

INJSO (STAGE-II)-2017

HINTS & SOLUTIONS

ANSWER KEY

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	d	d	с	d	С	с	d	b	а	С	а	d	а	а	d
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	b	Bonus	d	b	b	а	b	С	d	а	а	b	С	b	С

1. mgh =
$$\frac{1}{2}$$
kx²
5 × 10 × 1 = $\frac{1}{2}$ k × 0.125 × 0.125
50 = $\frac{1}{2}$ k . 0.125 × 0.125
 $\frac{100}{0.125 \times 0.125}$ = k

$$k = \frac{6400}{1000} \frac{N}{m}$$

$$k = 6.4 \frac{N}{mm}$$

2. (d)

A block dot has mass = 1 femto gram = 10^{-15} gram dot is made up of carbon only So, 12 g carbon contains = N_A atoms

1 g carbon contain =
$$\frac{N_A}{12}$$
 atoms

$$10^{-15} \text{ g carbon contain} = \frac{N_A}{12} \times 10^{-15} = \frac{6.023 \times 10^{23} \times 10^{-15}}{12}$$
$$(N_A = 6.023 \times 10^{23}) = 5 \times 10^7. \text{ Number of carbon atoms.}$$

4. (d)

Beryllium After removal of two electrons the electronic configuration of the element are $B^{+2} \rightarrow 1s^2 2s^1$ $Mg^{+2} \rightarrow 1s^2 2s^2 2p^6$ $AI^{+2} \rightarrow 1s^2 2s^2 2p^6 3s^1$ $Be^{+2} \rightarrow 1s^2$ As the configuration of Be^{+2} is $1s^2$ which is more stable than others and requires more ionisation energy than others. So, the third ionization energy for Penyllium is highest.

So, the third ionisation energy for Beryllium is highest

(c)

$$V_{im} = -V_{om}$$

$$V_{i} - V_{m} = -(V_{o} - V_{m})$$
Volocity of image w.r.t. obser along x-axis

$$= -2 (10 \cos 60 + 5\cos 30)$$

$$= -2 \left(10 \times \frac{1}{2} + 5 \times \frac{\sqrt{3}}{2}\right)$$

$$= -2 \left(5 + \frac{5}{2}\sqrt{3}\right)$$

$$= -2 \left(5 + \frac{5}{2}\sqrt{3}\right)$$

$$= -(10 + 5\sqrt{3})$$

$$= -(10 + 5\sqrt{3})$$

$$= -5 (2 + \sqrt{3})$$
Velocity of image w.r.t. obser along y-axis = 0

6.

u =
$$72 \times \frac{5}{18} = 20 \text{ m/s}$$
 v = u + at
v = 0 o = $20 - 4t$
a = 4 m/s^2 t = 5
s = $4t + \frac{1}{2} \text{ at}^2$
s = $20 \times 5 - \frac{1}{2} \times 4^2 \times 25$
s = 50 m .
Total distance is 52 m .

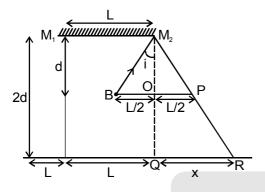
9. (a)

 $2\dot{CO} + O_2 \longrightarrow 2CO_2$ $60 \text{ ml of CO react with 30 ml of } O_2$ $Volume of CO_2 \text{ formed } = 60 \text{ ml}$ remaining volume of $O_2 = 10 \text{ ml}$ \therefore Mixture A contain $60 \text{ ml } CO_2 \text{ and } 10 \text{ ml of } O_2$ Total volume of A = 70 ml After passing of A in KOH solution as only CO₂ will react with aq. KOH. Volume remaining = (70–60) ml = 10 ml Volume of 'B' = 10 ml

10. (c)

$$f = 6 \text{ cm}$$

 $u_1 = 9 \text{ cm}, v_1 = ?$
 $u_2 = 15 \text{ cm}, v_2 = ?$
 $\frac{1}{f} = \frac{1}{v_1} + \frac{1}{u_1}$
 $\frac{1}{v_1} = \frac{1}{6} + \frac{1}{9} = \frac{3+2}{18}$
 $v_1 = \frac{18}{5} \text{ cm}$
R = 12cm
R = 12cm
R = 12cm



