10236

120 MINUTES

1.	The maximum val	ue of $ z $ when z sati	isfies the condition	$ z + \frac{1}{z} = 4$ is
	A) $2 - \sqrt{5}$	B) $2 + \sqrt{5}$	C) $4 - \sqrt{5}$	D) $4 + \sqrt{5}$
2.	If $1, \omega_1, \omega_2, \dots, \omega_9$ at $(1 + \omega_1)(1 + \omega_2) \cdots$	the 10 th roots of $\cdot (1 + \omega_9)$ is	unity, then	
	A) 0	B) 1	C) -1	D) 9
3.	If x is a real numb when x is	er, then $(x-1)^2 + ($	$(x-2)^2 + \dots + (x-1)^2$	$(100)^2$ is least
	A) 50	B) 100	C) 101	D) $\frac{101}{2}$
4.	The sum $100C_0 +$	$101C_1 + 102C_2 + \cdots$	$\cdot + 150C_{50}$ is	
	A) $200C_{100}$	B) 201 <i>C</i> ₅₀	C) $201C_{100}$	D) $151C_{50}$
5.	If $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix}$) then A^{101} is		
	A) I	B) $A - I$	C) <i>A</i>	D) $(a+b)(A-I)$
6.	The value of the d	$\begin{array}{c c} 1 \\ log_{10} 5 \\ log_{15} 5 \end{array}$	$\begin{array}{ccc} \log_5 10 & \log_5 15 \\ 1 & \log_{10} 15 \\ \log_{15} 10 & 1 \end{array}$	is
	A) 0 C) $\log_5 150 + \log_{10}$	$575 + \log_{15} 50$	B) 1 D) $\log_5 25 + \log_{10} 3$	$20 + \log_{15} 15$
7.	For what value of λ represent a pair of	A will the equation λ straight lines	$x^2 - 10xy + 12y^2 + 5x$	c - 16y - 3 = 0
	A) 4	B) 2	C) -2	D) 3
8.	The equation of a A) $\sqrt{3}(x-2) + (y)$ B) $\sqrt{3}(x-2) + (y)$ C) $\sqrt{3}(x-2) + (y)$ D) $(x-2) + \sqrt{3}(y)$	(y-3) = 5 (y-3) = 10	e $x^2 + y^2 - 2x - 6y$	y - 12 = 0 is

9. The director circle of the ellipse
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
 is
A) $x^2 + u^2 = 16$
B) $x^2 + u^2 = 16$

A)
$$x^2 + y^2 = 16$$

C) $x^2 + y^2 = 7$
B) $x^2 + y^2 = 9$
D) $x^2 + y^2 = 25$

10. The angle between the planes 2x - y + z = 6 and x + y + 2z = 3 is A) π B) $\frac{\pi}{2}$ C) $\frac{\pi}{3}$ D) $\frac{\pi}{6}$

11. The equation of the perpendicular bisector of the straight line joining the points (2,3) and (1,2) is

A)
$$x - y + 4 = 0$$

C) $x + y - 4 = 0$
B) $x - y - 2 = 0$
D) $x + y - 2 = 0$

- 12. The spheres $x^2 + y^2 + z^2 = 25$ and $x^2 + y^2 + z^2 24x 40y 18z + 225 = 0$
 - A) touch internally
 - B) touch externally
 - C) do not touch each other
 - D) intersect each other

13. $\cos 2x + a \sin x = 2a - 7$ possesses a solution for

- A) all a B) a > 6 C) a < 2 D) $a \in [2, 6]$
- 14. The lowest degree of the polynomial with real coefficients having roots 2, -3, 2+i, 1+i is

15. Let f(x) = 6x + 5. If f_n denotes the function $f \circ f \circ \cdots \circ f$ n times then $f_{15}(5)$ is

A)
$$6^{15} - 1$$
 B) $6^{15} + 1$ C) $6^{16} - 1$ D) $5(6^{15} + 1)$

16. If
$$f(x) = 2^x + 2^{x+1} + \dots + 2^{x+9}$$
 then $f'(2)$ is
A) $1023 \log_e 16$ B) $1023 \log_e 8$ C) $1023 \log_e 4$ D) $1023 \log_e 2$

- 17. If $f(x) = \min\{x, x^2\}$ for every real value of x, then which one of the following is not true
 - A) f is continuous for all x
 - B) f is differentiable for all x
 - C) f'(x) = 1 for all x > 1
 - D) one of the above statement is wrong

18. If
$$\int_0^{\frac{\pi}{2}} \cos^n x dx = A$$
, then the value of $n \int_{\frac{\pi}{2}}^0 \sin^n x dx$ is
A) $-A$ B) A C) nA D) $-nA$

