Strictly Confidential (For Internal and Restricted Use only) Senior School Certificate Examination

Marking Scheme - Physics (Code 55/2/1, Code 55/2/2, Code 55/2/3)

- 1. The marking scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the marking scheme are suggested answers. The content is thus indicated. If a student has given any other answer, which is different from the one given in the marking scheme, but conveys the meaning correctly, such answers should be given full weightage.
- 2. In value based questions, any other individual response with suitable justification should also be accepted even if there is no reference to the text.
- 3. Evaluation is to be done as per instructions provided in the marking scheme. It should not be done according to one's own interpretation or any other consideration. Marking scheme should be adhered to and religiously followed.
- 4. If a question has parts, please award in the right hand side for each part. Marks awarded for different part of the question should then be totaled up and written in the left hand margin and circled.
- 5. If a question does not have any parts, marks are to be awarded in the left hand margin only.
- 6. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 7. No marks are to be deducted for the cumulative effect of an error. The student should be penalized only once.
- 8. Deduct ¹/₂ mark for writing wrong units, missing units, in the final answer to numerical problems.
- 9. Formula can be taken as implied from the calculations even if not explicitly written.
- 10. In short answer type question, asking for two features / characteristics / properties if a candidate writes three features, characteristics / properties or more, only the correct two should be evaluated.
- 11. Full marks should be awarded to a candidate if his / her answer in a numerical problem is close to the value given in the scheme.
- 12. In compliance to the judgement of the Hon'ble Supreme Court of India, Board has decided to provide photocopy of the answer book(s) to the candidates who will apply for it along with the requisite fee. Therefore, it is all the more important that the evaluation is done strictly as per the value points given in the marking scheme so that the Board could be in a position to defend the evaluation at any forum.
- 13. The Examiner shall also have to certify in the answer book that they have evaluated the answer book strictly in accordance with the value points given in the marking scheme and correct set of question paper.
- 14. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title paper, correctly totaled and written in figures and words.
- 15. In the past it has been observed that the following are the common types of errors committed by the Examiners
 - Leaving answer or part thereof unassessed in an answer script.
 - Giving more marks for an answer than assigned to it or deviation from the marking scheme.
 - Wrong transference of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transference to marks from the answer book to award list.
 - Answer marked as correct ($\sqrt{}$) but marks not awarded.
 - Half or part of answer marked correct ($\sqrt{}$) and the rest as wrong (×) but no marks awarded.
- 16. Any unassessed portion, non carrying over of marks to the title page or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
	SECTION A		
Set1 Q1	i) $V_A > V_B$ ii) $V_A < V_B$	1/2 1/2	1
Set1 Q2	Formula 1		
	$c = \frac{1}{\sqrt{\mu\epsilon}}$ [Alternatively, $c = \frac{1}{\sqrt{\mu_0 \mu_r \epsilon_0 \epsilon_r}}$]	1	1
Set1 Q3	For writing yes1/2Justification1/2		
	Yes Justification: $m \alpha \frac{1}{2}$	1/2	
	Justification: $m \alpha \frac{1}{f_0 f_e}$ And focal length depends on colour/ μ .	1/2	1
Set1 Q4	Logic Symbol1/2Truth Table1/2		
	Input Output A B Y O O O O 1 1 I 1 1	1⁄2	
	(a) (b)	1/2	1
Set1 Q5	Writing Yes1/2Reason1/2Yes		
	Reason - $v_{blue} > v_{red}$ [Alternatively: Energy of blue light photon is greater than energy of red light photon.]	1/2 1/2	
			1
Set1 Q6	SECTION B		
	Conversion of phase difference to path difference $\frac{1}{2}$ Formula for Intensity $\frac{1}{2}$ Finding intensity values $(\frac{1}{2} + \frac{1}{2})$		

MARKING SCHEME

	Path difference $\lambda/_4 \Rightarrow$ phas	e difference $\pi/2$)	
	Path difference $\lambda/3 \Rightarrow$ phase	, ,	$\left.\right\} \frac{1}{2}$	
	$I = 4I_0$	$\cos^2\left(\frac{\emptyset}{2}\right)$	1/2	
	i) $I_1 = 4I_0 X \frac{1}{2} = 2I_0$	lo	1/2	
	ii) $I_2 = 4I_0 X \frac{1}{4} = I_0$		1/2	2
Set1 Q7	Any two differences	(1+1)		
	Any two			
	Intrinsic	Extrinsic		
	i) Pure semiconductor	i) Doped or impure	1.1	2
	ii) $n_e = n_h$	ii) $n_e \neq n_h$	1+1	
	iii) Low conductivity at room temperature	iii)Higher conductivity at room temperature		
	iv)Conductivity depends on temperature	iv) Conductivity does not depend significantly on temperature.		
Set1 Q8	Distinguishing the two node One example of each	S $(\frac{1}{2} + \frac{1}{2})$ $(\frac{1}{2} + \frac{1}{2})$	7	
	In point-to-point communica place over a link between a s receiver.	tion mode, communication tak ingle transmitter and a single	es 1⁄2	
	In the broadcast mode, there corresponding to a single tran	are a large number of receivers	5 1/2	
	Example: Point-to-point:	telephone (any other)	1/2	
	Broadcast: T	.V., Radio (any other)	1/2	2
Set1 Q9	Effect on brightness Explanation	1 1		
	Brightness decreases		1	
	the impedance of the circuit and	f solenoid increases; this increase hence current decreases . inductance increases, award this	1	2

