2006-VISVESVARAYA TECHNOLOGICAL UNIVERSITY
 B.E DEGREE EXAMINATION
 ANALYSIS AND DESIGN OF ALGORITHAMS
 (COMPUTER SCIENCE AND ENGINEERING)

TIME-3HOUR
MARK-80

ANSWER ANY FIVE QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS

1 a. Define O notation, ? notation and \circledR_{\circledR} notation If $\mathrm{f} 1(\mathrm{n}) € \mathrm{O}(\mathrm{g} 1(\mathrm{n}))$ and $\mathrm{f} 2(\mathrm{n}) € \mathrm{O}(\mathrm{g} 2(\mathrm{n})$), prove that $\mathrm{f} 1(\mathrm{n})+\mathrm{f} 2(\mathrm{n}) €$ $\mathrm{O}(\max [\mathrm{g} 1(\mathrm{n}), \mathrm{g} 2(\mathrm{n})]$).
b. Develop an algorithm to determine the minimum and maximum values in an array a1,a2, \qquad .an of integers (Here $\mathrm{n}>=1$ and the entries in the array need not be distinct). Determine the worst case complexity function for this algorithm.
c. What is wrong with the following argument? Since $n=O(n), 2 n=O(n) \ldots$. we have $? K n=? O(n)=O\left(n^{\wedge} 2\right)$.. $1<=\mathrm{k}<=\mathrm{n} 1<=\mathrm{k}<=\mathrm{n}$

2 a. Design a brute force algorithm for computing the value of a polynomial $p(x)=A n x^{\wedge} n+A n-1 x^{\wedge} n-1+$. \qquad +A 0 are given point x 0 and determine its worst case complexity class.
b. If the algorithm designed in part (a) is in ${ }^{\circledR}\left(n^{\wedge} 2\right)$. design a linear algorithm for this problem.
c. Write a quick sort algorithm.Derive worst-case and average-case complexities for this algorithm.

3 a. Write a decrease -by-one algorithm o generate all $2^{\wedge} n$ subsets of a set $\{a 1, a 2, \ldots, a n\}$ in quashed order i.e. subset involving aj. can be listed only after all subsets involving a1, a2,.........aj-1 ($\mathrm{j}=1,2 \ldots \mathrm{n}-1$)
b. Design a decrease -by- one algorithm for generating a gray code of order n.
c. Solve the system of linear equations given below by gaussian elimination:
$2 \mathrm{x} 1-\mathrm{x} 2+\mathrm{x} 3=1$
$4 \mathrm{x} 1+\mathrm{x} 2-\mathrm{x} 3=5$
$\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3=0$

4 a. Define a heap.Prove that a n-element heap has height $[\log n]$. Show that there is a linear algorithm to construct a heap of size n.
b. What is the running time of heapsort on an array A of length n that is already sorted in the increasing order? what about decreasig order?

5 a. What is input enhancement? Apply this technique to design a linear sorting algorithm.
b. When does collision occur in hashing?What are different mechanisms used to resolve collisions?
c. Consider open hashing with linear probing policy. For the input : 1055,1492, 1776,1812,1918,1945 inserted in the order and hash function. $\mathrm{h}(\mathrm{k})=5 \mathrm{k}(\bmod 8)$
i) Construct the open hash table
ii) Show the sequence of key comparisions needed to search for 1945 and 1543 in the table.

6 a. Write warshall's algorithm to find transitive closure of a diagraph. Prove that the time complexity of the algorithm is theta($\mathrm{n}^{\wedge} 3$).
b. Apply warshall's algorithm to find transitive closure of a diagraph defined by the following adjacency matrix.

7 a . What is a decision tree? Use decision trees to establish lower bound on worst-case and average case efficiency of comparision based sorting algorithm.
b. Define NP-complete problem. Prove that the hamiltonian circuit problem is polynomially reducible to the decision version of travelling salesman problem. (TSF).

8 a. What is a C-approximation algorithm ? Write a 2- approximation algorithm for a TSP with a Euclidian distances.
b. If P ? NP. prove that there exists no C-approximation algorithm for TSP.