19. If
$$\int_{0}^{x} f(t) dt = x + \int_{x}^{1} tf(t) dt$$
 then the value of $f(1)$ is
A) $\frac{1}{2}$ B) $-\frac{1}{2}$ C) 1 D) -1

20. The general solution of the equation $(e^{-x} + \sin y)dx + \cos ydy = 0$ is

- A) $x + e^{-x} \cos y + C = 0$ B) $x - e^{-x} \sin y + C = 0$ C) $x + e^x \sin y + C = 0$ D) $x - e^x \sin y + C = 0$
- 21. $\lim_{n \to \infty} \{\sqrt{n^2 + n} n\}$ is A) 0 B) 1 C) $\frac{1}{2}$ D) ∞
- 22. $\lim_{n \to \infty} (n^{\frac{1}{n}} 1)^n \text{ is}$ A) 1 B) 0 C) e D) ∞
- 23. Which of the following series is divergent

A)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

B)
$$\sum_{n=1}^{\infty} \frac{1}{n\log(n+1)}$$

C)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}$$

D)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

24. Which of the following sequence is convergent for all x in [0, 1], but is not uniformly convergent on [0, 1]?

A)
$$\{\frac{\sin nx}{\sqrt{n}}\}$$
 B) $\{\sin nx\}$ C) $\{x^n(1+x)^{-n}\}$ D) $\{x^n\}$

- 25. If $A = \lim_{x \to 0} x \sin \frac{1}{x}$ and $B = \lim_{x \to \infty} x \sin \frac{1}{x}$, then A) A = B = 0C) A = 0 and B = 1B) A = 0 and $B = \infty$ D) A = 1 and $B = \infty$
- 26. Let [x] denote the greatest integer not exceeding x, then the value of the Riemann Stielgies integral $\int_{0}^{2} x^{2} d[x]$ is equal to

27. Let the function f be defined on \mathbb{R} by

$$f(x) = \begin{cases} 0, & \text{if } x \text{ is rational} \\ x, & \text{Otherwise} \end{cases}$$

Let μ be the Lebesgue measure on [0, 1], then the Lebesgue integral $\int_{0}^{1} f d\mu$ has the value

- A) 1 B) 0 C) $\frac{1}{2}$ D) 2
- 28. Let $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ -1, & \text{if } x \text{ is irrational} \end{cases}$ Then which of the following function is Riemann integrable on [0, 1] A) f B) |f| C) f^+ D) f^-

29. If the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$ is R, then the radius of convergence of the power series $\sum_{n=0}^{\infty} n^2 a_n z^n$ is A) R B) 2R C) $\frac{R}{2}$ D) R^2 30. Which of the following power series represent the principal branch of $\log(1+z)?$

A)
$$z - \frac{z^2}{2} + \frac{z^3}{3} - \cdots$$

B) $z + \frac{z^2}{2} + \frac{z^3}{3} + \cdots$
C) $1 + z + \frac{z^2}{2} + \cdots$
D) $1 - z + \frac{z^2}{2} - \cdots$

31. Let γ be the path defined by $\gamma(t) = e^{4\pi i t}, 0 \le t \le 1$. Then the value of the integral $\int_{\gamma} \frac{dz}{z}$ is

A)
$$2\pi i$$
 B) $4\pi i$ C) 0 D) $-2\pi i$

32. The singularity of the function $\frac{1-\cos z}{z^2}$ at z=0 is

A) a simple pole B) a pole of order 2C) a removable singularity D) an essential singularity

33. Let γ be a positively oriented unit circle, then $\int \frac{\sin z}{z^2} dz$ has the value i

A)
$$2\pi i$$
 B) 0 C) $-2\pi i$ D) 4π

34. At z = 0, the function $f(z) = \frac{1}{z} + \frac{1}{z^2} + e^{\frac{1}{z}}$ has

A) an essential singularity B) a simple pole C) a pole of order 2D) a removable singularity

35. The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^2 z^{2n}}{2^n}$ is

A)
$$\frac{1}{\sqrt{2}}$$
 B) 2 C) $\sqrt{2}$ D) $\frac{1}{2}$

- 36. Which of the following subsets of the complex plane is simply connected?
 - A) $\{z : |z| > 1\}$ B) $\{z : |z 1| \le 2\} \cup \{z : |z + 1| \le 2\}$ C) $\{z : 0 < |z| < 1\}$ D) $\{z : |z 1| > 1\}$

