

SCHOLASTIC APTITUDE TEST

NTSE STAGE 1(2016 - 17)

(For Students of Class X)

Time Allowed : (90 Minutes)

Maximum Marks : 100

101.	The scientist relate (1) Einstein	ed to law of electromagnetic (2) Rutherford	c induct (3)	ion is Newton	(4) Faraday	
101.	4					
102.	The S.I. unit of ten (1) Degree celcius (2) Degree farenh (3) Kelvin (4) None of these	s eit				
102.	3					
103.	How many light ye (1) $1.057 \times 10^{-16} ly$	ear (ly) in one metre is (2) $9.46 \times 10^{15} ly$	(3)	$2.26 \times 10^{6} ly$	(4) $9.48 \times 10^{15} ly$	
103.	1					
104.	 Two different light sources of A and B have wave length 0.7 μm and 0.3μ respectively. Then which of the following statement is true (1) A has greater energy than B (2) B has greater energy than A (3) Both has equal energy (4) None of these 					
104.	2					
105.	Which types of rac (1) x-rays	liation absorbed by CO ₂ mo (2) gamma rays	blecules (3)	in atmosphere are infra-red rays	e (4) UV rays	
105.	3					
106.						
	be (1) 4n	(2) 4/n	(3)	n/4	(4) 4n ²	
106.	2					
107.		nd in air and sea water are and the sea and detect its ech (2) 1.08 km			pectively. A ship sends a lepth of the sea at that point is (4) 0.255 km	
107.	2					
108.	Two body of mass of their linear mom		g with e	qual kinetic energi	es. The ratio of the magnitude	

FIITJEE Ltd., B – 4, Sec – 16, Noida (U.P), 201301, Ph : 0120 – 4754800/804/811/814 www.fiitjeenoida.com FIITJEE Towers, C – 56 A/26 Institutional Area, Sec – 62, Noida (U.P), 201307, Ph : 9871113448

		_			2			
	(1) 4:1	(2) $\sqrt{2}:1$	(3) 1:2	(4) 1:6				
108.	3							
109.	The refractive index of water and glass with respect to air are $\frac{4}{3}$ and $\frac{3}{2}$ respectively. The refractive							
	index of glass with respect to water will be							
	(1) $\frac{17}{6}$	(2) $\frac{1}{6}$	(3) 2	(4) $\frac{9}{8}$				
109.	4							
110.	A technician has 10 resistor each of resistance 0.1Ω . The largest and smallest resistance he can obtain by combining these resistors are (1) 10Ω and 1Ω respectively (2) 1Ω and 0.1Ω respectively (3) 1Ω and 0.01Ω respectively (4) 0.1Ω and 0.01Ω respectively							
110.	3							
111.	 The wire of heater should made of that material whose (1) Specific resistance more and melting point high (2) Specific resistance more and melting point low (3) Specific resistance low and melting point low (4) Specific resistance low and melting point high 							
111.	1							
112.	The total internal refle (1) Glass to water	ection of light is not po (2) Water to glass						
112.	2							
113.	The frequency of sec (1) 0.5 Hz	ond pendulum is (2) 1.0 Hz	(3) 2.0 Hz	(4) 1.5 Hz				
113.	1							
114.	Two bodies with kinet of their masses is (1) 1:2	ic energy in the ratio of (2) 1 : 1	of 9:4 are moving w (3) 4:9	ith equal linear momentum. (4) 3:2	The ratio			
114.	3							
115.	The electronic configu (1) 30	uration of an ion M ⁺² is (2) 32	3 2, 8, 14 if its mass ((3) 34	number of neutrons in its nue (4) 42	cleus is			
115.	1							
116.	In the presence of concentrated sulphuric acid, acetic acid react with ethyl alcohol to produce (1) aldehyde (2) alcohol (3) ester (4) carboxylic acid							
116.	3							
117.	Which one of the follo (1) Na_2O (2) K_2O (3) CuO	wing metal oxides sho	ows both acidic and l	basic characters				
FIIT		FIITJEE Ltd., B – 4, Sec – 16, Noida (U.P), 201301, Ph : 0120 – 4754800/804/811/814 www.fiitjeenoida.com FIITJEE Towers, C – 56 A/26 Institutional Area, Sec – 62, Noida (U.P), 201307, Ph : 9871113448						

FIITJEE Towers, C – 56 A/26 Institutional Area, Sec – 62, Noida (U.P), 201307, Ph : 9871113448

