Physics 1	
-----------	--

1. N	molecules	each of	mass m a	nd v veloc	ity coll	lides with	a wall of	a container	and
then	absorbed	, the pre	ssure app	lied on th	e wall i	is:			
	2	1	2 J.T.T.	2		2			

 $(1) \text{ mNV}^2$

2. The law of far a day is obtained by conservation of :

(1) Charge

(2) Energy

(3) Energy and magnetic field (4) Magnetic field

3. There is a q charge placed in the centre of a cube, then the emergent flux is:

(1) <u>q</u> 6∈0 $(2) \underline{q} \qquad (3) \underline{q} \qquad (4) \underline{q}$

 $8 \in \mathfrak{g}$ $2 \in \mathfrak{g}$

 $\in \Omega$

4. Two thin lenses are put close to each other, focal length of the combination is:

(1) less than the small focal length

(2) more than the bigger focal length

(3) equal to the arithmetical average of the focal length

(4) equal to the geometrical average of the focal length

5. A car is moving on a horizontal circular path with 10 m/s constant speed. A rigid body is suspended from ceiling of car with a 1 m. long light rod, the angle between rod and path is:

 $(1) 60^{0}$

 $(2) 45^0$

 $(3) 30^0$ (4) zero

6. Two sources of E_1 and E_2 emf r_1 and r_2 internal, resistances, are connected in the parallel combination, the emf of the combination is:

(1) $\underline{E_1E_2}_{E_1+E_2}$ (2) $\underline{E_2r_1 + E_1r_2}_{r_1+r_2}$ (3) $\underline{E_1r_1 + E_2r_2}_{r_1+r_2}$ (4) $\underline{E_1 + E_2}_{2}$

7. In a AC circuit R=0 $\Omega\Omega X_L=8\Omega\Omega$ and $X_C=6\Omega\Omega$ hase difference between voltage and current is: $(1) 11^0$ $(2) 45^0$ $(3) 37^0(4) 12^0$

8. Relative permeability of a medium is $\mu\mu$ and relative permittivity is $\in \subseteq$ then the velocity of an electro magnetic wave is:

 $(1) \quad c \quad (2) \quad \sqrt{\in_{r}\mu_{r}} \quad (3) \quad \sqrt{\mu_{0}t_{0}} \quad \frac{}{\mu_{r}\in_{r}}$

0 Ration of	radius of two	soon huhhlas	is 2 · 1 the	en the ratio of their excess
pressure is:		_		en the ratio of their excess
(1) 2 : 1	(2) 4 : 1	(3) 1:4	(4) 1: 2	
	sound velocitie (2) 1 : 4			
11. In which (1) em waves (2) longitudio (3) stationary (4) transverse	nal waves waves	he energy is n	ot propag	ated :
displacement	t is $x = \underline{t^3}$ where	e x in meter a	nd t in tin	relation between time and ne work done in first two second
is : (1) 1.6 J	3 (2) 16 J	(3) 160 J	(4) 1600) J
frictionless ta whole chain	able and one th	nird part is vo	ertically su	third part of chain is on a uspended, work done to pull the
(1) photo elect(2) kinetic ene(3) kinetic ene	tric current wil	l become is tinted electron was will be 4 tin	nes vill be incre nes	is doubled then: eased and current will be 2 times
	rage speed of c		-	rest half distance with 60 kmph (4) 40 kmph
_	icle are movin he ratio of the	_		n the circular paths of r ₁ and r ₂
(1) <u>r</u> 2 r ₁	$(2)\sqrt{\frac{\underline{r_2}}{r_1}}$	(3)	$\begin{bmatrix} \underline{r_1} \\ \underline{r_2} \end{bmatrix}$ (4)	$ \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} \underline{r_2} \\ r_1 \end{pmatrix}^2 $
17. No. of ele	ctrons in the 92	₂ U ²³⁵ nucleu	s is :	

