Central Board of School Education

Marking Scheme 2016

[Official]

Note - Candidates Please follow the Set 1 Marking Scheme.

MARKING SCHEME SET 55/1/S

Q. No.	Expected Answer / Value Points	Marks	Total
Q. NO.	Expected Answer / Value Folins	IVIALKS	Marks
			WIGINS
	Section A		
Set1,Q1	(i) Manganin	1/2	
Set2,Q3			
Set3,Q2	(ii) $R = \frac{\rho l}{A}$. As ρ increases A also increases		
	(ii) $R = \frac{1}{A}$ Risp increases R also increases	1/2	1
	Alternatively,		
	$R_{c} = \rho_{c} \frac{l}{A_{c}}; R_{m} = \rho_{m} \frac{l}{A_{m}}. since \ \rho_{m} > \rho_{c} \ \therefore A_{m} > A_{c}$		
Set1,Q2	Phase angle = 60°	1	
Set2,Q2	[Note : If the student only writes, $[\cos \varphi = 0.5]$, give $\frac{1}{2}$ mark]		1
Set3,Q5			
Set1,Q3	Between plates of capacitor during charging / discharging	1	
Set2,Q1	Alternatively,		1
Set3,Q4	In the region of time varying electric field	1/	1
Set1,Q4	(i) $P = NOT$ gate	$\frac{1}{2}$	1
Set2,Q5	(ii) $Q = OR$ gate	1/2	1
Set3,Q1 Set1,Q5	Def: The average time, between successive collisions of electrons, (in a	1	
Set1,Q3 Set2,Q4	conductor) is known as relaxation time	1	
Set3,Q3	conductor) is known as relaxation time		1
5013,Q3	Section B		1
Set1,Q6			
Set2,Q6	Electrostatic Shielding ¹ / ₂		
Set3,Q10	Using this property in actual practice 1		
	Potential in a cavity ¹ / ₂		
	The field inside a conductor is zero.	1/2	
	Sensitive instruments are shielded from outside electrical influences by		
	enclosing them in a hollow conductor.	1	
	(any other relevant answer.)	1/	2
Set1 07	Potential inside the cavity is not zero/ potential is constant.	1/2	2
Set1,Q7 Set2,Q7	Two properties of electromagnetic waves $\frac{1}{2} + \frac{1}{2}$		
Set2,Q7 Set3,Q8	Showing e m waves have momentum 1		
5015,20	Any two properties of electromagnetic waves	$\frac{1}{2} + \frac{1}{2}$	
	Such as (a) transverse nature (b) does not get deflected by electric fields or	, , _	
	magnetic fields (c) same speed in vacuum for all waves (d) no material		
	medium required for propagation (e) they get refracted, diffracted and		
	polarised / (any two properties)		
	Electric charges present on a plane, kept normal to the direction of		
	propagation of an e.m. wave can be set and sustained in motion by the electric	1	
	and magnetic field of the electromagnetic wave. The charges thus acquire		
	energy and momentum from the waves.		

