | came from the experime                        | ents of :                                               |  |  |
|   |      | (1) Hershey and Chase                         |                                                         |  |  |
|   |      | (2) Avery, Mcleod and M                       | IcCarty                                                 |  |  |
|   |      | (3) Hargobind Khorana                         |                                                         |  |  |
|   |      | (4) Griffith                                  |                                                         |  |  |
|   | Ans. | (1)                                           |                                                         |  |  |
|   | 83.  | Among the following ch                        | aracters, which one was                                 |  |  |
|   |      | not considered by Mend                        | el in his experiments on                                |  |  |
|   |      | pea ?                                         |                                                         |  |  |
|   |      | (1) Trichomes – Glandula                      | ar or non-glandular                                     |  |  |
|   |      | (2) Seed – Green or Yellow                    |                                                         |  |  |
|   |      | (3) Pod – Inflated or Con                     |                                                         |  |  |
|   |      | (4) Stem - Tall or Dwarf                      |                                                         |  |  |
| 1 | Ans. |                                               |                                                         |  |  |
|   | 84.  | •                                             |                                                         |  |  |
|   |      | and show vivipary belon                       | -                                                       |  |  |
|   |      | (1) Halophytes                                | (2) Psammophytes                                        |  |  |
|   |      |                                               | (4) Mesophytes                                          |  |  |
|   | Ans. |                                               |                                                         |  |  |
|   | 85.  | The pivot joint between                       | atlas and axis is a type                                |  |  |
|   |      | of :                                          |                                                         |  |  |
|   |      | (1) Cartilaginous joint                       |                                                         |  |  |
|   | •    | •                                             | (4) Fibrous joint                                       |  |  |
|   | Ans. |                                               |                                                         |  |  |
|   | 86.  |                                               | -                                                       |  |  |
|   |      | photosynthesis, which of                      | the following statements                                |  |  |
|   |      | is not correct ?                              | ria CO concentration                                    |  |  |
|   |      | (1) Increasing atmosphere $0.05\%$ cap appear | the $CO_2$ concentration up<br>the $CO_2$ fixation rate |  |  |
|   |      |                                               | ice CO2 IIXaliOII Idle                                  |  |  |

- (2)  $C_3$  plants respond to higher temperatures with enhanced photosynthesis while  $C_4$  plants have much lower temperature optimum
- (4) Light saturation for  $CO_2$  fixation occurs at 10% of full sunlight

#### Ans. (2)

- **87.** DNA fragments are:
  - (1) Negatively charged
  - (2) Neutral
  - (3) Either positively or negatively charged depending on their size
  - (4) Positively charged
- Ans. (1)

| <u></u>         | ALLEN            |
|-----------------|------------------|
| path to suspess | CAREER INSTITUTE |