(1) 143 (2) 235 (3) 92

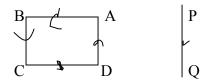
(4) zero

18. The waveler same then:	ngth of phot	on and electr	on is λ_{ph} and λ	e and energy (E) of the two is
(1) the difference	e can he ohta	in if F is give	n	
(2) $\lambda e > \lambda ph$	e can be obta	m n L is give	ш	
(3) λph . λe				
(4) $\lambda ph = \lambda e$				
19. A lift is mov	_		ı upward direc	etion then the force applied by
mass m on the f				
(1) ma (2)	2) m(g-a)	(3) m(g+a)	(4) mg	
their speed is su angular velociti	ich that they ies is :	travels one o	cycle in the san	ılar paths of r ₁ and r ₂ radius, ne time, the ratio of their
$(1) m_1 r_1 : m_2 r_2 (2)$	2) 1 : 1	$(3) r_1 : r_2$	$(4) m_1 : m_2$	
bodies each of i be:	nass m is pla	aced on its dia	ameter, the res	velocity w, if another two sultant angular velocity will
$\begin{array}{c} (1) \underline{w(M+2m)} \\ M \end{array}$	(<u>-) ;;(</u> (M	+2m)	(m+m)	(M+2m)
will be: (1) 1.24 x 10 ²³ (2) 23. Size of nucle (1) 10 ⁻¹³ cm 24. If MI, angual on angular velocity	2) 2.4 x 10 ²³ eusis of the c (2) 10 ⁻¹ lar accelerate (ty then:	(3) 2. order of: 10 cm. (3) 10	4×10^{23} $0^{-8 \text{ cm}}$. (4) 10 ue of body is I,	
I 25. In a uniform (1) both accelera (2) both accelera (3) both accelera (4) both accelera	α n circular m ntion and speciation and velo	otion: ed changes ed are constan ocity are const	t	
26. Ratio of ave (1) 1 : 1 (2)		evergies of H (3) 1 : 8		given temp. is :
27. To make the must be of: (1) non magnetic (2) diamagnetic (3) paramagnetic (4) ferro magnet	c substance substance c substance	a machine, f	ree of magnetis	sm, the cover of this machine

28. $\lambda_\alpha, \lambda_\beta$ and λ_r are the wavelengths of k $_\alpha$, k_β and k_r lines of X-ray spectrum then :					
$(1) \lambda_{\beta} > \lambda_{a} > \lambda_{r} (2) \lambda_{\alpha} < \lambda_{B} < \lambda_{r} (3) \lambda_{\alpha} > \lambda_{\beta} > \lambda_{r} (4) \lambda_{\alpha} = \lambda_{\beta} = \lambda_{r}$					
29. Angular momentum of electron of H atom is proportional to : (1) $\frac{1}{r}$ (2) $\frac{1}{\sqrt{r}}$ (3) $\sqrt[3]{r}$ (4) r^2					
30. MI, rotational kinetic energy and angular momentum of a body is I, E and L then :					
(1) $E = L^2$ (2) $E^2 = 2I$ (3) $E = 2IL$ (4) $L = E^2$ 2I					
31. In a diode value, the state of saturation can be obtained easily by: (1) high plate voltage and high filament (2) low filament current and high plate voltage (3) low plate voltage and high plate tem (4) high filament current and high plate voltage					
32. A magnet is dropped in a long coppertube vertically, the acceleration of magnet: (1) equal to g (2) less than g (3) zero (4) greater than g					
33. Joule-second is unit of: (1) rotational power (2) angular momentum (3) rotational energy (4) torgue					
34. A 3 coulomb charge enerts 3000 N force in a uniform electrical field, the distance between two points is 1 cm. potential difference will be : (1) 9000 V (2) 1000 V (3) 90 V (4) 10 V					
35. 1000 drops, each v volt, are combined to form a big drop, then the potential of the drop will be how many times: (1) 1 (2) 10 (3) 100 (4) 1000					
36. A plane is revolviing around the earth with 100 km./hr. speed at a earth, the changes in the velocity as it travels half circle is :					
(1) $100 \sqrt{2 \text{ kmph}}$ (2) 150 kmph (3) 200 kmph (4) zero					

37. 3×10^7 kg. water is initially constant and it is displaced 3 m. by applying 5×10^4 N force. Velocity of water will be (if resistance of water is zero):

(1) 50 m/sec. (2) 0 1 m/sec. (3) 60 m/sec. (4) 1.5 m/sec.