	Alternatively		
	Radiation Pressure – Electromagnetic waves exert radiation pressure. Hence,		
C _41 O 0	they carry momentum.		2
Set1,Q8 Set2,Q8 Set3,Q9	$ \begin{array}{c} \mbox{Principle} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
500.,25	Diffraction effects are observed for beams of electrons scattered by the crystals	1⁄2	
	$\lambda = \frac{1.227nm}{\sqrt{V}}$	1⁄2	
	$\lambda = \frac{1.227nm}{\sqrt{120}}$	1⁄2	
	Value $\lambda = 0.112$ nm Alternatively	1⁄2	
	$\lambda = \frac{h}{\sqrt{2meV}}$	1⁄2	
	$=\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 120}}$ $\lambda = 0.112$ nm	1/2 1/2	2
<u> </u>			
Set1,Q9 Set2,Q10 Set3,Q7	Function of Transducer1Function of Repeater1		
	(i) Transducer: The device which converts one form of energy into another	1	
	(ii) Repeater: A repeater picks up signal, amplifies and retransmits them to receiver	1	2
Set1,Q10 Set2,Q9 Set3,Q6	Finding the principal quantum number1Finding the total energy1		
50.5,00	(i) $r = r_0 n^2$ 21.2x10 ⁻¹¹ = 5.3x10 ⁻¹¹ n ² implies n = 2	1/2 1/2	
	(ii) $E = \frac{-13.6eV}{n^2}$	1/2 1/2	
	$=\frac{-13.6eV}{2^2}=-3.4eV$		2
	[Award $\frac{1}{2}$ mark if the student just writes $E = E_1/4$] OR		
	Calculation of energy of photon1½Identification of transistion½		
	(i) Energy of photon = $\frac{hc}{\lambda} = \frac{6.64 \times 10^{-34} \times 3 \times 10^8}{275 \times 10^{-9} \times 1.6 \times 10^{-18}} eV = 4.5 eV$	$\begin{vmatrix} 1/2 + 1/2 \\ + 1/2 \end{vmatrix}$	
	(ii) The corresponding transition is B (iii) (iii) (ii) (iii) (ii	1/2	2

	Section C	1	•
Set1,Q11 Set2,Q20 Set3,Q22	Diagram 1 Deriving expression for E_{eq} 1 ¹ / ₂ Direction of E_{eq} ¹ / ₂	1	
	$E_{+q} = Kq / (r^2 + a^2)$ and $E_{-q} = Kq / (r^2 + a^2)$ The two Electric fields have equal magnitudes and their directions are as shown in diagram Components along dipole axis get added up while normal components cancel each other.	1/2 1/2	
	$\therefore \mathbf{E} = -[\mathbf{E}_{-q} + \mathbf{E}_{+q}] \cos\theta \ \hat{r} \text{ so } \mathbf{E} = -\frac{K2qa}{[r^2 + a^2]^{\frac{3}{2}}} \hat{r}$ $= \frac{kp}{[r^2 + a^2]^{\frac{3}{2}}} (p = 2qa\hat{r}) = \frac{-1}{4\pi\epsilon_o} \frac{p}{[r^2 + a^2]^{\frac{3}{2}}}$ $\therefore \text{Direction of electric field is opposite to that of dipole moment.}$	1/2	3
Set1,Q12 Set2,Q15 Set3,Q16	a)To find charge accumulated in capacitor C_2 $\frac{1}{2}$ b)To find the ratio of energy stored22 $\frac{1}{2}$	/2	5
	a) Zero	1⁄2	
	b) We have $C_{\text{series}} = \frac{3\mu F}{3} = 1 \ \mu F$ Also, $C_{\text{parallel}} = (3+3+3)=9\mu F$ Energy stored $= \frac{1}{2}CV^2$	1/2 1/2	
	∴Energy in series combination $=\frac{1}{2}1 \times 10^{-6} \times V^2$ Energy in parallel combination $=\frac{1}{2}9 \times 10^{-6} \times V^2$	1/2	
	$\therefore \text{Ratio} = 1:9$	1/2 1/2	3
	ge 3 of 13 Final Draft 11/03/	/16 03:00	

