Central Board of School Education

Marking Scheme 2016

[Official]

CHEMISTRY MARKING SCHEME FOREIGN-2016 SET -56/2/1/F

Q.no.	Answers	Marks
1	Like Charged particles cause repulsion/ Brownian motion/ solvation	1
2	Because of some crystallization.	1
3	Reaction (ii)	1
4	NO ₂ gas	1
5	N,N-dimethylbutanamide	1
6	i) $[Co(NH_3)_4Cl_2]Cl$	1
	ii) Tetraamminedichloridocobalt(III) chloride	1
7	When reaction is completed 99.9%, $[R]_n = [R]_0 - 0.999[R]_0$	
	$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1⁄2
	2.303 [R] 2.303	
	$= \frac{2.303}{t} \log \frac{[R]_0}{[R]_0 - 0.999[R]_0} = \frac{2.303}{t} \log 10^3$	
	t = 6.909/k For half-life of the reaction	1⁄2
	$t_{1/2} = 0.693/k$	
	$\frac{t}{t_{1/2}} = \frac{6.909}{k} \times \frac{k}{0.693} = 10$	1
	OR	
7		
	$R \rightarrow P$	
	Rate = $\frac{dR}{dt} = kR$	
	Rate = $\frac{d R}{dt} = k R$ or $\frac{d R}{R} = -kdt$	
	or $\frac{d}{R} = -kdt$	1⁄2
	Integrating this equation, we get	
	$\ln [R] = -kt + 1. $ (4.8)	
	Again, L is the constant of integration and its value can be determined	
	eastly.	
	When $t = 0$, $R = [R]_0$, where $[R]_0$ is the initial concentration of the reactant.	
	Therefore, equation (4.8) can be written as	
	$\ln [R]_0 = -k \times 0 + I$	
	$\ln [R]_0 = I$	
	Substituting the value of I in equation (4.8)	
	$\ln[\mathbf{R}] = -kt + \ln[\mathbf{R}]_0 \tag{4.9}$	
	Rearranging this equation	1⁄2
	$\ln \frac{R}{R_0} = kt$	
	or $k = \frac{1}{t} \ln \frac{[R]_0}{[R]}$	
	1	
	1	

	$k = \frac{2.303}{t} \log \frac{[\text{R}]_0}{[\text{R}]}$	
	. (.)	1
		1
8	Henry's law states that the mole fraction of gas in the solution is proportional to the partial pressure of the gas over the solution.	1
	Applications: solubility of CO ₂ gas in soft drinks /solubility of air diluted with helium in blood used by sea divers or any other	1⁄2
	Solubility of gas in liquid decreases with increase in temperature.	1⁄2
9	$X = CH_3$ -CO-CH ₂ -CH ₃ / Butan-2-one	1
	$Y = CH_3 - CH(OH) - CH_2 - CH_3 / Butan - 2 - ol$	1
10	i) ii)	
		1+1
11	0015	
	$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$	1
	$= \frac{2.303}{300} \log \frac{0.3}{2 \times 0.3 - 0.5}$	1
	$=\frac{2.303}{300}\log 3$	
	$= \frac{2.303 \times 0.4771}{300}$	
	$= 0.0036 \text{ atm}^{-1} \text{ or } 0.004 \text{ atm}^{-1} \text{ (approx.)}$	1

	1	
12	i)Because of the resonance stabilization of the conjugate base i.e enolate anion or	11/
	diagrammatic representation.	11⁄2
	iii)Because the carboxyl group gets bonded to the catalyst anhyd.AlCl ₃ (lewis acid).	11/2
	(note: part ii is deleted because of printing error and mark alloted in part i and	1/2
	part iii)	
	OR	
12	i) $C_6H_5CH_3$ <u>CrO₃/(CH₃CO)₂O</u> $C_6H_5CH(OCOCH_3)_2$ <u>H₂O</u> C_6H_5CHO	
	ii)CH ₃ COOH <u>Cl₂/P</u> Cl-CH ₂ -COOH	
	iii)CH ₃ COCH ₃ Zn(Hg)/conc.HCl CH ₃ CH ₂ CH ₃	1x3=3
	(Or by any other correct method)	
13	$\mathbf{d} = \mathbf{z} \mathbf{x} \mathbf{M}$	
	$\mathbf{d} = \frac{\mathbf{z} \times \mathbf{M}}{\mathbf{N}_{\mathbf{A}} \times \mathbf{a}^3}$	
	\$G*	
	Or	
		1
	d = $\underline{z \times w}_{N \times a^3}$ Where w is weight and N is no. of atoms.	1
	$d = 4 \times 200 g$	1
	$2.5 \times 10^{24} \times (400 \times 10^{-10} \text{ cm})^3$	
	$d = 5 \text{ g cm}^{-3}$	1
		1
	(or by any other correct method)	
14	i) It is a process in which both adsorption and absorption can take place simultaneously.	