Set1 Q10			
Sett Q10	Formula ¹ / ₂		
	Image distance for $ u \le f + x $ $\frac{1}{2}$ Image distance where $ x \le f $ 1		
	$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ (f is negative)	1/2	
	$U = -f \Longrightarrow \frac{1}{\nu} = 0 \Longrightarrow \nu = \infty$	1/2	
	$U = -2f \Longrightarrow \frac{v}{v} = \frac{-1}{2f} \Longrightarrow v = -2f$	1/2	
	· =)	1/2	2
	Hence if $-2f < u < -f \implies -2f < v < \infty$ [Alternatively]		
	2f > u > f $-\frac{1}{2f} > -\frac{1}{u} > -\frac{1}{f}$		
	$-\frac{1}{2} > -\frac{1}{2} > -\frac{1}{2}$	1/2	
	2f u f 1 1 1 1 1 1		
	$\frac{1}{f} - \frac{1}{2f} > \frac{1}{f} - \frac{1}{u} > \frac{1}{f} - \frac{1}{u}$	1/2	
	$\frac{1}{2f} < \frac{1}{V} < 0$	1/2	
	$2f < V < \alpha$]	1/2	2
	OR		
	(a) Formula for magnification $\frac{1}{2}$		
	Conditions for large magnification $\frac{1}{2}$		
	(b) Any two reasons $\frac{1}{2} + \frac{1}{2}$		
	(a) $m = -\frac{f_0}{f_1}$	1/2	
	Je	1/2	
	By increasing f_0 / decreasing f_e	72	
	(b) Any two		
	(i) No chromatic aberration.		
	(ii) No spherical aberration.		
	(iii) Mechanical advantage – low weight, easier to		
	support. (iv) Mirrors are easy to prepare.	$\frac{1}{2} + \frac{1}{2}$	2
	(iv) Minors are easy to prepare. (v) More economical		
0.1011	SECTION C		
Set1 Q11	a) Definition 1		
	Explanation ¹ / ₂		
	b) Determination of modulation index $\frac{1}{2}$		
	Side bands $(\frac{1}{2} + \frac{1}{2})$		
	a) $\mu = \frac{A_m}{A_c}$	1	
	$\mu \leq 1$ to avoid distortion of signal.	1/2	
		14	

			1
	b) $\mu = \frac{10V}{10V} = 1$ $v_c - v_m = (1000 - 10)kHz = 990kHz$ $v_c + v_m = (1000 + 10)kHz = 1010kHz$	1/2 1/2 1/2	3
Set1 Q12	Bohr quantum condition1/2Expression for Time period21/2		
	$mvr = \frac{nh}{2\pi}$ Bohr postulate	1/2	
	Also, $\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$	1/2	
	$\Leftrightarrow mv^2r = \frac{e^2}{4\pi\epsilon_0}$	1/2	
	$mvr = \frac{nh}{2\pi} \qquad \text{ Bohr postulate}$ Also, $\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$ $\Leftrightarrow mv^2r = \frac{e^2}{4\pi\epsilon_0}$ $\therefore v = \frac{e^2}{4\pi\epsilon_0} X \frac{2\pi}{nh} = \frac{e^2}{2\epsilon_0 nh}$	1/2	
	$T = \frac{2\pi n}{n} = \frac{2\pi m n}{mn^2}$	1/2	
	$=\frac{2\pi\left(\frac{nh}{2\pi}\right)}{m\left(\frac{e^2}{2\epsilon_0 nh}\right)^2}$		
	$m(\overline{2\epsilon_0 nh})$		
	$=\frac{4n^3h^3\epsilon_0^2}{me^4}$	1/2	3
	(Also accept if the student calculates T by obtaining expressions for both v and r.)		
Set1 Q13	Expression for electric field1½Expression for potential½		
	Expression for potential 72 Plot of graph (E $V_s r$) $\frac{1}{2}$ Plot of graph (V $V_s r$) $\frac{1}{2}$		
	Coursian		
	Surface charge $\operatorname{Surface}_{\operatorname{surface}}$		
	By Gauss theorem	$\frac{1/2}{1/2}$	
	$\oint \vec{E} \cdot d\vec{s} = \frac{q}{E_0}$ $q = 0 \text{ in interval } 0 < x < R$		
		1/2 1/2	
		ı	·