Set1,Q13 Set2,Q16	a) Definition of intensity1b) Required graph1		
Set3,Q19	c) Explanation of nature of the curves 1		
	 a) Intensity of radiation equals the energy of all the Photons incident normally per unit area per unit time. Alternatively, The intensity of radiation is proportional to the number of photons emitted per unit area per unit time. b) 	1	
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ $ } \\ \end{array} \\ } \\ } \\	1	
	 c) As per Einstein's equation, (i) The stopping potential is same for I₁ and I₂ as they have the same frequency. 	1⁄2	
	(ii) The saturation currents are as shown , because $I_1 > I_2 > I_3$	1⁄2	3
Set1,Q14 Set2,Q14 Set3,Q12	(i) To explain the process of emission1(ii) Material preferred to make LED and reason $\frac{1}{2} + \frac{1}{2}$ (iii) Two advantages of using LED $\frac{1}{2} + \frac{1}{2}$		
	 (i) During Forward bias of LED, electrons move from n side to p side and holes move from p side to n side. During recombination, energy is released in the form of photons having energy hv of the order of band gap. 	1	
	(ii) GaAs/ GaAsP (any one)	1⁄2	
	Band gap should be 1.8 eV to 3 eV These materials have band gap which is suitable to produce desired visible light wavelengths.	1⁄2	
	(iii)Low operational voltage, fast action , no warm up time required, nearly monochromatic, long life ,ruggedness, fast on and off switching capacity. (any two points)	1/2 + 1/2	3
Set1,Q15 Set2,Q13 Set3,Q14	Calculation of capacitance1Calculation of Impedence1Calculation of Power dissipitated1		
	Capacitance = C = $\frac{1}{L\omega^2}$ = $\frac{1}{\frac{4}{\pi^2}(2\pi \times 50)^2}$ F	1/2 1/2	
			1

	1/	
$= 2.5 \times 10^{-5} F$	1/2	
Impedence = resistance(since V and I are in phase) \therefore Impedence = 100 Ω	1/2	
Power discipated = $\frac{E_{rms}^2}{R}$	12	
Γ	1⁄2	
$=\frac{(200)^2}{100}W=400$ watt	1⁄2	3
Set1,Q16		
Set2,Q19 (i) To calculate angle of prism $1\frac{1}{2}$		
Set3,Q20 (ii) To trace the path of incident light inside the prism $1\frac{1}{2}$		
- $ -$	1/2	
(i) $\mu = \frac{\sin\left(\frac{A+D}{2}\right)}{\sin\frac{A}{2}}$	/2	
2		
$= \frac{\sin\left(\frac{2A}{2}\right)}{\sin\frac{A}{2}} = 2\cos A/2 = \sqrt{3}$	1⁄2	
$\therefore A = 60^{\circ}$	1/	
	1/2	
(ii) $\mu = \sqrt{3} = \frac{1}{Sini_c}$		
Sinic		
$\therefore Sini_c = \frac{1}{\sqrt{3}} \cong 0.58$		
Lies between 30 [°] and 45 [°]	1/2	
Hence, TIR takes place.		
Alternatively,		
$sinc = \frac{1}{\sqrt{3}}$ which is less than $\frac{1}{\sqrt{2}}$		
$\therefore \text{ angle of incidence} > i_c$		
∴TIR	1	
Set1,Q17	1	3
Set2 O18 To plot (BE/A) vs mass number graph 1 ¹ / ₂		
Set3 017 To state the property of nuclear force ^{4/2}		
To explain the release of energy in fission and $\frac{1}{2} + \frac{1}{2}$ fusion using the graph		
5		
10 10 ms mFe 100 Ma 121 100 W 107 AD		
10 10 10 10 10 10 10 10 10 10	11/	
	11⁄2	
변 2 ^{0 3} H		
He H		
m 0 50 100 150 200 250 Mass number (A)		
Mass number (A)		
Nuclear force is Saturated, or short ranged [any one]	1⁄2	
The final existence is many tighting herein deaths. 1	17	
The final system is more tightly bound when heavy nucleus undergoes nuclear fission. Hence, there is a release of energy.	1/2	
The final system is more tightly bound when light nuclei undergoes nuclear	1/2	
fusion. Hence, there is a releases of energy.		