(4) Al_2O_3

117. 4 118. The molecular formula of potash alum is (1) $K_2 SO_4 \cdot Al_2 (SO_4)_3 24H_2O$ (2) *Ca*(*OCl*)*Cl* (3) K_2SO_4 (4) $Al_2(SO_4)_2 24H_2O$ 118. 1 The concentration of hydroxide ion in a solution is 1×10^{-10} mole per litre. Its pH value will be 119. (2) 8 (4) - 10 (1) 4 (3) 10 119. 1 120. Which of the following gas is known as tear gas (1) methyl isocyanide (2) sulphur dioxide (3) chloropicrin (4) nitrous oxide 120. 3 121. The number of carbon atom in kerosene oil is (3) (4) $C_{18} - C_{22}$ (1) $C_6 - C_{11}$ (2) $C_{20} - C_{30}$ $C_{11} - C_{16}$ 121. 3 122. Which of the following salt does not contain the water of crystallization (1) blue vitriol (2) baking soda (3) washing soda (4) gypsum 122. 2 123. Acidic solvents are (1) those who donate proton (2) accept proton (3) either can give or accept proton (4) neither give nor accept proton 123. 1 124. The method to purify the colloidal solution is (1) peptization (2) coagulation (3) dialysis (4) breadig's arc method 124. 3 125. The dispersion of any liquid in a liquid is known as (1) gel (2) gum (3) gelatin (4) emulsion 125. 4

FIITJEE Ltd., B – 4, Sec – 16, Noida (U.P), 201301, Ph : 0120 – 4754800/804/811/814 www.fiitjeenoida.com FIITJEE Towers, C – 56 A/26 Institutional Area, Sec – 62, Noida (U.P), 201307, Ph : 9871113448

126. Which of the following is made by hydrolysis of starch (2) fructose (3) sucrose (4) maltose (1) glucose 126. 1 127. Amalgam is (2) alloy (4) heterogeneous mixture (3) compound (1) submetal 2 128. The number of salivary glands in human is (1) two pairs (2) three pairs (3) four pairs (4) five pairs 2 Wings of birds and insects are (1) vestigial organs (2) homologous organs (3) analogous organs (4) none of these 3 Cramps in the leg muscles after running a long distance are because of (1) build up of lactic acid (2) build up of acetic acid (3) build up of oxalic acid (4) build up of pyruvic acid 1 Translocation of food by phloem is in the form of (1) sucrose (2) protein (3) harmones (4) fat 1 132. Enzyme responsible for digestion of protein is (1) ptylin (2) pepsin

- (3) amylopsin
- (4) steapsin
- 132. 2
- 133. Ethylene harmone is found in the form of
 - (1) gas
 - (2) liquid
 - (3) solid
 - (4) all of the above
- 133.
- 134. Calciferol is

1

(1) vitamin A

- 127.
- 128.
- 129.
- 129.
- 130.
- 130.
- 131.

- (2) vitamin B
- (3) vitamin C
- (4) vitamin D

- 135. Sodium bebnzoyate is
 - (1) tranquilizer
 - (2) edible colour
 - (3) preservative
 - (4) antibiotic
- 135. 3
- 136. The beehive is made of
 - (1) cellulose
 - (2) chiten
 - (3) cork
 - (4) wax 4
- 136.
- 137. In which of the following blubber is found
 - (1) frog
 - (2) lizard
 - (3) elephant
 - (4) fish
- 137. 3

138. In leukemia

3

- (1) there is lack of oxygen in body
- (2) white spot made on skin
- (3) proliferation of white blood corpuscles takes place
- (4) red blood corpuscles increases

138.

- 139. Hydrophobia is due to
 - (1) bacteria
 - (2) virus
 - (3) protozoa
 - (4) fungus

139. 2

- 140. Silver fish is a
 - (1) insect
 - (2) cnidarians
 - (3) crustacean
 - (4) fish

141.	'Tripitaka' texts are relat (1) Vedic religion	ted with which religion (2) Buddhism	(3)	Jainism	(4) Shaivism
141.	2				
142.	The language of sangar (1) Tamil	n literature was (2) Bengali	(3)	Hindi	(4) Marathi

- 143. Ashoka was the son of
 - (1) Chandragupta Maurya
 - (2) Brihdrath
 - (3) Bindusar
 - (4) Ramgupta

143. 3

- 144. Who was the last emperor of Mughal dynasty in India
 - (1) Aurangzeb
 - (2) Shahjahan
 - (3) Jahangir
 - (4) Bahadurshah Zafar
- 144. 4
- 145. The grave of Maharani Laxmibai is situated at
 - (1) Varanasi
 - (2) Kanpur
 - (3) Allahabad
 - (4) Gwalior
- 145. 4
- 146. Malik Kafur was trusted general of
 - (1) Ala-uddin Khilzi
 - (2) Firoz Tughlak
 - (3) Iltutmish
 - (4) Muhammad-bin-Tughlak
- 146.