If
$$u = -15 \text{ cm}$$

 $\frac{1}{f} = \frac{1}{v_2} + \frac{1}{u_2}$
 $\frac{1}{v_2} = \frac{1}{6} + \frac{1}{15} = \frac{5+2}{30} = \frac{7}{30}$
 $v_2 = \frac{30}{7}$
 $v_2 - v_1 = \frac{30}{7} - \frac{18}{5} = \frac{150 - 126}{35} = \frac{24}{35} \text{ cm} \simeq 0.7 \text{ cm}$

11. (a)

 $\begin{array}{l} \text{Be}^{2+} < \text{Li}^{+} < \text{F}^{-} < \text{O}^{2-} \\ \text{electronic configuration} \\ \text{Be} \rightarrow 1\text{s}^{2}, 2\text{s}^{2} & \text{Be}^{2+} \rightarrow 1\text{s}^{2} \\ \text{Li} \rightarrow 1\text{s}^{2}, 2\text{s}^{1} & \text{Li}^{+} \rightarrow 1\text{s}^{2} \\ \text{F} \rightarrow 1\text{s}^{2}, 2\text{s}^{2}, 2\text{p}^{5} & \text{F}^{-} \rightarrow 1\text{s}^{2}, 2\text{s}^{2}, 2\text{p}^{6} \\ \text{O} \rightarrow 1\text{s}^{2}, 2\text{s}^{3}, 2\text{p}^{4} & \text{O}^{2-} \rightarrow 1\text{s}^{2}, 2\text{s}^{2}, 2\text{p}^{6} \\ \text{As the charge on anion increases, ionic radii increases.} \\ \text{As the charge on cation increases, ionic radii decreases.} \end{array}$

12. (d)

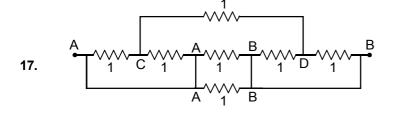
For $\Delta OM_{_2}D$ and $\Delta M_{_2}QR$

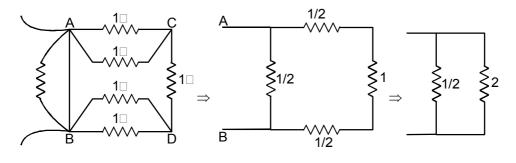
$$\frac{d}{2d} = \frac{L/2}{x} \Rightarrow x = L$$

So, total distance = x + L + x = L + L + L = 3 L.

15. (d)

Molecular wt. of monomer = 48 gm so molecular wt. of dimer will be 98 gm In experiment, Mass of compound = 96 gm Volume of vessel = 33.6 L Temperature = 273° C \rightarrow 273 + 273 = 546 K If compound exist as a dimer then mass extent of mass by 50% of wt. so 50% of 96 = 48 gm Now weight = 96 + 48 = 144 gm Pv = nRT P × 33.6 = $\frac{144}{96}$ × 0.082 × 546 = 1.99 \simeq 2 atm.




16. (b)

y = a sin(wt-kx) when wave is moving towards + x axes

$$\frac{dy}{dt} = v = aw \cos(wt-kx)$$

of y = max then sin (wt–kx) = 1 \Rightarrow (wt–kx) = 90° so when y = max then velocity will be zero At, F, L and R K.E. will be max At G, velocity s negative V = aw cos (π + wt. – kx) = – aw cos wt so wave is moving towards + x axis

$$\mathsf{R}_{\rm eq} = \frac{2 \times \frac{1}{2}}{2 + \frac{1}{2}} = \frac{1}{5} = \frac{2}{5}.$$

4

19. (b)

 $\mathsf{Fe}_2(\mathsf{SO}_4)_{3_{(\mathrm{ac})}} + 3\mathsf{Ba}(\mathsf{OH})_{2_{(\mathrm{ac})}} \rightarrow 2\mathsf{Fe}(\mathsf{OH})_{3_{(\mathrm{S})}} + 3\mathsf{BaSO}_{4_{(\mathrm{S})}}$ ppt ppt Ferric ions = 0.140 gm = $\frac{0.140}{56}$ = 0.0025 moles Fe³⁺ ions Given ÷ moles of pure ferric sulphate taken = 0.00125 moles As per the reaction Fe(OH), and BaSO, both will precipitate out. So, total amount of precipitate = amount of Fe(OH), + amount of BaSO, Amount of Fe(OH₃) = 2 × 0.00125 × 107 = 0.2675 gm Amount of BaSO, = 3 × 0.00125 × 233 = 0.87375 gm Total weight of precipitate = $Fe(OH)_3 + BaSO_4 = 0.2675 + 0.8737 = 1.14$ gm. (b) (i) Phenolphthalein + NaCl \rightarrow No reaction. Ρ Q Phenolphthalein + $CaCO_3 \rightarrow Alkaline medium$ (ii) (Dark Pink Colour) Ρ R $CaCO_3 + 2CH_3COOH \rightarrow (CH_3COO)_2 Ca + CO_2 \uparrow + 2H_2O$ (iii) R effervescence S P = Phenolphthalein

20.