	ii) It is the notantial difference between the fired laws and the differend (de-the laws	1
	ii) It is the potential difference between the fixed layer and the diffused/ double layer of opposite charges around the colloidal particles.	1
	or opposite charges around the conordar particles.	1
	iii) It is the temperature above which the formation of micelles takes place.	
		1

For complete ionisation of Na ₂ SO ₄ i=3 $\Delta T_{f} = T_{f}^{0} \cdot T_{f} = 3 \times 1.86 \text{ K kg mol}^{-1} \times \frac{2g}{142 \text{ g mol}^{-1}} \times \frac{1000 \text{ g kg}^{-1}}{50 \text{ g}}$ 1 $\Delta T_{f} = 1.57$ So, $T_{f} = -1.57^{\circ}\text{C}$ or 271.43K 1 16 i)Because of high roxidation state (+5) / high charge to size ratio / high polarizing power. ii)Because of high interelectronic repulsion. iii)Because of high interelectronic repulsion. iii)Because of high slow bond dissociation enthalpy and high hydration enthalpy of F [*] . 17 i)A : C_{0}H_{5}CONH_{2} B : C_{6}H_{5}NH_{2} C : C_{6}H_{5}NHCOCH_{4} 1 18 (i) Butadiene and acrylonitrile CH ₂ = CH - CH = CH ₂ and CH ₂ =CH-CN (ii) Vinyl chloride CH ₂ = C - CH = CH ₂ 19 $\downarrow \downarrow \downarrow$ i) Peptide linkage / -CO-NH- linkage ii) Peptide linkage / -CO-NH- linkage iii) With the linkage / -CO-NH- linkage iii) With the linkage / -CO-NH- linkage	
For complete ionisation of Na ₂ SO ₄ i=3 $\Delta T_{f} = T_{f}^{0-} T_{f} = 3 \times 1.86 \text{ K kg mol}^{-1} \times \frac{2g}{142g \text{ mol}^{-1}} \times \frac{1000 \text{ g kg}^{-1}}{50 \text{ g}}$ $\Delta T_{f} = 1.57$ So, $T_{f} = -1.57^{\circ}\text{C or } 271.43\text{K}$ 16 i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power. ii)Because of high interelectronic repulsion. iii)Because of high interelectronic repulsion. iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F ⁻ . 17 i)A : CeH ₃ CONH ₂ B : CeH ₃ NH ₂ C : CeH ₃ NHCOCH ₃ 11 17 i)A : CeH ₃ CNO ₂ B : CeH ₃ NH ₂ C : CeH ₃ NHCOCH ₃ 18 (i) Butadiene and acrylonitrile CH ₂ = CH - CH = CH ₂ and CH ₂ =CH-CN (ii) Vinyl chloride CH ₂ =CH-CI (iii) Chloroprene CH CH ₂ = C - CH = CH ₂ 19 i) Peptide linkage / -CO-NH- linkage ii) Peptide linkage / -CO-NH- linkage ii) Peptide linkage / -CO-NH- linkage iii) Peptide linkage / -CO-NH- linkage	
