CCE RF CCE RR

ಕರ್ನಾಟಕ ಪ್ರೌಢ ಶಿಕ್ಷಣ ಪರೀಕ್ಷಾ ಮಂಡಳಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು – 560 003

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESWARAM, **BANGALORE - 560 003**

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಮಾರ್ಚ್ / ಏಪ್ರಿಲ್ – 2017

S. S. L. C. EXAMINATION, MARCH/APRIL, 2017

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 07. 04. 2017]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Chem.)

Date: 07.04.2017

CODE NO. : 83-E (Chem.)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

(ರಸಾಯನಶಾಸ್ತ್ರ / Chemistry)

(ಹೊಸ ಪಠ್ಯಕ್ರಮ / New Syllabus)

(ಶಾಲಾ ಅಭ್ಯರ್ಥಿ + ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Fresh + Regular Repeater) (ಇಂಗ್ಲಿಷ್ ಭಾಷಾಂತರ / English Version)

[ಗರಿಷ್ಠ ಅಂಕ್ಷೆಗಳು : **80**

[Max. Marks : 80

Qn. Nos.	Value Points	Total
2.	The atomic number of an element 'X' is 16. In the modern periodic table	
	the element 'X' belongs to this block and period.	
	Ans.: (A) — P-block, 3rd period	1
5.	An example for polyfunctional compound is	
	Ans. : (A) — Glycine	1
9.	The constituents of alloy which is used in the manufacture of permanent	
	magnets are	
	Ans. : (B) — Nickel + Cobalt + Iron + Aluminium	1
13.	Write one use of Zeolite.	
	Ans. :	
	Used in removal of hardness of water.	1
	RF+RR-0J1027 (CHE)	Turn ovei

	83-E (Chem.)
--	--------	-------	---

CCE RF+RR

Qn. Ios.	Value Points	Tota			
15.	Write one difference between saturated hydrocarbons and unsaturated				
	hydrocarbons.				
	Ans. :				
	Saturated hydrocarbons :				
	i) Composed entirely of single bonds between carbon atoms				
	ii) Stable compounds / less reactive.				
	Unsaturated hydrocarbons :	1			
	i) Have one or more double or triple bonds between two successive	1			
	carbon atoms somewhere in the chain.				
	ii) Unstable compounds / more reactive. (any <i>one</i>)	1			
16.	When the mixture of silica and coke is heated in an electrical furnace,				
	silicon carbide is formed instead of silicon. What is the reason ?				
	Ans. :				
	Less silica / excess of coke is used in the furnace. (any one)	1			
18.	State Faraday's first law of electrolysis.				
	Ans. :				
	The mass of substance deposited at either electrodes during electrolysis				
	is proportional to the product of current and to the time.	1			
20.	In the modern periodic table, how does the atomic size of the elements				
	vary along the period and down the group ? Explain.				
	Ans. :				
	The atomic size decreases along the period. Along the period there will be				
	no change in the number of shells. But more electrons added to the				
	same shell and the nucleus exerts greater inward pull on the electrons.				
	$2 \times \frac{1}{2}$				
	The atomic size increases down the group. Because down the group new				
	shell is added to the atom or the number of shell increases. $2 \times \frac{1}{2}$	2			
	RF+RR-0J1027 (CHE)				