| path to success |                                                                                      |             |                          |
|-----------------|--------------------------------------------------------------------------------------|-------------|--------------------------|
| 88.             | Which of the following components provides sticky                                    | 94.         | Which eco                |
|                 | character to the bacterial cell ?                                                    |             | (1) Grassla              |
|                 | (1) Nuclear membrane                                                                 |             | (2) Pond e               |
|                 | (2) Plasma membrane                                                                  |             | (3) Lake e               |
|                 | (3) Glycocalyx                                                                       |             | (4) Forest               |
|                 | (4) Cell wall                                                                        | Ans.        | (4)                      |
| Ans.            | (3)                                                                                  | 95.         | Lungs are                |
| 89.             | Which of the following options best represents the                                   |             | They do n                |
|                 | enzyme composition of pancreatic juice ?                                             |             | because o                |
|                 | (1) amylase, pepsin, trypsinogen, maltase                                            |             | (1) Inspira              |
|                 | (2) peptidase, amylase, pepsin, rennin                                               |             | (2) Tidal V              |
|                 | (3) lipase, amylase, trypsinogen, procarboxypeptidase                                |             | (3) Expirat              |
|                 | (4) amylase, peptidase, trypsinogen, rennin                                          | Ans.        | (4) Residu               |
| Ans.            | (3)                                                                                  | 96.         | (+)<br>Presence          |
| <b>90</b> .     | Which among these is the correct combination of                                      | 50.         | vertical lay             |
|                 | aquatic mammals ?                                                                    |             | best in:                 |
|                 | (1) Dolphins, Seals, <i>Trygon</i>                                                   |             | (1) Tropica              |
|                 | (2) Whales, Dolphins, Seals                                                          |             | (3) Tempe                |
|                 | (3) <i>Trygon</i> , Whales, Seals                                                    | Ans.        |                          |
|                 | (4) Seals, Dolphins, Sharks                                                          | 97.         | Which of                 |
| Ans.            | (2)                                                                                  |             | (1) The c                |
| 91.             | Fruit and leaf drop at early stages can be prevented                                 |             | imper                    |
|                 | by the application of:                                                               |             | (2) The a                |
|                 | (1) Ethylene (2) Auxins                                                              |             | perme                    |
|                 | (3) Gibberellic acid (4) Cytokinins                                                  |             | (3) The c                |
| Ans.            | (2)                                                                                  |             | perme                    |
| 92.             | Select the <b>correct</b> route for the passage of sperms                            |             | (4) The a                |
|                 | in male frogs:                                                                       |             | imper                    |
|                 | (1) Testes $\rightarrow$ Vasa efferentia $\rightarrow$ Kidney $\rightarrow$ Seminal  | Ans.<br>98. | (4)<br>Alexander         |
|                 | Vesicle $\rightarrow$ Urinogenital duct $\rightarrow$ Cloaca                         | 90.         | (1) Laws c               |
|                 | (2) Testes $\rightarrow$ Vasa efferentia $\rightarrow$ Bidder's canal $\rightarrow$  |             | (1) Laws C<br>(2) Specie |
|                 | Ureter $\rightarrow$ Cloaca                                                          |             | (3) Popula               |
|                 | (3) Testes $\rightarrow$ Vasa efferentia $\rightarrow$ Kidney $\rightarrow$ Bidder's |             | (4) Ecolog               |
|                 | canal $\rightarrow$ Urinogenital duct $\rightarrow$ Cloaca                           | Ans.        |                          |
|                 | (4) Testes $\rightarrow$ Bidder's canal $\rightarrow$ Kidney $\rightarrow$ Vasa      | <b>99</b> . | Zygotic m                |
|                 | efferentia $\rightarrow$ Urinogenital duct $\rightarrow$ Cloaca                      |             | (1) Fucus                |
| Ans.            | (3)                                                                                  |             | (3) Chlam                |
| 93.             | In case of a couple where the male is having a very                                  | Ans.        | (3)                      |
|                 | low sperm count, which technique will be suitable                                    | 100.        | If there ar              |
|                 | for fertilisation ?                                                                  |             | a protein                |
|                 | (1) Gamete intracytoplasmic fallopian transfer                                       |             | position 9               |
|                 | (2) Artificial Insemination                                                          |             | RNA beco                 |
|                 | (3) Intracytoplasmic sperm injection                                                 |             | altered ?                |
|                 | (4) Intrauterine transfer                                                            |             | (1) 11                   |

Ans. (2)

- osystem has the maximum biomass ?
  - and ecosystem
  - ecosystem
  - cosystem
  - ecosystem
- made up of air-filled sacs, the alveoli. ot collapse even after forceful expiration, of:
  - tory Reserve Volume
  - /olume
  - tory Reserve Volume
  - al Volume
  - of plants arranged into well defined ers depending on their height can be seen
    - (2) Grassland al Rain Forest
    - rate Forest (4) Tropical Savannah
- the following statements is **correct** ?
  - descending limb of loop of Henle is meable to water.
  - ascending limb of loop of Henle is eable to water.
  - descending limb of loop of Henle is eable to electrolytes.
  - ascending limb of loop of Henle is meable to water.
- Von Humbolt described for the first time:
  - of limiting factor
  - es area relationships
  - tion Growth equation
  - ical Biodiversity
- eiosis is characteristic of;
  - (2) Funaria
  - (4) Marchantia ydomonas

e 999 bases in an RNA that codes for with 333 amino acids, and the base at 01 is deleted such that the length of the mes 998 bases, how many codons will be (2) 33 (3) 333 (4) 1