For complete ionisation of Na ₂ SO ₄ i=3 $\Delta T_{f} = T_{f}^{0-} T_{f} = 3 \times 1.86 \text{ K kg mol}^{-1} \times \frac{2g}{142g \text{ mol}^{-1}} \times \frac{1000 \text{ g kg}^{-1}}{50 \text{ g}}$ $\Delta T_{f} = 1.57$ So, $T_{f} = -1.57^{\circ}\text{C or } 271.43\text{K}$ 16 i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power. ii)Because of high interelectronic repulsion. iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F ⁻ . 17 i)A : CeH ₅ CONH ₂ B : CeH ₅ NH ₂ C : CeH ₅ NHCOCH ₃ 11 17 i)A : CeH ₅ CONH ₂ B : CeH ₅ NH ₂ C : CeH ₅ NHCOCH ₃ 18 (i) Butadiene and acrylonitrile CH ₂ = CH - CH = CH ₂ and CH ₂ =CH-CN (ii) Vinyl chloride CH ₂ =CH-CI (iii) Chloroprene i) CH ₂ =C - CH = CH ₂ 19 i) Peptide linkage / -CO-NH- linkage i) Peptide linkage / -CO-NH- linkage i) Peptide linkage / -CO-NH- linkage i) Peptide linkage / -CO-NH- linkage	
For complete ionisation of Na ₂ SO ₄ i=3 $\Delta T_{f} = T_{f}^{0} \cdot T_{f} = 3 \times 1.86 \text{ K kg mol}^{-1} \times \frac{2g}{142 \text{ g mol}^{-1}} \times \frac{1000 \text{ g kg}^{-1}}{50 \text{ g}}$ 1 $\Delta T_{f} = 1.57$ So, $T_{f} = -1.57^{\circ}\text{C or } 271.43\text{K}$ 1 16 i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power. ii)Because of high interelectronic repulsion. iii)Because of high interelectronic repulsion. iii)Because of high interelectronic repulsion. 17 i)A : C_{6}H_{5}CONH_{2} B : C_{6}H_{5}NH_{2} C : C_{6}H_{5}\cdotNC 1 18 (i) Butadiene and acrylonitrile CH ₂ = CH - CH = CH ₂ and CH ₂ =CH-CN (ii) Vinyl chloride CH ₂ = C - CH = CH ₂ 19 $\int_{0}^{0} \frac{1}{\sqrt{\frac{1}{10} + \frac{1}{\frac{1}{10} + 1$	1/2
$\Delta T_{t} = T_{t}^{0} - T_{t} = 3 \times 1.86 \text{ K kg mol}^{-1} \times \frac{2g}{142g \text{ mol}^{-1}} \times \frac{1000 \text{ g kg}^{-1}}{50 \text{ g}}$ $\Delta T_{t} = 1.57$ So, $T_{t} = -1.57^{\circ}\text{C or } 271.43\text{K}$ 1 16 i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power. ii)Because of high interelectronic repulsion. iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F. 17 i)A : C_{6}H_{5}CONH_{2} B : C_{6}H_{5}NH_{2} C : C_{6}H_{5}NHCOCH_{5} ii)A : C_{6}H_{5}NO_{2} B : C_{6}H_{5}NH_{2} C : C_{6}H_{5}-NC 18 (i) Butadiene and acrylonitrile $CH_{2} = CH - CH = CH_{2} \text{ and } CH_{2}=CH-CN$ (ii) Vinyl chloride $CH_{2}=CH-CH = CH_{2}$ 19 $\frac{\sigma_{1}\sigma_{1}}{\sigma_{1}}$ i) Peptide linkage / -CO-NH- linkage ii) Peptide linkage / -CO-NH- linkage iii) Phi Pi	72