22. (b)

1. (II) **2.** (I) **3.** (
$$IV$$
) **4.** (I)

1. cinnabar – oxidation HaS + $O \rightarrow$ Ha + SO

2. Zinc blend – oxidation and reduction

$$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$$

 $ZnO + C \rightarrow Zn + CO$

- 3. Hematite reduction
- 4. Galena-oxidation and reduction

$$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$$

 $PbO + CO \rightarrow Pb + CO_2$

27. Mole of nitrogen gas =
$$\frac{22}{28}$$
 = 0.78

Mole of oxygen gas =
$$\frac{44}{32}$$
 = 1.3

Mole of CO₂ gas =
$$\frac{38}{44}$$
 = 0.86
at constant V and T
P \propto n
n = number of mole
So P_{N2} < P_{CO2} < P_{O2}.

30.(iii) Cu + dil. HCl \rightarrow No reaction

Copper does not liberate H_2 from dilute hydro chloric acid because only those metals which are having standard reduction potentials lower than that of hydrogen react with non-oxidising agent like HCl and displaces hydrogen from them.

Copper has higher reduction potential than hydrogen.

31. (a) (l)

Weight of individual = 70 kg

total fluid = 70 ×
$$\frac{70}{100}$$
 = 49 kg

blood 8%= $\frac{49 \times 8}{100}$ =3.92kg

Density of blood=1060g/l = In 1.06 kg

volume of blood =
$$\frac{3.92}{1.06}$$
 = 3.69

Ans = 3.69
$$\ell$$
 = 3.7 ℓ

(II) Volume of Blood $\rightarrow 3.7 \ \ell = 3.7 \times 10^6 \text{ mm}^3$ Number of WBC =7000 / mm³, Number of WBc in $3.7 \times 10^6 \times 7000 = 2.59 \times 10^{10}$ Number of DNA in single WBC =46 Number of DNA molecule in 2.59 × 10¹⁰ WBC = 2.59 × 10¹⁰ × 46=1.19 × 10¹²

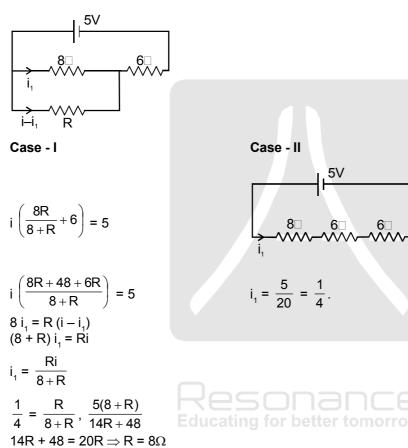
(III) Blood – 3.92

plasma =
$$\frac{3.92 \times 55}{100} \times \frac{7}{100} \times \frac{58}{100}$$