Alternatively : There is an increase in BE/nucleon both during (i) Nuclear fission of heavy nuclei and (ii) Nuclear fussion of light nuclei Set1.Q18 To draw circuit diagram of amplifier 1 ½ Deriving the expression for β ac 1 ½ a) $\sqrt{-\frac{p}{p_ac}}$ k^{r_a} k^{r_b}	1/2 1/2 2 1	3
Set2.Q17 Set3.Q18 Deriving the expression for β ac 1 ½ a) $p_{M_{v}} = \beta_{ac} \cdot \frac{R_{L}}{r}$ $\therefore \beta_{ac} = A_{v} \frac{r}{R_{L}}$ Alternatively: [If the student writes $\beta_{ac} = \frac{\delta I_{c}}{\Delta I_{R}}$ award full credit] Set1.Q19 Set2.Q22 Set3.Q21 (i) Naming the phenomenon 1 (ii) Two conditions for TIR $\frac{I_{2}}{2} + \frac{I_{2}}{2}$ (iii) Labelled diagram of optical fibre 1 (i) Total internal reflection (ii) Rays of light have to travel from optically denser medium to optically rarer medium and Angle of incidence in the denser medium should be greater than critical angle (iii)		
Set1,Q19 (i) Naming the phenomenon 1 (ii) Two conditions for TIR $\frac{1}{2} + \frac{1}{2}$ (iii) Labelled diagram of optical fibre 1 (i) Total internal reflection (ii) Rays of light have to travel from optically denser medium to optically rarer medium and Angle of incidence in the denser medium should be greater than critical angle (iii) Lewn		
 (i) Total internal reflection (ii) Rays of light have to travel from optically denser medium to optically rarer medium and Angle of incidence in the denser medium should be greater than critical angle (iii) 		3
	1 1⁄2 1⁄2	
	1	3
Set1,Q20 Set2,Q12 Set3,Q15Three applications of internet Explanation of any one $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Applications of internet- e mail, social networking sites, e –commerce, mobile telephony, GPS, [Any three] Explanation of any one	$\frac{\frac{1}{2} + \frac{1}{2}}{\frac{1}{2}}$	3

Set1,Q21 Set2,Q11	To show that the intensity of maximum is four times the 2		
Set2,Q11 Set3,Q11	intensity of light from each slit		
5013,Q11	Conditions for constructive and destructive $\frac{1}{2} + \frac{1}{2}$ interference		
	Resultant displacement $y=y_1+y_2$ $= a[\cos(\omega t) + \cos(\omega t + \phi)]$ $= 2a\cos\left(\frac{\phi}{2}\right)\cos\left(\omega t + \frac{\phi}{2}\right)$ $\therefore \text{ amplitude of resultant wave} = 2a\cos\left(\frac{\phi}{2}\right)$ $\therefore \text{ Intensity} = 4I_o\cos^2\left(\frac{\phi}{2}\right), \text{ where } I_o = a^2 \text{ is the intensity of each harmonic wave}$ At the maxima, $\phi = \pm 2n\pi \div \cos^2\frac{\phi}{2} = 1$ At the maxima, $I = 4I_o = 4 \times \text{ intensity due to one slit}$ $I=4I_o\cos^2\left(\frac{\phi}{2}\right)$ For constructive interference, I is maximum	1/2 1/2 1/2 1/2 1/2	
	It is possible when $\cos^2\left(\frac{\phi}{2}\right) = 1; \frac{\phi}{2} = n\pi; \phi = 2n\pi$ For destructive interference, I is minimum, i.e, I=0 It is possible when $\cos^2\left(\frac{\phi}{2}\right) = 0; \frac{\phi}{2} = \frac{(2n-1)\pi}{2}; \phi = (2n \pm 1)\frac{\pi}{2}$	1⁄2	3
Set1,Q22 Set2,Q21 Set3,Q13	(i) Two properties of soft iron $\frac{1}{2} + \frac{1}{2}$ (ii) Statement of Gauss's law in magnetism1Difference and Explanation $\frac{1}{2} + \frac{1}{2}$		
	(i) Low coercivity and high permeability	$\frac{1}{2} + \frac{1}{2}$	
	(ii) The net magnetic flux through any closed surface is zero/ $\oint B. ds = 0$	1	
	$\oint E. ds = \frac{q}{\epsilon_0}$ /The net electric flux through any closed surface is $\frac{1}{\epsilon_0}$ times the net charge. which indicates magnetic monopoles do not exist/ magnetic poles always exists in pairs [Note : If the student just states Guass's Law in electrostatics these 2 marks may be awarded.]	1/2 1/2	3
	OR		
	a) Deriving the expression for Magnetic field at a point2outside the current carrying solenoid1b) Writing the condition1		
	e 7 of 13 Final Draft 11/03/	16 03:00	