- 37. Let T be the Mobius transformation defined by $T(z) = \frac{z+i}{iz+1}$. Then T maps the real axis $\{z : \text{Im } z = 0\}$ onto
 - A) the imaginary axis $\{z : \text{Re } z = 0\}$
 - B) the unit circle $\{z : |z| = 1\}$
 - C) the line $\{z : \text{Re } z = 1\}$
 - D) the circle $\{z : |z i| = 1\}$
- 38. Let $f(z) = \sin \frac{\pi}{z}$, $z \in \mathbb{C}$, $z \neq 0$. Then which of the following statements is incorrect.
 - A) f(z) has infinite number of zeros in \mathbb{C}
 - B) z = 0 is an essential singularity of f
 - C) $\lim_{|z|\to\infty} f(z) = 0$
 - D) f(z) is bounded in the annulus $\{z : 0 < |z| < 1\}$
- 39. The residue at z = 1 of the function $\frac{1}{(z-1)(z-3)^2}$ is A) 2 B) 0 C) $\frac{1}{4}$ D) 4

40. The coefficient of $\frac{1}{z}$ in the Laurent series expansion of $f(z) = \frac{1}{z(z-1)}$ in the region $1 < |z| < \infty$ is

- A) 1 B) 0 C) -1 D) 2
- 41. Which of the following permutations is even

$(1 \ 2)$	$3 \ 4 \ 5$	$(1 \ 2 \ 3 \ 4 \ 5)$
A) $\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$	4 5 1)	$(5 \ 3 \ 4 \ 2 \ 1)$
C) $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$	$3 \ 4 \ 5$	B) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix}$ D) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$
$\binom{0}{2}$	4 5 3)	$D_{j}(3 \ 1 \ 2 \ 5 \ 4)$

- 42. If a + bi with $a, b \in \mathbb{Z}$ is a unit in the ring $\mathbb{Z}[i]$ of Gaussian integers, then which of the following is true
 - A) a = 1 B) a = -1 C) b = 1 D) ab = 0
- 43. Which of the following groups is cyclic
 - A) $\mathbb{Z}_6 \oplus \mathbb{Z}_8$ B) $\mathbb{Z}_3 \oplus \mathbb{Z}_{16}$ C) $\mathbb{Z}_4 \oplus \mathbb{Z}_{12}$ D) $\mathbb{Z}_2 \oplus \mathbb{Z}_{24}$

44. The order of the element (2,2) in the group $\mathbb{Z}_4 \oplus \mathbb{Z}_6$ is A) 2 D) 8

B) 4 C) 6

45. For which of the following numbers all groups of that order are abelian

A) 6 B) 8 C) 12 D) 25

46. Which of the following pair of groups are isomorphic

A) \mathbb{Z}_{24} and $\mathbb{Z}_8 \oplus \mathbb{Z}_3$	B) \mathbb{Z}_{25} and $\mathbb{Z}_5 \oplus \mathbb{Z}_5$
C) \mathbb{Z}_4 and $\mathbb{Z}_2 \oplus \mathbb{Z}_2$	D) \mathbb{Z}_{20} and $\mathbb{Z}_2 \oplus \mathbb{Z}_{10}$

47. Which of the following maps is a homomorphism on the ring $\mathbb{Z} \times \mathbb{Z}$ A) $\phi(x, y) = (2x, 2y)$ B) $\phi(x, y) = (x + y, 0)$ D) $\phi(x, y) = (y, x)$ C) $\phi(x, y) = (2x, 3y)$

48. Which of the following is a unit in the ring $\mathbb{Z}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$

B) $2 + 3\sqrt{2}$ C) $2 + \sqrt{2}$ D) $1 + 2\sqrt{2}$ A) $3 + 2\sqrt{2}$

49. Which of the following equations has a solution in \mathbb{Z}_{18}

A) 3x = 5B) 4x = 3C) 5x = 4D) 6x = 7

50. Which of the following polynomials is not irreducible in $\mathbb{Z}_3[x]$

A) $x^2 + 1$	B) $x^2 + x + 2$
C) $x^3 + x^2 + 2$	D) $x^3 + x + 1$

51. Which of the following is an ideal in the ring F[x] of all polynomials over a field F

A) set of all polynomials in F[x] of degree> 1 B) set of all polynomials in F[x] of degree ≤ 1

- C) set of all polynomials in F[x] without constant term
- D) set of all polynomials $f(x) \in F[x]$ such that $f(0) \neq 0$