 v can coloured glass be obtained from molten glass ? Na mical compounds to be added to molten glass to obtain the formed glass. (a) Yellow glass (b) Blue glass. OR e scientific reason : (a) Ceramics are used in electrical gadgetry. (b) Wax paper is used in food preservation. s. : npounds of certain metals are added to the molten glass. low colour — Ferric compounds e colour — Cobalt compounds. 		2
mical compounds to be added to molten glass to obtain the formula glass. (a) Yellow glass (b) Blue glass. OR e scientific reason : (a) Ceramics are used in electrical gadgetry. (b) Wax paper is used in food preservation. s. : npounds of certain metals are added to the molten glass. How colour — Ferric compounds the colour — Cobalt compounds. OR	bllowing 1	2
 a. Yellow glass (b) Blue glass. OR e scientific reason : (a) Ceramics are used in electrical gadgetry. (b) Wax paper is used in food preservation. (c) S. : npounds of certain metals are added to the molten glass. (c) compounds (c) compounds. 	$1\\\frac{1}{2}\\1$	2
 (b) Blue glass. OR e scientific reason : (a) Ceramics are used in electrical gadgetry. (b) Wax paper is used in food preservation. 6. : npounds of certain metals are added to the molten glass. low colour — Ferric compounds e colour — Cobalt compounds. 	$\frac{1}{2}$	2
OR e scientific reason : (a) Ceramics are used in electrical gadgetry. (b) Wax paper is used in food preservation. (c) Wax paper is used in food preservation.	$\frac{1}{2}$	2
e scientific reason : (a) Ceramics are used in electrical gadgetry. (b) Wax paper is used in food preservation. (c) : npounds of certain metals are added to the molten glass. low colour — Ferric compounds e colour — Cobalt compounds. OR	$\frac{1}{2}$	2
 (a) Ceramics are used in electrical gadgetry. (b) Wax paper is used in food preservation. (c) Wax paper is used	$\frac{1}{2}$	2
 (b) Wax paper is used in food preservation. (c) Wax paper is used i	$\frac{1}{2}$	2
s. : npounds of certain metals are added to the molten glass. low colour — Ferric compounds .e colour — Cobalt compounds. OR	$\frac{1}{2}$	2
npounds of certain metals are added to the molten glass. low colour — Ferric compounds le colour — Cobalt compounds. OR	$\frac{1}{2}$	2
low colour — Ferric compounds e colour — Cobalt compounds. OR	$\frac{1}{2}$	2
e colour — Cobalt compounds. OR	$\overline{2}$	2
OR	$\frac{1}{2}$	2
Ceramics are insulators.	1	
Moisture resistant.	1	2
e given equation represents the reaction of copper sulphate	with an	
ment X.		
$CuSO_4 + X \rightarrow Cu + Y$		
ich element is represented by X, among Fe and Ag ? Just	ify your	
swer. Write the molecular formula of the compound represente	d by Y.	
s. :		
	$\frac{1}{2}$	
e reactivity of iron (Fe) is more than copper (Cu)	1	
SO ₄ .	$\frac{1}{2}$	2
	ich element is represented by <i>X</i> , among Fe and Ag ? Just swer. Write the molecular formula of the compound represente s. : e reactivity of iron (Fe) is more than copper (Cu)	ich element is represented by X, among Fe and Ag ? Justify your swer. Write the molecular formula of the compound represented by Y. s. : $\frac{1}{2}$ e reactivity of iron (Fe) is more than copper (Cu) 1

83-E (Chem.)

CCE RF+RR

los.	Value Points	Tota
29.	Air filled balloon is kept inside the glass jar fitted with a vacuum pump. What will be the change in the size of the balloon when air is taken out with the help of vacuum pump from the jar ? State the law which supports your answer. Ans. : The size of balloon increases. 1 "At constant temperature, the volume of a given mass of dry gas is inversely proportional to its pressure."	2
33.	Draw the diagram of the apparatus used in electroplating.	4
	Ans.:	2
36.	 (a) Write the steps of manufacturing sugar from sugarcane. (b) In the manufacture of sugar mention the importance of the following : (i) Norit (ii) Calcium hydroxide. 	
	OR	

CCE RF+RR

83-E (Chem.)

Qn. Nos.			Value Points	Total
	Bri	efly (explain the manufacture of ethyl alcohol from molasses.	
	An	s. :		
	a)	i)	Extraction of the juice from the source	
		ii)	Purification of the juice	
		iii)	Concentration and crystallization	
		iv)	Separation and drying of crystals. $4 \times \frac{1}{2}$	
	b)	i)	Norit — to decolourise the sugar solution.	
		ii)	Calcium hydroxide — To make the juice alkaline and impurities	
			get precipitated. $\frac{1}{2} + \frac{1}{2}$	3
			OR	
	i)	Мо	plasses is diluted with water.	
	ii)	Aci	idified by adding sulphuric acid.	
	iii)	Yea	ast is added to the solution and the container is closed.	
	iv)	Th	e temperature is maintained around 308 K. Fermentation takes	3
		pla	ace in about a week.	
	v)	Th	e fermented matter called 'wort' contains 6% to 10% alcohol.	
	vi)	It i	is fractionally distilled to obtain 95% alcohol. $6 \times \frac{1}{2}$	
	No	ote : 1	No marks for chemical equations of fermentation.	3
			RF+RR-0J1027 (CHE)	[Turn over

RF+RR-0J1027 (CHE)

[Turn over

83-E (Chem.)

CCE RF+RR

CCE RF+RR

•

83-E (Chem.)

Qn. Nos.		Value Points		Total
	b)	Carbon monoxide (CO)	1	
	c)	Hydrogenated oils —		
		i) have more shelf life, easy to transport		
		ii) do not produce foul smell.	$\frac{1}{2} + \frac{1}{2}$	4

RF+RR-0J1027 (CHE)