		1/	
	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	1/2	
	a) The magnitude of the total field is obtained due to small elements		
	$dB = \frac{\mu_o n dx l a^2}{2[(r-x)^2 + a^2]^{\frac{3}{2}}}$	1/2	
	x varies from $x = -l$ to $x = +l$	/ _	
	$B = \frac{\mu_o n I a^2}{2} \int_{-l}^{l} \frac{dx}{[(r-x)^2 + a^2]^{\frac{3}{2}}}$	1/2	
	For $r \gg a$ and, we have $r \gg x$		
	$B \simeq \frac{\mu_o n I a^2}{2r^3} \int_{-l}^{l} dx = B = \frac{\mu_o n I a^2 (2\ell)}{2r^3}$		
	Here magnetic moment $m = n2I(\pi a^2)$		
	Thus $B = \frac{\mu_o 2m}{4\pi r^3}$	1⁄2	
	This is also the far axial magnetic field of a bar magnet. Hence, the magnetic field, due to current carrying solenoid along its axial line is similar to that of a bar magnet for far off axial points.	1	3
	Section D		
Set1,Q23 Set2,Q23 Set3,Q23	a) Two values1+1b) Reason1c) Reason, for why power is transmitted at high voltage1		
	 a) Caring, helpful, presence of mind (or any other (two) relevant values) b) Current passes between two points only when there is a potential difference between them/ c) To minimise power loss during transmission. 	2 1 1	4
	c) To minimise power loss during transmission. Section E	1	4
Set1,Q24 Set2,Q25 Set3,Q26	(i) To fine the magnitude and the direction of current in 1 Ω resistor 3 (ii) (Shift and reason) in each case $(\frac{1}{2} + \frac{1}{2}) \ge 2$		

	For the mesh ACDBA $40 (I_1 + I_2) - 40 + 20I_2 - 80 = 0$ Or $40I_1 + 60I_2 - 120 = 0$	1	
	Or $2I_1 + 3I_2 = 6$ (2) Solving (1) and (2), we get -12		
	$I_{1} = \frac{-12}{13} A$ $I_{2} = \frac{34}{13} A$		
	\therefore Current through arm AC = $I_1 + I_2$		
	$=\frac{22}{13}A$	1	
	 a) Metre bridge works on Wheatstone's bridge balancing condition. 	1	
Set1,Q25	 b) Metal strips will have less resistance / to maintain continuity, without adding to the resistance of the circuit. 		5
Set2,Q26 Set3,Q24	(i) Biot-Savart law in vector form1(ii) Deriving an expression for the magnetic field at a3point on the axial line of current carrying coil1(iii) Ratio of magnetic field at the centre and1given outside point1		
	(i) $\overrightarrow{dB} = \frac{\mu_0 I \overrightarrow{d\ell} \times \hat{r}}{4\pi r^2} = \frac{\mu_0 I \overrightarrow{d\ell} \times \vec{r}}{4\pi r^3}$ (ii) $dB = \frac{\mu_0 I dl \sin \theta}{4\pi r^2}$ here $\theta = 90$; $dB = \frac{\mu_0 I dl}{4\pi r^2}$	1 1⁄2 1⁄2	
	$= dB \sin\phi = \frac{\mu_o I d\ell}{4\pi r^2} \sin\phi$ $B = \int_{-\infty}^{R} \frac{\mu_o I dl}{4\pi r^2} \sin\phi = \frac{\mu_o I (2\pi R^2)}{4\pi r^3}$	1/2+ 1/2	
	$B = \int_{0}^{R} \frac{\mu_0 I dl}{4\pi r^2} \sin \varphi = \frac{\mu_0 I (2\pi R^2)}{4\pi r^3}$ $B = \frac{\mu_0 N I (R^2)}{2r^3} = \frac{\mu_0 N I R^2}{2(R^2 + d^2)^{\frac{3}{2}}}$	1⁄2	
	$ \begin{array}{c} $	1/2	
	Ż		