1

- 147. Ibrahim Lodhi was defeated
 - (1) In the first battle of Panipat
 - (2) In the second battle of Panipat
 - (3) In the first battle of Talikota
 - (4) In the first battle of Tarain

147. 1

- 148. Who led the revolt of 1857 in Bihar
 - (1) Khan Bahadur Khan
 - (2) Tatiya Tope
 - (3) Kunwar Singh
 - (4) Mangal Pandey

148. 3

- 149. Who is famous as Deshbandhu
 - (1) Chandrashekhar
 - (2) A.O.Hume
 - (3) Chittranjan Das
 - (4) Veer Savarkar
- 149.

3

- 150. 'Satyarth Prakash' was composed by
 - (1) Swami Dayanand Saraswati
 - (2) Mahatma Gandhi

- (3) Swami Vivekanand
- (4) Ram Krishna Paramhans

- 151. Which among the following is not correctly matched
 - (1) Buland darwaja-Akbar
 - (2) Alai Darwaha Ala-uddin- Khilzi
 - (3) Tajmahal Shahjahan
 - (4) Red Fort Babar

151. 4

- 152. Gulbadan Begum was the daughter of
 - (1) Babar
 - (2) Humayun
 - (3) Akbar
 - (4) Shahjahan

152. 1

- 153. The Bardavli satyagriha was led by
 - (1) Vitthalbhai Patel
 - (2) Sardar Ballabhbhai Patel
 - (3) Mahadev Desai
 - (4) Mahadev Govind Ranade
- 153. 2
- 154. Who was the founder of Brahma Samaj
 - (1) Swami Dayanand Saraswati
 - (2) Swami Vivekanand
 - (3) Raja Rammohan Roy
 - (4) Swami Ram Krishna Paramhans

154. 3

- 155. M.S. Swaminathan is associated with
 - (1) White revolution
 - (2) Blue revolution
 - (3) Red revolution
 - (4) Green revolution

155. 4

- 156. Panna is famous for
 - (1) Petroleum
 - (2) Diamond
 - (3) Coal
 - (4) Gold

156. 2

157. India's biggest desert is

- (1) Thar
- (2) Sahara
- (3) Atakama
- (4) Gobi

- 158. The best quality of coal is
 - (1) Peat
 - (2) Bituminus
 - (3) Anthrectie
 - (4) Lignite

- 159. Rihand Valley project is located in
 - (1) Uttar Pradesh
 - (2) Bihar
 - (3) Rajasthan
 - (4) Madhya Pradesh
- 159. 1
- 160. Which of the following is not fibre crop
 - (1) Cotton
 - (2) Jute
 - (3) Hemp
 - (4) Rubber

160.

4

- 161. 5th June is celebrated as
 - (1) World Environment day
 - (2) World Population day
 - (3) Earth Day
 - (4) World Health day
- 161. 1
- 162. Max Muller was a famous ______ scholar
 - (1) Russian

- (2) German
- (3) Italian
- (4) French
- 162. 2
- 163. Ankleshwar is situated at
 - (1) Gujrat
 - (2) Tamilnadu
 - (3) Kerala
 - (4) Punjab
- 163. 1
- 164. Which among the following is not correctly matched
 - (1) Heerakund Mahanadi
 - (2) Bhakhranangal Satluj
 - (3) Nagarjun Krishna
 - (4) Matateela Ganga

- 165. The capital of Arunachal Pradesh is
 - (1) Agartalla
 - (2) Imphal
 - (3) Gangtok
 - (4) Itanagar

166. Satluj, Beas, Ravi, Chenab and Jhelum are the tributaries of

- (1) Indus
- (2) Tapti
- (3) Kaveri
- (4) Krishna

166. 1

- 167. Kaziranga National Park is situated in
 - (1) Uttar Pradesh
 - (2) Assam
 - (3) Gujrat
 - (4) Madhya Pradesh
- 167. 2
- 168. The famous Sanchi Stupa is in
 - (1) Maharashtra
 - (2) Uttar Pradesh
 - (3) Madhya Pradesh
 - (4) Rajasthan
- 168. 3
- 169. In which state is the Pushkar Fair held
 - (1) Punjab
 - (2) Rajasthan
 - (3) Himachal Pradesh
 - (4) Uttar Pradesh
- 169.