38. In a wheat stone circuit $P = Q = 10\Omega$ and $R = S = 15 \Omega$ and $G = 20 \Omega$. If a cell of 1.5 volt emf is used, the current drawn from the cell is : (1) 0.021 amp (2) 0.025 amp (3) 0.060 amp (4) 0.125 amp						
(1) 0.021 amp	(2) 0.023 amp (3) 0.000 amp (4) 0.123 amp					
39. Two waves of same frequency and different amplitude, if the phase difference is $\pi/2$ then the Lissajou's figure will be: (1) 8 shape (2) an ellipse (3) a circle (4) a straight line						
the r of mixtu				are mixed in equal ratio then		
	of e.m. waves in (2) 1.87			then the dielectric constant is:		
	ssion of a β-par - 2 (2) A,2			+ 2, Z		
m radius circ	n a proton is 9.6 ular path, the en (2) 12.02	ergy of proton	in Mev.	ng in a 1T magnetic field in 0.5		
44. If $\frac{d^2\omega}{dx^2}$	$+ \alpha x = 0$ then t	the angular frec	quency will be:			
(1) $\sqrt{\alpha}$	$(2) \alpha^2$	(3) α	(4) zero			
45. Noble prize presented to Einstein for :(1) therories of LASER(2) photo electric effect(3) theory of relativity						
(4) theory or	specific heat in	Solius				
	turation current	the ratio of pla	ite currents at 4	00 v and 200 v plate voltage		
1S: (1) <u>1</u> 2	(2) 2	$(3)\ 2\sqrt[4]{2}$	(4) $\frac{\sqrt{2}}{4}$			
47. If $I = I_0$ si $(1) \underline{EI} = \sqrt{2}$	n (ω t - π /2) and (2) $\underline{E_0}\underline{I_0}$	$ \begin{array}{l} \text{d } E = E_0 \text{ sin } \omega t \\ \text{(3) } \underline{E_0 I_0} \\ \sqrt{2} \end{array} $	then the power (4) zero	loss is:		
48. If the temp. of an ideal gas filled in a container is increased 1°C, the increase in pressure is 0.4%, the initial temp. of the gas is : (1) 120°C (2) 200°K (3) 250°K (4) 250°C						
49. Plate resistances of two triode values is $2K\Omega$ and $4K\Omega$, amplification factor of each of the value is 40^0 . The ratio of voltage amplifications, when used with $4k\Omega$ load resistance, will be :						
(1) 10	(2) 4/4	(3) 4/3	(4) 16/3			

50. Relation lbe:	between displac	ement x and ti	me t is $x = 2 - 5t + 6t^2$, the initial velocity will
	(2) 12 m/sec.	(3) 2 m/sec.	(4) - 5 m/sec.
	_		it is dipped in water. The refractive indices of 1.33 resp., now the focal length will be:

52. In a half wave rectifier circuit, the input signal frequency is 50 Hz, the the output frequency will be:

(3) 24.24 cm. (4) 16 cm.

- (1) 25 Hz (2) 50 Hz(3) 200 Hz (4) 100 Hz
- 53. In the following circuit:

(2) 18 cm.

- (1) the loop will be displaced along the length of wire
- (2) PQ unchanged

(1) 64 cm.