$\Delta T_{r} = 1.57$ So, $T_{r} = -1.57^{\circ}C$ or 271.43K 1 16 i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power. ii)Because of high interelectronic repulsion. iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F [*] . 1 17 i)A : C_{6}H_{5}CONH_{2} B : C_{6}H_{5}NH_{2} C : C_{6}H_{5}NHCOCH_{5} ii)A: C_{6}H_{5}NO_{2} B : C_{6}H_{5}NH_{2} C : C_{6}H_{5}-NC 18 (i) Butadiene and acrylonitrile $CH_{2} = CH - CH = CH_{2} \text{ and } CH_{2}=CH-CN$ (ii) Vinyl chloride $CH_{2} = CH - CH = CH_{2}$ 19 $i)$ $i)$ $i)$ $i)$ $i)$ $i)$ $i)$ $i)$	1⁄2
$\Delta T_{r} = 1.57$ So, $T_{r} = -1.57^{\circ}C$ or 271.43K 1 16 i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power. ii)Because of high interelectronic repulsion. iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F [*] . 1 17 i)A : C_{6}H_{5}CONH_{2} B : C_{6}H_{5}NH_{2} C : C_{6}H_{5}NHCOCH_{5} ii)A: C_{6}H_{5}NO_{2} B : C_{6}H_{5}NH_{2} C : C_{6}H_{5}-NC 18 (i) Butadiene and acrylonitrile $CH_{2} = CH - CH = CH_{2} \text{ and } CH_{2}=CH-CN$ (ii) Vinyl chloride $CH_{2} = CH - CH = CH_{2}$ 19 $i)$ $i)$ $i)$ $i)$ $i)$ $i)$ $i)$ $i)$	4
So, $T_r = -1.57^{\circ}C$ or 271.43K 1 16 i)Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power. ii)Because of high interelectronic repulsion. iii)Because of high interelectronic repulsion. iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F [*] . 1 17 i)A : C_6H_5CONH_2 B : C_6H_5NH_2 C : C_6H_5NHCOCH_3 1 18 (i) Butadiene and acrylonitrile CH ₂ = CH - CH = CH ₂ and CH ₂ =CH-CN 1 18 (i) Vinyl chloride CH ₂ =CH-CI 1////////////////////////////////////	1
$16 i) Because of higher oxidation state (+5) / high charge to size ratio / high polarizing power. ii) Because of high interelectronic repulsion. iii) Because of high interelectronic repulsion. iii) Because of its low bond dissociation enthalpy and high hydration enthalpy of F 17 i) A : C6H5CONH2 B : C6H5NH2 C : C6H5NHCOCH3 18 (i) Butadiene and acrylonitrile CH2 = CH - CH = CH2 and CH2=CH-CN (ii) Vinyl chloride CH2=CH-Cl (iii) Chloroprene Cl CH2=C - CH = CH2 19 \int_{0}^{0} \frac{1}{H_{1}} \int_{0}^{0} \frac{1}{H_{2}} \int_{0}^{0} \frac{1}{H_{1}} \int_{0}^{0} \frac{1}{H_{2}} \int_{0}^{0} \frac{1}{H_{1}} \int_{0}^{0} \frac{1}{H_{2}} \int_{0}^{0} $	
i) Because of high interelectronic repulsion. ii) Because of its low bond dissociation enthalpy and high hydration enthalpy of F [*] . 1 17 i) A : C ₆ H ₃ CONH ₂ B : C ₆ H ₃ NH ₂ C : C ₆ H ₃ NHCOCH ₃ 1 ii) A: C ₆ H ₃ CONH ₂ B : C ₆ H ₃ NH ₂ C : C ₆ H ₃ NHCOCH ₃ 1 18 (i) Butadiene and acrylonitrile CH ₂ = CH - CH = CH ₂ and CH ₂ =CH-CN 1 (ii) Vinyl chloride CH ₂ =CH-CI ½ (iii) Chloroprene ½ CH ₂ = C - CH = CH ₂ 1 19 $\int_{0H}^{0H} \int_{0H}^{0H} \int_{0H}^$	1