2

- 170. Who is the present Vive-President of India
 - (1) Smt. Sumitra Mahajan
 - (2) Sri. Rajnath Singh
 - (3) Sri. Manoj Sinha
 - (4) Sri. Hamid Ansari

- 171. The Chairman of the drafting committee of Indian constituent assembly was
 - (1) Dr. Bhimrao Ambedkar
 - (2) Sardar Patel
 - (3) Jawaharlal Nehru
 - (4) Dr. Rajendra Prasad
- 171. 1
- 172. The Indian Economy is
 - (1) Liberal Economy
 - (2) Socialist Economy
 - (3) Mixed Economy
 - (4) Marxisim Economy
- 172. 3
- 173. The Panchsheel agreement was signed between(1) India and China
- FIITJEE Ltd., B 4, Sec 16, Noida (U.P), 201301, Ph : 0120 4754800/804/811/814 www.fiitjeenoida.com FIITJEE Towers, C – 56 A/26 Institutional Area, Sec – 62, Noida (U.P), 201307, Ph : 9871113448

- (2) India and Bhutan
- (3) India and Nepal
- (4) None of the above

- 174. Who is the Chief Commander of Indian Armu
 - (1) Prime Minister
 - (2) Defence Minister
 - (3) President
 - (4) Vice President
- 174. 3
- 175. The tenure of Lok Sabha member is
 - (1) 5 years
 - (2) 6 years
 - (3) 3 years
 - (4) 4 years

175. 1

- 176. International Insitution related to child welfare is
 - (1) UNICEF
 - (2) ILO
 - (3) FAO
 - (4) CNT
- 176. 1
- 177. The main strategy adopted in the new economic policy of 1991 was
 - (1) Liberalisation
 - (2) Privatisation
 - (3) Globalisation
 - (4) All of the above
- 177. 4
- 178. Who is the author of 'Arthashastra'
 - (1) Kalidas
 - (2) Valmiki
 - (3) Vedvyas
 - (4) Kautilya

178.

4

- 179. Who among the following received Nobel Prize in the field of economics
 - (1) Mother Teresa
 - (2) Rabindranath Tagore
 - (3) Amartya Sen
 - (4) C V Raman
- 179. 3
- 180. Who was the Chairman of the Committee, which proposed Democratic Decentralisation and Panchayati Raj-
 - (1) K.M. Pannikar
 - (2) Balwant Rai Mehta
 - (3) Mahatma Gandhi
 - (4) H.N. Kunjru

180.	2					11	
181.	$\cos\theta\sqrt{\sec^2\theta-1}$ is equa (1) $\sin\theta$	I to (2) $\cot \theta$	(3)	sec θ s	(4) 1		
181.	1						
182.	For the maximum value of $sin x$, value of x is						
182.	(1) $\frac{\pi}{4}$ 2	(2) $\frac{\pi}{2}$	(3)	π	(4) $\frac{3\pi}{2}$		
183.		$Bx^{3} + 27y^{3} + z^{3} \div xyz$ is eq (2) 6			(d) 0		
400	(1) 0	(2) 0	(3)	18	(d) 9		
183.	3						
184.	The sum of the roots of	quadratic equation $2x +$	$\frac{4}{x} = 9$	is			
	(1) $\frac{7}{2}$	(2) $\frac{9}{2}$		3	(4) $-\frac{9}{2}$		
184.	2						
185.	If the volume of two spl (1) 3:4	neres are in the ratio is 6 (2) 4:3	54 : 27 (3)	then the ratio of th 9:16	eir surface area is (4) 16:9		
185.	4						
186.	If the H.C.F. of the exp	ression (a^2-1) and pa^2-1	-q(a +	-1) is $(a-1)$ then r	elation between p and q w	vill	
	be (1) $p = q$ (2) $p = 2q$ (3) $p = 2q + 1$ (4) $p = q + 1$						
186.	2						
187.	The measures of the fine measure of each of the $(1) 120^{\circ}$ (2) 124° (3) 128° (4) 130°		ıre eq	ual and the sixth ar	gle measures 100 ⁰ , then	the	
187.	2						
188.	The value of $\frac{(0.7)^{0}}{\left(\frac{3}{8}\right)^{-1}\left(\frac{3}{2}\right)}$	$\frac{-(0.1)^{-1}}{^{3}+(-\frac{1}{3})^{-1}}$ is					
	(1) $-\frac{3}{2}$	(2) $\frac{2}{3}$	(3)	3	(4) 2		
188.	1						
189.		n of the top of a tower from the same line, are complemented			s 'a' and 'b' from the foot o	f	