Ans. (2)

#### NEET(UG)-2017



- **101.** Flowers which have single ovule in the ovary and are packed into inflorescence are usually pollinated by:
  - (1) Bee (2) Wind (3) Bat (4) Water

#### Ans. (2)

- **102.** Transplantation of tissues/organs fails often due to non-acceptance by the patient's body. Which type of immune-response is responsible for such rejections ?
  - (1) Cell mediated immune response
  - (2) Hormonal immune response
  - (3) Physiological immune response
  - (4) Autoimmune response

#### Ans. (1)

- **103.** Life cycle of *Ectocarpus* and *Fucus* respectively are: (1) Diplontic, Haplodiplontic
  - (2) Haplodiplontic, Diplontic
  - (3) Haplodiplontic, Haplontic
  - (4) Haplontic, Diplontic

#### Ans. (2)

- **104.** A gene whose expression helps to identify transformed cell is known as :
  - (1) Vector (2) Plasmid
  - (3) Structural gene (4) Selectable marker

#### Ans. (4)

- 105. A dioecious flowering plant prevents both :
  - (1) Autogamy and geitonogamy
  - (2) Geitonogamy and xenogamy
  - (3) Cleistogamy and xenogamy
  - (4) Autogamy and xenogamy

#### Ans. (1)

- 106. Which statement is wrong for Krebs' cycle ?
  - (1) There is one point in the cycle where  $FAD^{+}\xspace$  is reduced to  $FADH_{2}$
  - (2) During conversion of succinyl CoA to succinic acid, a molecule of GTP is synthesised
  - (3) The cycle starts with condensation of acetyl group (acetyl CoA) with pyruvic acid to yield citric acid
  - (4) There are three points in the cycle where NAD<sup>+</sup> is reduced to NADH+  $H^+$

Ans. (3)

14

- 107. Phosphoenol pyruvate (PEP) is the primary CO<sub>2</sub> acceptor in:
  (1) C<sub>4</sub> plants
  - (2) C<sub>2</sub> plants
  - (3)  $C_3$  and  $C_4$  plants
  - (4)  $C_3$  plants
- Ans. (1)
- **108.** During DNA replication, Okazaki fragments are used to elongate:
  - (1) The lagging strand towards replication fork.
  - (2) The leading strand away from replication fork.
  - (3) The lagging strand away from the replication fork.
  - (4) The leading strand towards replication fork.

#### Ans. (3)

- **109.** Which of the following RNAs should be most abundant in animal cell ?
  - (1) t-RNA (2) m-RNA (3) mi-RNA (4) r-RNA

#### Ans. (4)

- **110.** GnRH, a hypothalamic hormone, needed in reproduction, acts on:
  - (1) anterior pituitary gland and stimulates secretion of LH and FSH.
  - (2) posterior pituitary gland and stimulates secretion of oxytocin and FSH.
  - (3) posterior pituitary gland and stimulates secretion of LH and relaxin.
  - (4) anterior pituitary gland and stimulates secretion of LH and oxytocin.

#### Ans. (1)

- **111.** What is the criterion for DNA fragments movement
  - on agarose gel during gel electrophoresis ?
  - (1) The smaller the fragment size, the farther it moves
  - (2) Positively charged fragments move to farther end
  - (3) Negatively charged fragments do not move
  - (4) The larger the fragment size, the farther it moves

Ans. (1)

