ANSWER ALL QUESTIONS

SECTION A $[8 * 5=40]$

1. a) Explain principle of transmissibility of force and law of superposition.
b) State and prove Pappus theorem.
c) Derive an expression for polar moment of inertia of a circle of diameter'd’ with respect to its centre.
d) Explain principle of Virtual work.
e) Prove that the trajectory of a projectile is parabolic.
f) Explain principle of conservation of momentum in case of impact of bodies.
g) Derive a formula for equivalent length of a compound pendulum.
h) What is "centre of percussion"? Obtain an expression for distance b / w centre of percussion and rotating axis of a rigid body, considering x -axis through the centre of gravity of the rotating body.

SECTION B $[4 * 15=60]$

2. A semicircular disc of radius ' r ' and weight ' w ' rests on a horizontal surface and is pulled at right angles to its geometric axis by a horizontal force ' P '. Find the angle that the flat surface of disc will make the horizontal just before sliding begins. The weight ' w ' is acting at the centre of gravity.

OR
3. A beam $A B$ is hinged at ' A ' and supported at B by a vertical cord which passes over a frictionless pulley at C and carries at its end a load P as shown. Determine the distance ' x ' from ' A ' at which a load Q must be placed on the beam if it is to remain in equilibrium in a horizontal position. Neglect the weight of beam. If proportion of distance $\mathrm{x}: 1$ is $1: 6$ and $\mathrm{P}=10 \mathrm{~N}$, find load at ' Q '.
4. A particle is projected from origin ' O ' with a velocity of $120 \mathrm{~m} / \mathrm{s}$ at an elevation of 60 degree to the horizontal. At some position P it has a velocity in a direction making an angle of 30 degree with the horizontal. Determine the velocity of the particle at P coordinates of P and the distance OP .

OR

5. A car traveling at $40 \mathrm{~km} / \mathrm{hr}$ sights a distant signal at 150 m and comes uniformly to rest at the signal. It remains at rests for 20 s . As allowed by the signal, it uniformly accelerate and attain $40 \mathrm{~km} / \mathrm{hr}$ in 250 m . Calculate time lost due to signal
6. A steam turbine is running at 2400 revolutions/minute. On shutting off steam it slows down \& comes to rest in 4 minutes. If the angular retardation is uniform,find its m magnitude in radians per second square \& also the no. of revolutions made by the turbine before coming to rest.

OR
7. A slender prismatic bar of weight $\mathrm{W}=36 \mathrm{~N}$ is free to rotate in a vertical plane about a fixed axis through' O^{\prime}. The bar is released from rest in the unstable position of equilibrium \& falls into the horizontal position $A^{\prime} \mathrm{B}^{\prime}$, where it is brought to rest by 2 identical springs having constant K . If the spring A is compressed 1.27 cm before the bar comes to rest , what is the spring constant?

