ANSWER ANY FIVE QUESTIONS. ALL QUESTIONS CARRY EQUAL MARKS

1 a. In a four bar mechanism shown in Fig.Q1(a) Torque T3 and T4 have magnitudes of 3000 Nm and 2000 Nm respectively. If links $A D=800 \mathrm{~mm}, \mathrm{AB}=700 \mathrm{~mm}, \mathrm{BC}=700 \mathrm{~mm}$ amd $\mathrm{CD}=400 \mathrm{~mm}$, find the required torque on the crank for static equilibrium of the Mechanism.
b. What are the implications of considering friction in static force analysis?

2 a. Explain D'Alemberts Principle and state why it is used.
b. Apunching press is required to punch 40 mm diameter holes in a plate of 30 mm thickness at the rate of 4 holes per minute. It required 6 Nm of energy per mm^{2} of shared area. The punch has a stroke of 100 mm . The rpm of the Flywheel varies from 320 to 280. If the radius of gyration of flywheel is 1 m , find i) the power of the motor and ii) mass of theFlywheel.

3 a. State the Laws of Dry friction.
b. A leather belt is required to transmit 9 kW from a pulley 120 cm in diameter running at 200 rpm . The angel embraces is 165° and the co-efficient of friction between leather belt and pulley is 0.3 . If the safe working stress for the leather belt is $140 \mathrm{~N} / \mathrm{cm}^{2}$, the mass of the leather is $1 \mathrm{gm} / \mathrm{cm}^{3}$ and the thickness of the belt is 10 mm , determine the width of the belt taking centrifugal tension into account.

4 a. Explain Static Balancing and Dynamic Balancing.
b. Four masses A,B,C, and D having $200 \mathrm{~kg}, 300 \mathrm{~kg}, 240 \mathrm{~kg}$ and 260 kg respectively, revolve at a radius of rotation $270 \mathrm{~mm}, 210 \mathrm{~mm}, 300 \mathrm{~mm}$ and 360 mm respectively. The distance of planes B,C and D measured from A are 45°, 120° and 255° respectively. Two balancing masses are placed in planes L and M , which are 500 mm apart. The distance of Plane L from A is 120 mm and M deom D is 100 mm . If the balancinf masses revolve at a radius of 72 mm , find their magitude and angular position.

5 a. Prove that the resultant unbalances fprce is minimum when half of the reciprocating masses are balanced by rotating masses i.e. $\mathrm{C}=1 / 2$.
b. A V - 90 engine has two cylinders which are placed symmetrically. The two connecting rods operate a common crank. The length of the connecting rods are 320 mm each and crank radius is 80 mm . The reciprocating mass per cylinder is 12 kg . If the engine speed is 600 rpm , find the resultant primary and secondary forces. Also find the maximum resultant Secondary force.

6 a. Explain the terms Sensitiveness, Isochronism and Effort and Power of a Gobernor.
b. The length of upper arm and a lower arms of a Porter Governor are 200 mm and 250 mm respectively. Both the arms are pivoted to the axis of rotation. The central load is 150 N , the weight of each ball is 20 N and the friction of the sleeve together with the resistance of the operating gear is equivalent to a force of 30 N at the sleeve. If the limiting inclinations of the upper arm to the vertical are 30° and 40°, determine the range of speed of the Governor.

7 a. Explain the effect of Gyroscopic couple of a ship under i) Steering ii) Pitching and iii) Rolling.
b. Analyze the stability of a two wheel vehicle turning left. Derive the necessary equation.

8 For a symmetrical tangent cam operating roller follower, the least radius of cam is 30 mm and roller radius is 15 mm . The angle of ascent is 60°, the total lift is 15 mm and the speed of the cam is 300 rpm . Calculate.
a. Principal dimensions of the cam.
b. Accelaration of the follower at the beginning of lift, where the roller just touches the nose and at the apex of circular nose. Assume that there is no dwell between ascent and descent.