FIITJEE Ltd., B – 4, Sec – 16, Noida (U.P), 201301, Ph : 0120 – 4754800/804/811/814 www.fiitjeenoida.com FIITJEE Towers, C – 56 A/26 Institutional Area, Sec – 62, Noida (U.P), 201307, Ph : 9871113448

the tower and are in the same line, are complementary, the height of the tower is

					12			
	(1) <i>ab</i>	(2) \sqrt{b}	(3) √ <i>a</i>	(4) \sqrt{ab}				
189.	4							
190.	If $p = x + \frac{1}{x}$ then the value of $p - \frac{1}{p}$ will be							
	(1) $3x$	P						
	(2) $\frac{3}{x}$							
	(3) $\frac{x^4 + x^2 + 1}{x^3 + x}$							
	$(4) \frac{x^4 + 3x^2 + 1}{x^3 + x}$							
190.	3							
191.	If $log_5 [log_2(log_3 x)] =$	= 0 then the value of x is						
	(1) 3	(2) 6	(3) 9	(4) 0				
191.	3							
192.		nes $6+x=0$ and $3-y=$	0 will be					
	(1) 0^0 (2) 90^0							
	(3) 180°							
	(4) 60°							
192.	2							
193.	If number $6, 8, 2, x - 3$ value of x will be	5,2x-1,15,17,20 and 22	are in ascending o	rder and its median is 14 the	n the			
	(1) 14	(2) 7	(3) 15	(4) 20				
193.	2							
194.	If $U = \{1, 2, 3, 4, 5, 6, 7\}$							
		$B = \{1, 3, 5, 7\}$ then the val	ue of $(A'-B')$ is					
	(1) $\{2,8\}$ (2) $\{3,5\}$							
	(3) {1,7}							
	(4) {1,2,4,6}							
194.	3							
195.	Factors of $\frac{1}{3}c^2 - 2c - \frac{1}{3}c^2 - 2c - \frac{1}{3}c^2 - 2c - \frac{1}{3}c^2 - 1$	9 are						
	(1) $\left(\frac{1}{3}c+3\right)(c+3)$							
	(2) $\left(\frac{1}{3}c-3\right)(c-3)$							
	(3) $\left(\frac{1}{3}c-3\right)(c+3)$							
	(3) f							

FIITJEE Ltd., B – 4, Sec – 16, Noida (U.P), 201301, Ph : 0120 – 4754800/804/811/814 www.fiitjeenoida.com FIITJEE Towers, C – 56 A/26 Institutional Area, Sec – 62, Noida (U.P), 201307, Ph : 9871113448

$$(4) \quad \left(c - \frac{1}{3}\right)(3c+1)$$

$$3$$

196. If Rs. 810 divided among A, B and C are in ratio $\frac{1}{4}:\frac{2}{5}:1\frac{3}{8}$ then the share of A will be

- (1) Rs 100
- (2) Rs 160
- (3) Rs 550
- (4) Rs 200

196. 1

197. The radius of a wheel is 0.25m. The number of revolution to travel a distance of 11 km will be

- (1) 1000
- (2) 4000(3) 8000
- (3) 8000 (4) 7000
- 197. 4
- 197. 4

198. Sum of odd numbers between 0 and 50 is

- (1) 625
- (2) 600
- (3) 900
- (4) 1200
- 198. 1

199. A father is 7 times as old as his son. Two years ago, the father was 13 times as old as his son. Father's present age is

- (1) 24 years
- (2) 28 years
- (3) 30 years
- (4) 32 years
- 199.

2

3

200. The areas of three adjacent faces of a cuboid are a, b and c respectively. Twice of its volume is

- (1) 2abc m³
- (2) $2\sqrt{a^2+b^2+c^2}$ m³
- (3) $2\sqrt{abc} \text{ m}^3$
- (4) *6√abc* m³
- 200.