OBVG8S3

Marking Scheme

SUMMATIVE ASSESSMENT – I (2014-15)

Mathematics (Class – X)

General Instructions:

 The Marking Scheme provides general guidelines to reduce subjectivity and maintain uniformity. The answers given in the marking scheme are the best suggested answers. Marking be done as per the instructions provided in the marking scheme. (It should not be done according to one's own interpretation or any other consideration). Alternative methods be accepted. Proportional marks be awarded. If a question is attempted twice and the candidate has not crossed any answer, only first attempt be evaluated and 'EXTRA' be written with the second attempt. In case where no answers are given or answers are found wrong in this Marking Scheme, correct answers may be found and used for valuation purpose. 	
खण्ड-अ / SECTION-A	
प्रश्न संख्या 1 से 4 में प्रत्येक का 1 अंक है।	
Question numbers 1 to 4 carry one mark each	
Δ AOP ~ Δ BOQ (AA similarity)	1
$\frac{A O}{A P} = \frac{BO}{BQ} \Rightarrow \frac{6}{4} = \frac{4.5}{BQ}$ $\Rightarrow BQ=3$	
$\sec^2 60^\circ + \sec 0^\circ$ = $(2)^2 + 1 = 5$	1

1

2

3	$10 \cdot \frac{1 - \cot^2 45^{\circ}}{1 + \sin^2 90^{\circ}}$ = $10 \cdot \frac{1 - 1}{1 + 1^2}$ = 0	1
4	New median = 21	1
	खण्ड-ब / SECTION-B	
	प्रश्न संख्या 5 से 10 में प्रत्येक का 2 अंक है। Question numbers 5 to 10 carry two marks each.	
5	Since $64 = 2^6$ which is of the form $2^m 5^n$, for non negative integers m and n Hence $\frac{13}{64}$ is a terminating decimal $\frac{13}{64} = \frac{13}{2^6} \times \frac{5^6}{5^6} = \frac{13 \times 5^6}{10^6}$ Hence it has 6 decimal places.	2
6	LCM of m, 2m, 3m, 4m, and 5m is 1. 2^2 . 3. 5 m = 60 m	2

7	Writing condition $\frac{2}{4} \neq \frac{k}{6}$ $k \neq 3$ \therefore For all real values of k, except 3 the given pair of equations will have a unique solution.	2
8	distance = $\sqrt{(50)^2 + (120)^2}$ = 130 m 50 m 120 m	2
9	$1 \div \frac{1}{\sqrt{3}} \left[\sqrt{3} \cdot 1 \right] = 1$	2
10	Arranging in ascending order according to height :Height (in cm)frequency y (f)1482314914171501229	2

	152	8	37						
	154	7	44						
	155	4	48						
	160	2	50						
		Σf	= 50						
	$\Sigma f = n = 50$, which is even Average of $\frac{50}{2}$ and $\frac{50}{2} + 1$, i.e., 25 th and 26 th observation = 150								
	median	=150 cm.							
				खण्ड-स / SECTION-C					
	प्रश्न संख्य	T 11 से 20 में	ों प्रत्येक का 3 अं	ांक है।					
	Question	numbers 1	1 to 20 carry thr	ree marks each.					
11	HCF of 7	'2 and 96			3				
	72) 96 (1								
	<u>72</u> 24)	72 (3							
	-	<u>72</u> 0							
	HCF = 24								
	96m + 72	2n = 24							
	for $m = 1$	l and n = -	-1						

12	$(x - \sqrt{2})$ is a factor	3
	$\frac{x^2 + (3 - \sqrt{2})x - 3\sqrt{2}}{x - \sqrt{2}} = x + 3$	
	other zero $= -3$	
13	$y = \frac{2x - 8}{3} \qquad 4x - 6y = 16$	3
	$\Rightarrow \qquad 2x - 3y = 8$	
	x 1 4 x 1 4	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Graphs	
	Coincident lines Infinitely many solutions	
14	Dividing by <i>xy</i>	3
	$\frac{1}{y} + \frac{4}{x} = 27$ $\frac{1}{y} + \frac{2}{x} = 21$	
	Put $\frac{1}{y} = v$, $\frac{1}{x} = u$	
	4u + v = 27	
	2u + v = 21	
	u = 3, vert v = 15	
	$x = \frac{1}{3}, \qquad y = \frac{1}{15}$	