= 0.0875 kg Albumin
moles = $\frac{0.0875}{66}$ = 1.3 × 10⁻³ moles

31. (b) Label Composition of Blood Direction of Flow 1. oxygenated Away 2. Deoxygenated Away 3. towards oxygenated 4. Deoxygenated towards 32. (a) (i) $AI_2O_3 + 3CI_2 + 3C \rightarrow 2AICI_3 + 3CO$ (ii) $2[\tilde{A}I_2O_3 \cdot x\tilde{S}iO_2] + 6 \text{ FeS}_2 + 21O_2 \rightarrow 2AI_2(SO_4)_3 + 6\text{FeSO}_4 + 2x SiO_2$ (b) Given mix of NaHCO₃ + Na₂CO₃ + NaCl = 3gm On heating NaHCO₃ undergoes decomposition & gives CO₂ $2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + CO_2 + H_2O$ 22400 ml O_2 produced by = 2 moles of NaHCO₃ 56 ml CO₂ produced by = $\frac{2 \times 56}{22400}$ = 5 × 10⁻³ moles Amount of NaHCO₃ in mix = $5 \times 10^{-3} \times 84$ $= 0.42 \text{ gm NaHCO}_{3}$ During neutralisation Na₂CO₃ and NaHCO₃ will react with HCI $Na_2CO_3 + NaHCO_3 + HCI \rightarrow NaCI + H_2O + CO_2$ On neutralisation equivalents of Na₂CO₃ + equivalent of NaHCO₃ = eq. of HCI $(x \times 2) + (5 \times 10^{-3}) = \frac{30.5 \times 1}{1000}$ $x \times 2 = 30.5 \times 10^{-3} - 5 \times 10^{-3}$ $x = 12.75 \times 10^{-3}$ moles of Na₂CO₂ Amount of Na₂CO₃ = $12.75 \times 10^{-3} \times 106$ = 1.351 gm Na, CO, Amount of NaCI = Total amount of mixture – (amount of Na₂CO₂ + amount of NaHCO₂) = 3 - (1.351 + 0.42 gm)= 1.228 gm NaCl % of NaCl in mixture = $\frac{1.228}{3} \times 100 = 40.9\%$ 33. (i) 1 L solution contain = 2 mg CaSO₄ 1000 L contain = 2 gm CaSO Sample - 1 moles of $CaSO_4$ + mole of MgCO₃ = moles of CaCO₃ $\frac{2}{136} + \frac{0.5}{95} = \frac{1}{100}$ $\left(\frac{2}{136} + \frac{0.5}{95}\right) \times 100 = 1.9 \simeq 2 \text{ ppm}.$ Sample - 2 1 L solution contain = 3 mg MgSO 1000 L solution contain = 3 gm MgSO_{4} moles of MgSO₄ = moles of CaCO₃ $\frac{3}{120}$ × 100 = 2.5 ppm. (ii) Removal of Permanent Hardness $\mathsf{CaSO}_4 + \mathsf{CaCl}_2 + 4\mathsf{NaOH} \longrightarrow 2\mathsf{Ca(OH)}_2 \downarrow + 2\mathsf{NaCl} + \mathsf{Na}_2\mathsf{SO}_4$ Temporary Hardness Educatin ppt or better tomorrow $Ca(HCO_3)_2 + 2NaOH \longrightarrow Ca(OH)_2 \downarrow + 2NaHCO_3$ ppt.

34. (a) As per given data 42000 J/mol


$$= \frac{42000}{4.2 \times 18} \times \frac{cal}{gm} = 555.55.$$

$$\frac{1000}{555.55} = m = 18.51 \text{ g of water bond}$$
Man of work left
= 2000 - 18 = 19982 gm
(b) Voltage range required

$$= \frac{1250}{625} = 2V \& \frac{1250}{500} = 2.5 V$$
For voltage across led = 2v and across R = 0.8 v
T.D. left = 5 - 2.8 = 2.2 v
2.2 v \rightarrow 20 mA.
R = 110 Ω
For voltage across LED = 2.5 v and across R = 0.8 v
P.D. left = 5 - 3.3 = 1.7 v
1.7 v \rightarrow 20 mA
R= 85 Ω
Range will be 85 Ω to 110 Ω .

35. (i)-c

(ii)-b (iii)-c (iv)-a (v) Red round eyes b- yes c- 9 : 3 : 3 : 1

36. (b)

Between A and C effective resistance = $\frac{3}{2}$ R V = iR Now $3.6 = \frac{3600 \times 10^{-3}}{24} R$ *:*.. R = 24. $\frac{3}{2}$ R = 24. Now R = 16 ÷. Now between A and B R_{eff} = $\frac{5}{4}$ R i.e., = 202 ÷. Time required $3.6 = \frac{3600 \times 10^{-3}}{4t} \times 20 \text{ hr.}$ 37.A (i) - C (ii) - a (iii) - a (iv)-b 37.B (i) - C (ii) - FTTFF 38. (b) $V = \sqrt{\frac{T}{\lambda}}$ λ = linear density as mass per unit length mass A 7 m wire = 140 g ... mass A 1 m wire = $\frac{140}{7}$ g = 20 g $\lambda = 20 \text{ g/m} = \frac{20}{1000} \text{ kg/m}$ *.*.. At 6 m from celing At 5 m : <u>.....</u> 5m 6m Т Т 1m mg 2m mq $T_1 = mg = \lambda g$ $T_2 = m_2 g = 2\lambda g$ $v_1 = \sqrt{\frac{T_1}{\lambda}} = \sqrt{\frac{\lambda g}{\lambda}} = \sqrt{g}$ $V_2 = \sqrt{\frac{T_2}{\lambda}} = \sqrt{\frac{2\lambda g}{\lambda}} = \sqrt{2g}$. 39. (a) P = 1 atm v = 1 lit. w = 2.8 gm PV = nRT $1 \times 1 = \frac{W}{M_w} \times 0.0821 \times 400$ Resonance® Educating for better tomorrow