i) Because of high interelectronic repulsion. ii) Because of its low bond dissociation enthalpy and high hydration enthalpy of F [*] . 1 17 i) A : C ₆ H ₃ CONH ₂ B : C ₆ H ₃ NH ₂ C : C ₆ H ₃ NHCOCH ₃ 1 ii) A: C ₆ H ₃ CONH ₂ B : C ₆ H ₃ NH ₂ C : C ₆ H ₃ NHCOCH ₃ 1 18 (i) Butadiene and acrylonitrile CH ₂ = CH - CH = CH ₂ and CH ₂ =CH-CN 1 (ii) Vinyl chloride CH ₂ =CH-CI ½ (iii) Chloroprene ½ CH ₂ = C - CH = CH ₂ 1 19 $\int_{0H}^{0H} \int_{0H}^{0H} \int_{0H}^$	
iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F [*] . 1 17 i)A : $C_6H_5CONH_2$ B : $C_6H_5NH_2$ C : $C_6H_5NHCOCH_3$ 1 ii)A: $C_6H_5NO_2$ B : $C_6H_5NH_2$ C : C_6H_5-NC 1 18 (i) Butadiene and acrylonitrile CH_2 = CH - CH = CH_2 and CH_2=CH-CN 1 (ii) Vinyl chloride CH_2=CH-Cl 1 (iii) Chloroprene 1 (iiiiiiiiii) Chloroprene 1 <td></td>	
iii)Because of its low bond dissociation enthalpy and high hydration enthalpy of F [*] . 1 17 i)A : $C_6H_5CONH_2$ B : $C_6H_5NH_2$ C : $C_6H_5NHCOCH_3$ 1 ii)A: $C_6H_5NO_2$ B : $C_6H_5NH_2$ C : C_6H_5-NC 1 18 (i) Butadiene and acrylonitrile CH_2 = CH - CH = CH_2 and CH_2=CH-CN 1 (ii) Vinyl chloride CH_2=CH-Cl 1 (iii) Chloroprene 1 (iiiiiiiiii) Chloroprene 1 <td></td>	
17 i)A : C_0H_5CONH_2 B : C_0H_5NH_2 C : C_0H_5NHCOCH_3 1 ii)A: C_0H_5NO_2 B : C_0H_5NH_2 C : C_0H_5-NC 1 18 (i) Butadiene and acrylonitrile CH_2 = CH - CH = CH_2 and CH_2=CH-CN 1 (ii) Vinyl chloride CH_2=CH-Cl 1 (iii) Chloroprene 1 (iii) OH 1 (iiii) OH 1 (iiii) OH 1 (iiiii) OH 1 (iiii) OH 1 (iiiiii) OH 1	1x3=3
ii)A: $C_0H_5NO_2$ B: $C_0H_5NH_2$ C: C_0H_5-NC 1 18 (i) Butadiene and acrylonitrile $CH_2 = CH - CH = CH_2$ and $CH_2 = CH - CN$ 1/2 (ii) Vinyl chloride $CH_2 = CH - CI$ 1/2 (iii) Chloroprene 1/2 CH_2 = C - CH = CH_2 1 19 $\int_{0}^{0} \frac{CH_0OH}{H_0} \int_{0}^{0} \frac{1}{H_0}$ i) Peptide linkage / -CO-NH- linkage ii) Peptide linkage / -CO-NH- linkage iii) Peptide linkage / -CO-NH- linkage	11/2
18 (i) Butadiene and acrylonitrile $CH_2 = CH - CH = CH_2$ and $CH_2=CH-CN$ 1/2 (ii) Vinyl chloride $CH_2=CH-Cl$ 1/2 (iii) Chloroprene 1/2 $CH_2 = C - CH = CH_2$ 1 19 $\int_{CH_2 \to CH_2 \to H_2 \to H_1}^{CH_2 \to H_2 \to H_2}$ 1 i) Peptide linkage / -CO-NH- linkage 1 ii) Peptide linkage / -CO-NH- linkage 1	
(i) Butadiene and acrylonitrile $CH_2 = CH - CH = CH_2$ and $CH_2 = CH - CN$ (ii) Vinyl chloride $CH_2 = CH - CI$ (iii) Chloroprene CI $CH_2 = C - CH = CH_2$ 19 $H_{0H_{H_1}}^{0H_{H_2}}$ i) Peptide linkage / -CO-NH- linkage II Water soluble Vitamin B / C	11/2