C.I	f	u _i	f _i u _i	3
0-20	14	-2	- 28	
20-40	р	-1	— p	
40-60	24	0	0	
60 - 80	32	1	32	
80-100	10	2	20	
100 - 120	2	3	6	
	82 + p		30 – p	

formula of mean Mean = $52.4 = 50 + \frac{30 - p}{82 + p} \times 20$ 2.4(82 + p) = (30 - p)20 p = 18

20

21	HCF = 18 LCM = 378 $\frac{LCM}{HCF} = \frac{378}{18} = 21$ Thus HCF divides LCM exactly ∴ two numbers with HCF and LCM as 18 and 378 are possible.	4
22	Sol: Let full fare of one ticket = x Let reservation charges = y Then 2x + 2y = 1700 x + y = 850(I) 3x + 4y = 2700(II) On solving the both equations x = ₹700 and $y = ₹150Value : Mr. Sharma is honest, respect for Nation.$	4
23	Let units and tens place are x and y Number $= 10y + x$ Number obtained on reversing the digits $= 10x + y$	4

	10x + y = (10y + x) + 9	\Rightarrow	9x - 9y = 9		
		\Rightarrow	x-y=1		
	(10x + y) + (10y + x) = 99				
		\rightarrow	x + y - 9		
	x = 5, y = 4				
	number = 45				
24	$Quotient = x^2 - 2x - 3$				4
	Remainder $= x - 1$				
	Verification				
25	In $\triangle ABC$, DP $ BC$, so by B	.P.T.			4
	$\frac{A D}{D B} = \frac{A P}{P C} $ (1)	l)			
	In $\triangle ABC$, EQ $ AC$, so by B	9.P.T.			
	$\frac{BE}{EA} = \frac{BQ}{QC} = \frac{AD}{EA}$	(2)	(0 AD = BE)		
	EA QC EA	(-)	(((12 22)		
	from (1) and (2)				
	$AD = \frac{AP \times DB}{PC} = \frac{BQ \times EA}{CQ}$	-			
	$\frac{AP}{PC} = \frac{BQ}{QC} (Q DB = AB - AB)$	-AD = AI	B - BE = AE)		
	So, by converse of B.P.T.				
	PQ AB				

$$\frac{\tan \theta + \cot \theta}{\tan \theta - \cot \theta} = \frac{\pi}{m} + \frac{\pi}{n} = \frac{\pi^2 + \pi^2}{n^2 - \pi^2}$$
Also, $\frac{\pi \sin \theta - \pi \cos \theta}{\pi \sin^{\theta} - \pi \cos^{\theta}} = \frac{\pi \tan \theta + \pi}{\pi \tan^{\theta} - \pi} = \frac{n^2 + \pi^2}{n^2 - \pi^2}$

$$30 \qquad \qquad \qquad \frac{C.I. \qquad f_i \qquad u_i \qquad f_{iu_i} \qquad f_{iu_i}}{10.14 \qquad 8 \qquad -3 \qquad -24}$$

$$14.18 \qquad 7 \qquad -2 \qquad -14$$

$$14.18 \qquad 7 \qquad -2 \qquad -14$$

$$18.22 \qquad 4 \qquad -1 \qquad -4$$

$$22.26 \qquad x \qquad 0 \qquad 0$$

$$26.30 \qquad 6 \qquad 1 \qquad 6$$

$$30.34 \qquad y \qquad 2 \qquad 2y$$

$$34.38 \qquad 3 \qquad 3 \qquad 9$$

$$\boxed{1 \qquad 1 \qquad 22.26} \qquad x \qquad 0 \qquad 0$$

$$26.30 \qquad 6 \qquad 1 \qquad 6$$

$$30.34 \qquad y \qquad 2 \qquad 2y$$

$$34.38 \qquad 3 \qquad 3 \qquad 9$$

$$\boxed{1 \qquad 1 \qquad 22.29} \qquad x \qquad 0 \qquad 0$$

$$25f_i = 28 + x + y \qquad 25f_i u_i = 2y - 27$$

$$= 40$$

$$\boxed{1 \qquad 1 \qquad 23 = 27 - 2y \Rightarrow \qquad y = 2} \qquad \Rightarrow \qquad x = 10$$

$$x = 10, y = 2$$

31	Points for n	nore thar	n type og	give						4	
	Drawing of	curve, n	nedian fr	rom ogiv	e≈'45 y	ears'					
	C. I. 10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100		
	f 9	11	17	26	13	8	11	4	1		
	c.f 9	20	37	63	76	84	95	99	100		
	$\frac{\sum f}{2} = 50$	⇒	Media	n class =	40-50						
	Median = 40	$1 + \frac{50}{26}$	³⁷ ×10	=45 yea	rs						
			-0	00000-							
			Ū								