INJSO_ SOL.-2017_PAGE # 8

 $1 = \frac{2.8}{M_{w}} \times 0.0821 \times 400$ M_w = 92 gm Given 10.5 gm of C at 1 gm of H С Н 10.5 1 so ratio of a.w. = $\underbrace{\frac{10.5}{12}}_{12}$ Multiply by factor (8) to make whole number 0.875 × 8 = 7 1 × 8

39.

so m.w. for = $C_7 H_8$.

(b) $2H_2(g) + O_2(I) \longrightarrow 2H_2O(I)$ Total initial vol. of H_2 and $O_2 = 40$ ml. At const pressure and temperature conditions. volume of remaining $H_2 = 10 \text{ ml}$. H₂ & O₂ react in 2 : 1 molar ratio there for volume of H_2 reacted = 20 ml. & vol. of O_2 reacted = 10 ml.

= 8

so, mole % of H_2 initially = $\frac{30}{40} \times 100 = 75\%$

40. (i)-F T T

> (ii)- (i) Chloroplast, (ii) photosynthesis, (iii) decreases, (iv) endosmosis, (v) Higher, (vi) Lower, (vii) increases (iii)-C (iv)-a

- (v)-c
- (vi)-a

41. $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy$ Person inhales 8 litre air per minute So vol. of air inhales in 3.5 hr = 3.5 × 60 × 8 litre = 1680 litre Total amount of air inhaled by person = 1680 litre air contain only 20% oxygen So amount of oxygen present = $1680 \times \frac{20}{100} = 336$ litre oxygen only 5% of oxygen is consumed by body So vol. of oxygen consumed = $336 \times \frac{5}{100}$ = 16.80 litre Acc to equation 6×22.4 litre oxygen is consumed by 180 gm of C₆H₁₂O₆ : 16.80 litre oxygen is consumed by = $\frac{180 \times 16.80}{6 \times 22.4}$ = 22.5 gm glucose Amount of CO₂ 6 moles of oxygen gives = 6 mole of CO_2

 $\therefore 6 \times 22.4$ litre O₂ = 6 × 22.4 litre CO₂ 16 × 1 O = 16 × 1 CO 16.8 L O₂ = 16.8 L^{2} CO₂ Vol of CO₂ produced is 16.8 L

Resonance® Educating for better tomorrow

Amount of $CO_2 = \frac{16.8}{22.4} \times 44 = 33 \text{ gm } CO_2$.

42. Mix of $H_2O + D_2O = 1000 L$ amount of $H_2O = 600 L = 600 kg$ amount of $D_{2}O = 400 L = 440 kg$ $D_2O_{(0^\circ\text{C},\text{ solid})} \xrightarrow{q_1} D_2O_{(4^\circ\text{C},\text{ solid})} \xrightarrow{q_2} D_2O_{(4^\circ\text{C},\ell)} \xrightarrow{q_3} D_2O_{(10^\circ\text{C},\ell)}$ heat required for $D_2O = q_1 + q_2 + q_3$ $H_2O_{(0^\circC, solid)} \xrightarrow{q_4} H_2O_{(0^\circC, \ell)} \xrightarrow{q_5} H_2O_{(10^\circC, \ell)}$ Heat required for $H_2O = q_4 + q_5$ $q_1 = ms \Delta T = 440 \times x \times 4 = 1760 x$ q₂ = m × L = 440 × 340 = 149600 KJ $q_3 = ms \Delta T = 440 \times 4.25 \times 6 = 11220 \text{ KJ}$ q₄ = M × L = 600 × 330 = 198000 KJ. q₅ = MS∆T = 600 × 4.15 × 10 = 24900 KJ Total amount of heat required for the mixture = $q_1 + q_2 + q_3 + q_4 + q_5$ 387160 = 1760 x + 149600 + 11220 + 198000 + 24900x = 1.95 KJ/Kg K.