CH ₂ = CH – CH = CH ₂ and CH ₂ =CH-CN (ii) Vinyl chloride CH ₂ =CH-Cl (iii) Chloroprene Cl CH ₂ = C – CH = CH ₂ 19 i) Peptide linkage / -CO-NH- linkage Water coluble Vitamin B / C	
(ii) Vinyl chloride CH2=CH-Cl (iii) Chloroprene Cl CH2=C-CH=CH2 $(iii) Chloroprene Cl CH2=C-CH=CH2 (iii) Chloroprene Cl CH2=C-CH=CH2 (iii) Chloroprene Cl CH2=C-CH=CH2 (iii) Chloroprene Cl CH2=C-CH=CH2 (iii) Chloroprene CH2=C-CH=CH2 (iii) Chloroprene CH2=C-CH=CH2 (iii) Chloroprene CH2=C-CH=CH2 (iii) Chloroprene (iii) Chl$	
$\begin{array}{ c c } \hline CH_2=CH-Cl & 1/2 \\ (iii) & Chloroprene & 1/2 \\ \hline CH_2=C-CH=CH_2 & 1/2 \\ \hline 19 & & & & & & \\ \hline 19 & & & & & & & \\ \hline 19 & & & & & & & & \\ \hline 10 & & & & & & & & & \\ \hline 19 & & & & & & & & & \\ \hline 10 & & & & & & & & & & \\ \hline 10 & & & & & & & & & & \\ \hline 11 & & & & & & & & & & \\ \hline 11 & & & & & & & & & & \\ \hline 11 & & & & & & & & & & \\ \hline 12 & & & & & & & & & & & \\ \hline 13 & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & & & & & & \\ \hline 11 & & & & & & & & & & & & & & & & & $	1/2+1/2
19 $CH_2=CH-Cl$ $(iii) Chloroprene$ Cl $CH_2 = C - CH = CH_2$ 19 $H_{OH} = H_{OH} = H_{OH}$ $H_{OH} = H_{OH} = H_{OH} = H_{OH}$ $H_{OH} = H_{OH} = H_{OH} = H_{OH}$ $H_{OH} = H_{OH} = H_$	
$CH_{2} = C - CH = CH_{2}$ $I9$ $i)$ $i)$ $i)$ $i)$ $Peptide linkage / -CO-NH- linkage$ $ii)$ $Water soluble Vitamin B / C$	1/2+1/2
$CH_{2} = C - CH = CH_{2}$ $I9$ $i)$ $i)$ $i)$ $i)$ $Peptide linkage / -CO-NH- linkage$ $ii)$ $Water soluble Vitamin B / C$	
$CH_{2} = C - CH = CH_{2}$ $I9$ $i)$ $i)$ $i)$ $i)$ $Peptide linkage / -CO-NH- linkage$ $ii)$ $Water soluble Vitamin B / C$	
$CH_{2} = C - CH = CH_{2}$ 19 $i)$ $i)$ $i)$ $Peptide linkage / -CO-NH- linkage$ $ii)$ $Water soluble. Vitamin B / C$	
19 i)	1/2+1/2
19 i)	
i) i) ii) Peptide linkage / -CO-NH- linkage Water soluble. Vitamin B / C	
i) i) ii) Peptide linkage / -CO-NH- linkage Water soluble. Vitamin B / C	1
i) ii) ii) Peptide linkage / -CO-NH- linkage Water soluble. Vitamin B / C	-
¹⁾ ii) Peptide linkage / -CO-NH- linkage Water soluble. Vitamin B / C	
ii) Peptide linkage / -CO-NH- linkage Water soluble. Vitamin B / C	
ii) Peptide linkage / -CO-NH- linkage Water soluble. Vitamin B / C	1
\mathbf{W} and \mathbf{V} and \mathbf{U} is a set of the set of th	
Fat soluble- Vitamin A /D /E /K	1/2+1/2

23	(i)Caring ,dutiful, Concerned, compassionate (or any other two values)	1/2+1/2