	(i) Magnetic field at the centre of the coil $B_1 = \frac{\mu_0 NI}{2R}$		
	Magnetic field at the outside point $B_2 = \frac{\mu_o N I R^2}{2[R^2 + 3R^2]^{\frac{3}{2}}} = \frac{\mu_o N I R^2}{2[4R^2]^{\frac{3}{2}}} = \frac{\mu_o N I}{2*8R}$	1/2	
	$\frac{B_1}{B_2} = 8$	1⁄2	
	[Note : If the student takes $r = \sqrt{3} R$, the ratio of B centre to B axial would be $3\sqrt{3}$: 1. Award 1 mark in this case also.]	2	5
	OR		
	a) Velocity selection condition1b) Name of device $\frac{1}{2}$ What does the machine do $\frac{1}{2}$ Use of two fields $\frac{1}{2} + \frac{1}{2}$ Regions of existence of field $\frac{1}{2} + \frac{1}{2}$ Nature of fields $\frac{1}{2} + \frac{1}{2}$		
	a) $qE = Bqv$ v = E/B	1	
	 (b) Name of the device: Cyclotron It accelerates charged particles/ions Electric field accelerates the charged particles. Magnetic field makes particles to move in circle. Electric field exists between the Dees. Magnetic field exists both inside and outside the dees. Magnetic field is uniform / constant. Electric field is oscillating/ alternating in nature. 	1/2 1/2 1 1 1	5
Set1,Q26 Set2,Q24 Set3,Q25	Explaining the formation of the diffraction pattern3Secondary maxima1/2Minima1/2Why do secondary maxima get weaker in intensity1		
	From S M_2 $Q_0 \cdot M_2$ To C M_2 N	1⁄2	
Page	11 of 13Final Draft11/03	/16 03:00) p.m

Page 11 of 13

Page 12 of 13

11/03/16 03:00 p.m

$$\begin{aligned} \tan \alpha &= \frac{AN}{ON} \approx \alpha \\ \tan \beta &= \frac{AN}{ON} \approx \beta \\ \tan \gamma &= \frac{AN}{ON} \approx \beta \\ \tan \gamma &= \frac{AN}{ON} \approx \gamma \\ \alpha &+ \gamma = i; r = \gamma - \beta \\ 1 \\ \frac{AN}{ON} + \frac{AN}{CN} = i; r = \frac{AN}{CN} - \frac{AN}{NI} \\ n_{21} &= \frac{\sin r}{\sin r} \approx \frac{i}{r} \\ \frac{n_2}{2n_1} = \frac{AN}{AN} + \frac{AN}{CN} \\ \frac{n_2}{2n_1} = \frac{AN}{MN} - \frac{AN}{NI} \\ n_2 \left(\frac{AN}{CN} - \frac{AN}{NI}\right) = n_1 \left(\frac{AN}{ON} + \frac{AN}{CN}\right) \\ CN &= R; NI = V; ON = -u \\ \frac{n_2}{V} - \frac{n_1}{u} = \frac{n_2 - n_1}{R} \\ \end{aligned}$$
(ii) focal length increases with increase of wavelength $\frac{1}{f} = \left(\frac{\mu_2}{\mu} - 1\right) \frac{2}{R}$ as wavelength increases μ_2/μ_1 decreases hence focal length increases $\frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R} \\ \frac{1}{f} =$