- (3) the loop will repell the wire
- (4) wire will attract the loop
- 54. In a triode the ratio of small change in plate voltage and small changes in grid voltage is, if plate current is constant:
- (1) DC plate resistance
- (2) mutual conductance
- (3) AC plate resistance
- (4) amplification factor
- 55. Two particles accelerated with same voltage eneters in a uniform magnetic field perpendicularly, the radii of the circular paths is R₁ and R₂, the charge on particles is same the ratio of \underline{m}_1 is:

(1)
$$\left[\frac{R_2}{R_1}\right]^2$$
 (2) $\frac{R_2}{R_1}$ (3) $\frac{R_1}{R_2}$ (4) $\left[\frac{R_1}{R_2}\right]^2$

- 56. Light Velocity in diamond is ($\mu = 2.0$)
- (1) 60 x 10¹⁰ cm/sec. (2) 2 x 10¹⁰ cm/sec. (3) 3 x 10¹⁰ cm/sec.

- (4) 1.5×10^{10} cm/sec.
- 57. If Arsenic is dopped to silicon then its conductivity:
- (1) becomes zero
- (2) unchanged
- (3) increases
- (4) decreases

the plates, then the p				31/		
$\frac{v}{k+2}$	(2) $2 + \underline{k} \\ 3v$	$\frac{2v}{k+2}$	(4)	<u>3v</u> k+2		
wave velocity is: (1) 1.5 m/sec. (2) 3	m/sec. (3) 0.5 at the surface of will be:	5 m/sec. (4) 1 earth is 11 kr	m/sec. m/sec., i	here x in meter and t in sec. the f radius of earth is doubled then 2 km/sec.		
61. Kinetic energies momentum is: (1) 1:16 (2) 1				same, the ratio of their		
62. A body takes 5 r cool from 60 ⁰ C to 3 (1) 40 minute		mp. is $20^0\mathrm{C}$:		ow much time it will take to 0 minute		
	$= 200 \sin 300t a$	nd if R = 10C	2 and L	= 800 mH, peak value of current		
is: (1) 1.83 (2) 1	.5 (3) 2.0	(4) .	83			
is stationary and oth		ınd, work doı	ne is one	each other. If one of the charge e circle is:		
65. Peak value of A	C current is $4\sqrt{2}$	Z, RMS curre	nt is:			
(1) $2\sqrt{2}$ (2) 8	(3) 4 \	/2 (4) 4				
66. A monoatomic gas is compressed to its $1/8^{th}$ volume adiabatically (r = 5/3), the pressure will be: (1) 32 times (2) $\frac{40}{3}$ times (3) 8 times (4) $\frac{24}{5}$ times						
 67. A condenser is charged and then battery is removed, a dielectric plate is put between the plates of condenser, then correct statement is: (1) Q constant V and U decreases (2) Q constant V increases U decreases (3) Q increases V decreases U increases (4) None 						
68. The MI of a disc wrt its diameter is I, MI wrt. And axis passing through its circumference and parallel to diameter is:						

58. Two condensers of c and 2c capacity are connected in parallel and these are charged upto v volt. If the battery is removed and dielectric medium of k constant is put between

(1) 41	(2) 61	(3) 31	(4) 51				
	ssed in the wire		t length between the wires is 1 m. If 1 amp. t length between the wires is: 0.7(4) None				
70. Relation between internal energy U and absolute temp. T of an ideal gas as kinetic theory of gases, is : (1) U does not depends upon T (2) U \propto T ² (3) U \propto T (4) U \propto \sqrt{T}							
	welength in a gl	ass is 6000Å a	nd refractive index is 1.5, the wavelength				
of light is : (1) 12000 Å	(2) 4000 Å	(3) 9000 Å	(4) 6000 Å				
If A is loade	72. Two sources of sound A & B placed near to each other produces 4 beats per second. If A is loaded with wax then 2 beats/sec. are produced. If the frequency of A is 256 Hz, The frequency of B will be:						
(1) 262	(2) 260	(3) 252	(4) 250				
73.Work dox (1) – PE	ne to rotate a dip (2) – 2 PE		ngle, is: (4) PE				
74. Zener di (1) rectifier	74. Zener diode may be used as a : (1) rectifier (2) oscillator (3) amplifier (4) voltage regulator						
75. Wavelength of first line of Balamer series is 6561 Å then the wavelength of second line of Balmer series will be :							
,	(2) 4860 Å	,	(4) 2430 Å				