| path to success |                                                                                                                      |       |                                                                                 | CODE - X                                |
|-----------------|----------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------|-----------------------------------------|
| 112.            | Hypersecretion of Growth Hormone in adults does<br>not cause further increase in height, because:                    | 119.  | Which of the following repre<br>(1) Perissodactyla (2)                          | esents order of Horse' ?<br>2) Caballus |
|                 | (1) Epiphyseal plates close after adolescence.                                                                       |       |                                                                                 | 4) Equidae                              |
|                 | <ul><li>(1) Epipilyseu plates close alter adolescence.</li><li>(2) Bones loose their sensitivity to Growth</li></ul> | Ans.  |                                                                                 | · •                                     |
|                 | Hormone in adults.                                                                                                   | 120.  | Frog's heart when taken our                                                     | t of the body continues                 |
|                 | (3) Muscle fibres do not grow in size after birth.                                                                   |       | to beat for sometime.                                                           |                                         |
|                 | (4) Growth Hormone becomes inactive in adults.                                                                       |       | Select the best option                                                          | from the following                      |
| Ans.            |                                                                                                                      |       | statements.                                                                     |                                         |
|                 | DNA replication in bacteria occurs:                                                                                  |       | (a) Frog is a poikilotherm.                                                     |                                         |
|                 | (1) Within nucleolus                                                                                                 |       | <ul><li>(b) Frog does not have any</li><li>(c) Heart is "myogenic" in</li></ul> |                                         |
|                 | (2) Prior to fission                                                                                                 |       | (d) Heart is autoexcitable                                                      | nature.                                 |
|                 | (3) Just before transcription                                                                                        |       | Options:                                                                        |                                         |
|                 | (4) During S phase                                                                                                   |       | -                                                                               | 2) (a) and (b)                          |
| Ans.            | (2)                                                                                                                  |       |                                                                                 | 4) Only(c)                              |
| 114.            | Which one from those given below is the period                                                                       | Ans.  | (3)                                                                             |                                         |
|                 | for Mendel's hybridization experiments ?                                                                             | 121.  | Homozygous purelines in ca                                                      | •                                       |
|                 | (1) 1840 - 1850                                                                                                      |       | (1) mating of unrelated indi                                                    |                                         |
|                 | (2) 1857 - 1869                                                                                                      |       | (2) mating of individuals of                                                    |                                         |
|                 | (3) 1870 - 1877                                                                                                      |       | (3) mating of individuals of                                                    | -                                       |
|                 | (4) 1856 - 1863                                                                                                      | Ans.  | (4) mating of related indivi                                                    | duals of same breed.                    |
| Ans.            | (4)                                                                                                                  |       | Identify the wrong state                                                        | ement in context of                     |
| 115.            | Viroids differ from viruses in having;                                                                               | 122.  | heartwood:                                                                      | Sment in context of                     |
|                 | (1) DNA molecules without protein coat                                                                               |       | (1) It is highly durable                                                        |                                         |
|                 | (2) RNA molecules with protein coat                                                                                  |       | (2) It conducts water and                                                       | minerals efficiently                    |
|                 | (3) RNA molecules without protein coat                                                                               |       | (3) It comprises dead eleme                                                     | ents with highly lignified              |
| •               | (4) DNA molecules with protein coat                                                                                  |       | walls                                                                           |                                         |
| Ans.            |                                                                                                                      |       | (4) Organic compounds a                                                         | re deposited in it                      |
| 116.            | MALT constitutes about percent of the                                                                                | Ans.  |                                                                                 | nlay (ADC) is a protain                 |
|                 | lymphoid tissue in human body.                                                                                       | 123.  | Anaphase Promoting Com<br>degradation machinery nece                            |                                         |
|                 | (1) 20%       (2) 70%         (3) 10%       (4) 50%                                                                  |       | of animal cells. If APC is det                                                  |                                         |
| Ans.            |                                                                                                                      |       | which of the following is e                                                     | ,                                       |
|                 | Which of the following is correctly matched for the                                                                  |       | (1) Chromosomes will be t                                                       |                                         |
|                 | product produced by them ?                                                                                           |       | (2) Chromosomes will not                                                        | segregate                               |
|                 | (1) <i>Methanobacterium</i> : Lactic acid                                                                            |       | (3) Recombination of chron                                                      |                                         |
|                 | (2) <i>Penicillium notatum</i> : Acetic acid                                                                         |       | (4) Chromosomes will not                                                        | condense                                |
|                 | (3) Sacchromyces cerevisiae : Ethanol                                                                                | Ans.  | • •                                                                             | 11 • • • • 1 1                          |
|                 | (4) Acetobacter aceti : Antibiotics                                                                                  | 124.  | Which of the following cell of for extracting energy from                       |                                         |
| Ans.            | (3)                                                                                                                  |       | ATP ?                                                                           | caroonyurales to torm                   |
|                 | Which among the following are the smallest living                                                                    |       |                                                                                 | 2) Chloroplast                          |
|                 | cells, known without a definite cell wall, pathogenic                                                                |       |                                                                                 | 4) Lysosome                             |
|                 | to plants as well as animals and can survive without                                                                 | Ans.  |                                                                                 | -                                       |
|                 | oxygen ?                                                                                                             | 125.  | Mycorrhizae are the exam                                                        |                                         |
|                 | (1) Pseudomonas (2) Mycoplasma                                                                                       |       |                                                                                 | 2) Antibiosis                           |
|                 | (3) Nostoc (4) Bacillus                                                                                              | Ans.  |                                                                                 | 4) Fungistasis                          |
| Ans.            | (2)                                                                                                                  | 1113. |                                                                                 |                                         |
|                 |                                                                                                                      |       |                                                                                 | 15                                      |