52. The degree of the field extension $[\mathbb{Q}(\sqrt{2} + \sqrt{3}), \mathbb{Q}]$ is

- 53. Which of the following statement is not true about an algebraically closed field ${\cal K}$
 - A) Every non constant polynomial in K[x] has a zero in K
 - B) Every polynomial in K[x] of degree n has a factorization into n linear factors in K[x]
 - C) Irreducible polynomials in K[x] have degree ≤ 1
 - D) Every extension of K is an algebraic extension
- 54. Let $K = \mathbb{Q}(\alpha)$ where α is the real cube root of 2, then the order of the automorphism group Aut (K, \mathbb{Q}) is
 - A) 1 B) 2 C) 4 D) 6
- 55. Let σ be an automorphism in Aut $(\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q})$. Then which of the following can not hold

A)
$$\sigma(\sqrt{2}) = -\sqrt{2}$$

C) $\sigma(\sqrt{2} + \sqrt{3}) = \sqrt{2} - \sqrt{3}$
B) $\sigma(\sqrt{2}) = \sqrt{3}$
D) $\sigma(\sqrt{2} + \sqrt{3}) = -\sqrt{2} + \sqrt{3}$

- 56. In the vector space \mathbb{R}^3 over \mathbb{R} , W is the subspace given by $W = \{(x_1, x_2, x_3) : x_1 + x_2 + x_3 = 0\}$. Then dim W is A) 0 B) 1 C) 2 D) 3
- 57. Which of the following is a linearly independent set in \mathbb{R}^2

A)
$$\{(1,-1), (-2,2)\}$$

C) $\{(1,2), (2,4)\}$
B) $\{(1,-1), (3,-1)\}$
D) $\{(3,1), (-3,-1)\}$

58. Which of the following is an eigen vector of the matrix $A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$

A)
$$\begin{bmatrix} 1\\2 \end{bmatrix}$$
 B) $\begin{bmatrix} 2\\1 \end{bmatrix}$ C) $\begin{bmatrix} 3\\0 \end{bmatrix}$ D) $\begin{bmatrix} 0\\2 \end{bmatrix}$

59. Which of the following matrix is diagonalizable

	[1	1	0		$\lceil 2 \rceil$	1	0]		2	1	0		2	0	0	
A)	0	1	1	B)	0	2	0		C)	0	1	2	D)	0	1	1	
A)	0	0	1	B)	0	0	2		C)	0	0	3	D)	0	0	1	
	L				-		-	-		-		_		-			

- 60. Let T from \mathbb{R}^2 to \mathbb{R}^3 be defined by T(x,y) = (x+y,x+y,0). Then rank T is
 - A) 0 B) 1 C) 2 D) 3

- 61. With usual metric in $\mathbb R$ which of the following subspaces of $\mathbb R$ is complete
 - A) the rationals in \mathbb{R}
 - B) the irrationals in \mathbb{R}
 - C) the closed interval [0, 1]
 - D) the open interval (0, 1)
- 62. With usual topology on the spaces concerned which of the following spaces is not connected?

$A) \{ z \in \mathbb{C} : z < 1 \}$	B) $\{x \in \mathbb{R} : x < 1\}$
$C) \{ z \in \mathbb{C} : z > 1 \}$	$D) \{ x \in \mathbb{R} : x > 1 \}$

63. Which of the following is not a property of \mathbb{R} (with usual topology)

A) second countability	B) compactness
C) separability	D) local compactness

64. Which among the following topologies on \mathbb{R} is an example of a topology not induced by a pseudo metric?

A) usual topology	B) discrete topology
C) indiscrete topology	D) cofinite topology

65. Which of the following functions $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is not a metric

A)
$$d(x,y) = |x - y|$$

B) $d(x,y) = 2|x - y|$
C) $d(x,y) = \frac{|x - y|}{1 + |x - y|}$
D) $d(x,y) = |x - y|^2$

66. Let X be a topological space and let A, B be subsets of X. Then it is not always true that

A)
$$\overline{\overline{A}} = \overline{A}$$

C) $\overline{(A \cap B)} = \overline{A} \cap \overline{B}$
B) $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$
D) $\overline{X} = X$

67. With the usual topology, which of the following subspaces of \mathbb{R} is not homeomorphic to (0, 1)?

A)
$$\{x|x > 0\}$$
 B) $[0,1]$ C) \mathbb{R} D) $(-1,1)$

- 68. Let X be a metric space. Three of the following properties of X are equivalent to each other, pick the odd one out
 - A) X is compact
 - B) X is sequentially compact
 - C) X has the Bolzano-Weierstrass property
 - D) X is totally bounded
- 69. Let \mathbb{R} be the space of real numbers with usual topology. Which of the following subspaces of \mathbb{R} is compact?
 - A) (0,1) B) $[0,1] \cup [2,3]$