	ii)Because higher doses may have harmful effects and act as poison which cause even death.	1
	iii)Tranquilizers are a class of chemical compounds used for treatment of stress or even mental diseases.	1
	ex. chlordiazepoxide, equanil, veronal, serotonin, valium (or any other two examples)	1/2+1/2
24	a)	
	Given $E^{o}_{Cell} = +0.30V$; $F = 96500C \text{ mol}^{-1}$	
	n = 6 (from the given reaction)	
	$\Delta_{\rm r} {\rm G}^{\rm O} = - {\rm n \ x \ F \ x \ E^{\rm o}}_{\rm Cell}$	1⁄2
	$\Delta_{\rm r} {\rm G}^{\rm O} = -6 \ {\rm x} \ 96500 \ {\rm C} \ {\rm mol}^{-1} \ {\rm x} \ 0.30 {\rm V}$	
	= - 173,700 J / mol or - 173.7 kJ / mol	1
	$\log \text{Kc} = \frac{n \text{ E}^{\circ}_{\text{Cell}}}{0.059}$	1/2
	$\log \text{Kc} = \frac{6 \times 0.30}{0.059}$	
	log Kc = 30.5	1
	b)A Because E ^o value of A shows that on coating ,A acts as anode and Fe acts as a cathode	1
	and hence A oxidises in prefence to Fe and prevent corrosion / or E ^o _{cell} is positive and hence A oxidises itself to prevent corrosion of Fe/E ^o value is more negative. (or any other correct reason) OR	1

25	a) i)Cr, because of maximum no. of unpaired electrons cause strong metallic	
	bonding.	$\frac{1}{2} + \frac{1}{2}$
	ii)Mn, because it attains stable half -filled $3d^5$ configuration in +2 oxidation	$\frac{1}{2} + \frac{1}{2}$
	state. iii)Zn, because of no unpaired electron in d-orbital. b)	¹ / ₂ + ¹ / ₂
	$2\mathrm{Na_2CrO_4} + 2~\mathrm{H^+} \rightarrow \mathrm{Na_2Cr_2O_7} + 2~\mathrm{Na^+} + \mathrm{H_2O}$	1.1
	$Na_2Cr_2O_7 + 2 KCl \longrightarrow K_2Cr_2O_7 + 2 NaCl$	1+1
26	a) i) (CH ₃) ₃ C-I + CH ₃ -OH	1
	i) CH ₃ -CH ₂ -C-CH ₃	1
	ii) OH CHO	1
	b) .i) \xrightarrow{OH} \xrightarrow{ONa} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{COOH} $\xrightarrow{(i)}$ $\xrightarrow{(i)}$ $\xrightarrow{(i)}$ \xrightarrow{COOH}	1
	ii). OCH_3 OCH_3 OCH_3 OCH_3 $+ CH_3COCl$ Anhyd. AlCl_3 $+$ $COCH_3$ $+$ $COCH_3$	1
	OR	

Name	Signature	Name	Signature
Dr. (Mrs.) Sangeeta Bhatia		Sh. S.K. Munjal	
Dr. K.N. Uppadhya		Sh. D.A. Mishra	
Prof. R.D. Shukla		Sh. Rakesh Dhawan	
Dr. (Mrs.) Sunita Ramrakhiani		Ms. Nirmala Venkateswaran	
Sh. S. Vallabhan, Principal		Mrs. Deepika Arora	
Mr. K.M. Abdul Raheem		Ms. Minakshi Gupta	
Mrs. Sushma Sachdeva		Sh. Mukesh Kaushik	
Ms. Seema Bhatnagar		Mr. Roop Narayan	
Sh. Pawan Singh Meena		Ms. Garima Bhutani	
Sh. Praveen Kumar Agrawal			

AglaSem Schools

http://schools.ad/asenn.com/