## NEET(UG)-2017

| 126.      | Out of 'X' pairs of ribs in                                                                | humans only 'Y' pairs are   | 130. | Select the mismatch                                                                                  |
|-----------|--------------------------------------------------------------------------------------------|-----------------------------|------|------------------------------------------------------------------------------------------------------|
|           | true ribs. Select the option that correctly represents                                     |                             |      | (1) <i>Cycas</i> – Dioecious                                                                         |
|           | values of X and Y and provides their explanation:                                          |                             |      | (2) Salvinia – Heterosporous                                                                         |
|           | (1) $X = 12, Y = 5$                                                                        | True ribs are attached      |      | (3) Equisetum – Homosporous                                                                          |
|           |                                                                                            | dorsally to vertebral       |      | (4) <i>Pinus</i> – Dioecious                                                                         |
|           |                                                                                            | column and sternum on       | 4.00 |                                                                                                      |
|           |                                                                                            | the two ends.               | Ans. |                                                                                                      |
|           | (2) $X = 24, Y = 7$                                                                        | True ribs are dorsally      | 131. | The morphological nature of the edible part o coconut is:                                            |
|           |                                                                                            | attached to vertebral       |      | (1) Cotyledon                                                                                        |
|           |                                                                                            | column but are free on      |      |                                                                                                      |
|           |                                                                                            | ventral side.               |      | (2) Endosperm                                                                                        |
|           | (3) $X = 24, Y = 12$                                                                       | True ribs are dorsally      |      | (3) Pericarp                                                                                         |
|           |                                                                                            | attached to vertebral       |      | (4) Perisperm                                                                                        |
|           |                                                                                            | column but are free on      | Ans. |                                                                                                      |
|           |                                                                                            | ventral side.               | 132. | Double fertilization is exhibited by :                                                               |
|           | (4) $X = 12, Y = 7$                                                                        | True ribs are attached      |      | (1) Algae                                                                                            |
|           |                                                                                            | dorsally to vertebral       |      | (2) Fungi                                                                                            |
|           |                                                                                            | column and ventrally to     | 6    | (3) Angiosperms                                                                                      |
|           |                                                                                            | the sternum.                |      | (4) Gymnosperms                                                                                      |
| ns.       |                                                                                            |                             | Ans. | (3)                                                                                                  |
| 27.       | In case of poriferans, the spongocoel is lined with                                        |                             | 133. | Spliceosomes are not found in cells of;                                                              |
|           | flagellated cells called:                                                                  |                             |      | (1) Fungi                                                                                            |
|           | (1) oscula                                                                                 |                             |      | (2) Animals                                                                                          |
|           | (2) choanocytes                                                                            |                             |      | (3) Bacteria                                                                                         |
|           | (3) mesenchymal cells                                                                      |                             |      | (4) Plants                                                                                           |
|           | (4) ostia                                                                                  |                             | Ans. |                                                                                                      |
| ns.<br>28 | (2)<br>Which one of the followi                                                            | na statements is not valid  |      | The association of histone H1 with a nucleosome                                                      |
| 20.       | for aerosols ?                                                                             |                             |      | indicates:                                                                                           |
|           | (1) They alter rainfall an                                                                 | d monsoon patterns          |      | (1) DNA replication is occurring.                                                                    |
|           | · · · · ·                                                                                  | l agricultural productivity |      | (2) The DNA is condensed into a Chromatin Fibre                                                      |
|           | (3) They have negative in                                                                  | npact on agricultural land  |      | (3) The DNA double helix is exposed.                                                                 |
|           | (4) They are harmful to                                                                    | human health                |      | - · · ·                                                                                              |
| ns.       | •••                                                                                        |                             | And  | (4) Transcription is occurring.                                                                      |
| 29.       | A baby boy aged two y                                                                      | h a dental check - up. The  | Ans. |                                                                                                      |
|           |                                                                                            | -                           | 155. | The region of Biosphere Reserve which is legally<br>protected and where no human activity is allowed |
|           | dentist observed that the boy had twenty teeth.<br>Which teeth were absent?<br>(1) Canines |                             |      | is known as:                                                                                         |
|           |                                                                                            |                             |      | (1) Buffer zone                                                                                      |
|           | (2) Pre-molars                                                                             |                             |      | (2) Transition zone                                                                                  |
|           | (3) Molars                                                                                 |                             |      |                                                                                                      |
|           | (4) Incisors                                                                               |                             |      | (3) Restoration zone                                                                                 |
| Ans.      | (2)                                                                                        |                             |      | (4) Core zone                                                                                        |
|           |                                                                                            |                             | Ans. | (4)                                                                                                  |