 C) [0,1) D) set of all rationals in \mathbb{R}
- 70. Let (X, τ) be the Sierpinski topology with $X = \{a, b\}, \tau = \{\phi, \{a\}, X\}$. Then X is not a

A) compact space	B) connected space
C) T_0 space	D) T_1 space

- 71. Let X be the normed linear space of square summable real sequences with $|| ||_2$ and Y be the subspace generated by the elements (1, 0, 0, ...) and (0, 1, 0, ...). If $U = \{x \in X : ||x||_2 < 1\}$ Then
 - A) Y + U is open in X
 - B) Y + U is closed in X
 - C) Y + U is neither open nor closed in X
 - D) Y + U is not bounded in X
- 72. Let X be the complex normed linear space of summable sequences of complex numbers with norm $\| \|_1$ and $Y = \{x \in X : \|x\|_1 \le 1\}$ then
 - A) Y is compact and convex
 - B) Y is compact but not convex
 - C) Y is neither compact nor convex
 - D) Y is convex but not compact
- 73. Let $X = C_{00}$, the space of all real sequences which have only finitely many nonzero members, and f be the linear functional on X defined by $f(x(1), x(2), \ldots) = x(1) + x(2) + \cdots$ for $x = (x(1), x(2), \ldots) \in X$. Then f is continuous
 - A) with respect to $\| \|_1$ and $\| \|_2$ but not with respect to $\| \|_{\infty}$
 - B) with respect to $\| \|_1$ and $\| \|_{\infty}$ but not with respect to $\| \|_2$
 - C) with respect to $\| \|_2$ and $\| \|_{\infty}$ but not with respect to $\| \|_1$
 - D) with respect to $\| \|_1, \| \|_2$ and $\| \|_{\infty}$

- 74. Let $X = C_{00}$ with $|| ||_{\infty}$ and $F : X \to l^{\infty}$ be a bounded linear map. Then there is a bounded linear map $G : C_0 \to l^{\infty}$ such that
 - A) *G* is unique, $G/C_{00} = F$ and ||F|| < ||G||
 - B) G is unique, $G/C_{00} = F$ and ||F|| = ||G||
 - C) $G/C_{00} = F$ and ||F|| = ||G|| but G is not necessarily unique
 - D) G is unique, R(G) = R(F) and ||F|| < ||G||
- 75. Let X be a normed linear space and Y be a subspace of X with basis $\{y_1, y_2, \ldots, y_n\}$. Let x'_1, x'_2, \ldots, x'_n be linear functionals with

$$x'_i(y_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

If $Z = \{x : x'_j(x) = 0, \text{ for } j = 1, 2, ..., n\}$ then which one of the following is not correct?

A)
$$Y \cap Z = \{0\}$$
B) $Y + Z = X$ C) Z is openD) Z is closed

76. If *H* is the Hilbert space of square summable sequences of complex numbers and if $x = (x(1), x(2), ...) \in H$ has the property that $2 \sum_{i=1, i \neq j}^{\infty} |x(i)|^2 + |x(j) - 1|^2 + |x(j) + 1|^2 = 18$ then ||x|| is equal to A) 1 B) 2 C) $2\sqrt{2}$ D) 4

- 77. Let *H* be the complex Hilbert space of square summable sequences of complex numbers and $T : H \to H$ be defined $T(x(1), x(2), \ldots) = (0, x(1), x(2), \ldots)$ for $x = (x(1), x(2), \ldots) \in H$. Then which one of the following is not correct?
 - A) T is boundedB) ||T|| = 1C) T is one-one but not ontoD) T is one-one and onto
- 78. Let M be a closed subspace of a complex Hilbert space H. Let P and Q be orthogonal projections of H onto M and M^{\perp} respectively. Then the set of all values of α , β such that $\alpha P + \beta Q$ is selfadjoint is

A) ϕ	B) {1}
C) the set of all real numbers	D) set of all complex numbers

- 79. Let *H* be the real Hilbert space $L^2([0, 2\pi])$ and *f* be a linear functional on *H* defined by $f(x) = \int_{0}^{2\pi} x \sin 2x dx$. Then ||f|| is A) 1 B) π C) 2π D) $\sqrt{\pi}$
- 80. Let X_1 and X_2 be closed subspaces of a Hilbert space H and let P_1 and P_2 be orthogonal projections on X_1 and X_2 respectively. If $\langle x, y \rangle = 0$ for all $x \in X_1, y \in X_2$ then which one of the following is not correct?
 - A) $X_1 + X_2$ is a closed subspace of HB) $P_1 - P_2$ is an orthogonal projection C) $(P_1 - P_2)^2$ is an orthogonal projection D) $P_1 + P_2$ is an orthogonal projection