16 -

# TARGET : AIMS 2017 COMPUTER BASED TEST (CBT)



## APPEAR IN ONLINE REAL TIME PRE-AIIMS'17 CBT EXAM

Dn,

## 14<sup>th</sup> May & 21<sup>st</sup> May 2017

In Your

city

**Syllabus Eligibility** Fee **Test Center** ₹ 600/- (For New **AIIMS Full All AllMS Applicants** Student) (12<sup>th</sup> Undergoing / **Svllabus** ₹ 300/- (For ALLEN CCP/ **DLP/ OLTS students of** centers across India With G.K. Passed Students) session 2016-17) Practice in Actual Exam Environment Ranking & Analysis on national level Confidence Booster (Identify Weak Areas) Time Management **Salient** Easy Online Exam Test in Well Equipped Lab **Features** ▶ Topic-Wise Assessment Get access to Answer Key & Solutions Model Test Papers in Hindi & English **Limited Seats** Quick Revision for AIIMS

CAREER INSTITUTE

Log on to www.dlp.allen.ac.in | C 0744-5162200

# TARGET : AIMS 2017 COMPUTER BASED TEST (CBT)

## **Features**



Students will get similar interface for grand mock AIIMS CBT exam to familiarize them with the computer based testing tools and the type of questions they are likely to face in actual entrance examinations



#### Confidence Booster (Identify Weak Areas)

These test papers provide a sound examination temperament which not only enhance the student's scoring ability and test taking capability, also enhances the confidence.



AIIMS aspirants can easily avoid their fear factor by giving exam in similar examination settings before appearing to the AIIMS 2017.



Student will get a multidimensional performance analysis subject-wise/topic-wise/question-wise, which has been designed to bring forth the learning gaps and guiding student at a time.



Dynamically researched Question Bank designed by the most experienced faculties of ALLEN



#### Quick Revision for AIIMS

It will cover complete syllabus of AIIMS and the set of questions will follow the actual exam pattern. Also, fully colored image based questions similar to AIIMS, NEET and other exams.



#### Ranking & Analysis on national level

Get All India Rank on AlIMS mock exam and comparative analysis with topper that helps students to know their preparation and identify where they are lagging behind.



Student will get a time management report that will help them not only in mastering the art of Time Management by pointing out their most and least time consuming areas, but also helps to improve the overall speed of answering questions in an exam like environment.

Test in Well Equipped Lab

Students are able to take their examination at conveniently located test centers well furnished with computers.



Pre-AIIMS' 17 ALLEN CBT aspirants will get access to answer key and solutions after exam.

## APPEAR IN ONLINE REAL TIME **PRE-AIIMS'17 CBT** EXAM $\mathcal{O}_{\mathcal{R}}$ 14<sup>th</sup> May & 21<sup>st</sup> May 2017



Log on to www.dlp.allen.ac.in | C 0744-5162200