	In Joon ACDEA		
	In loop ACDFA $I = \frac{12-6}{(1+2)} = 2A$		
	$1 - \frac{1}{(1+2)} - 2\pi$	1	
	$V_{AF} = V_{BE}$	17	
	$\Rightarrow 6 + 2 = 6 + V_c$	1/2	
	$\Rightarrow V_c = 2V$	1/2	
	Charge $Q=CV_c=5\mu F X 2V = 10\mu C$	1	3
Set1 Q15	Gauss's theorm ¹ / ₂		
	Diagram ¹ /2		
	Electric field between the cylinders1Electric field outside the cylinders1		
	As Gauss's Law states $a \rightarrow a$		
	$\oint \vec{E} \cdot \vec{ds} = \frac{q}{\epsilon_0}$	1/2	
	$+\lambda_1$ $-\lambda_2$		
		1/2	
	+ Gaussian - + + surface	72	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	+ + surface		
	(1) $f \overrightarrow{E} \rightarrow \lambda_1 l$	1/2	
	(1) $\oint E_1 \cdot as = \frac{1}{\epsilon_0}$, _	
	(i) $\oint \vec{E_1} \cdot \vec{ds} = \frac{\lambda_1 l}{\epsilon_0}$ $\implies \vec{E_1} = \frac{\lambda_1}{2\pi\epsilon_0 r_1} \hat{r_1}$	1/2	
	$2\pi\epsilon_0 r_1$		
	(ii) $\oint \overrightarrow{F_{a}} \overrightarrow{ds} = \frac{(\lambda_1 - \lambda_2)l}{l}$	1/2	
	(ii) $\oint \vec{E_2} \cdot \vec{ds} = \frac{(\lambda_1 - \lambda_2)l}{\epsilon_0}$ $\implies \vec{E_2} = \frac{(\lambda_1 - \lambda_2)}{2\pi\epsilon_0 r_2} \hat{r_2}$		
	$\implies \overrightarrow{E_2} = \frac{(x_1 - x_2)}{2\pi\epsilon_0 r_0} \hat{r_2}$	1/2	3
Set1 Q16			
	Biot Savart's Law1/2 markDeduction of Expression2 marks		
	Direction of magnetic field ¹ / ₂ mark		

		1/2	
	$B_{3} = \frac{\mu_{0}}{4\pi} \frac{2(4I)}{3r} = \frac{\mu_{0}}{4\pi} \left(\frac{8I}{3r}\right) \text{out of the plane of the paper/(O)}.$ $B_{A} = B_{2} - B_{3} \text{ into the paper.}$ $= \frac{\mu_{0}}{4\pi} \left(\frac{10I}{3r}\right) \text{ into the paper.}(\bigotimes)$ (ii) $F_{21} = \frac{\mu_{0}}{4\pi} \frac{2I(3I)}{r} \text{ away from wire1 (/towards 3)}$ $F_{23} = \frac{\mu_{0}}{4\pi} \frac{2(3I)(4I)}{2r} \text{ away from wire 3 (towards 1)}$ $F_{net} = F_{23} - F_{21} \text{ towards wire1}$	1/2 1/2 1/2 1/2	3
<u> </u>	$= \frac{\mu_0}{4\pi} \frac{6(I)^2}{r} \text{ towards wire 1}$		
Set1 Q17	Statement -1S.I Unit - $\frac{1}{2}$ Formula- $\frac{1}{2}$ Calculation of number of nuclei1		
	 (a) Statement : Rate of decay of a given radioactive sample is directly proportional to the total number of undecayed nuclei present in the sample. 	1	
	[Alternatively: $-\frac{dN}{dt} \propto N$] Unit- becquerel(Bq)	1/2	
	(b) $N = N_0 e^{-\lambda t} / \frac{N}{N_0} = \left(\frac{1}{2}\right)^n$	1/2	
	$n = \frac{t}{T_{1/2}} = \frac{10}{20} = \frac{1}{2}$	1/2	
	$\Rightarrow N = 4\sqrt{2} \times 10^{6} \times \left(\frac{1}{2}\right)^{1/2}$ $= 4 \times 10^{6} \text{ nuclei}$	1/2	3
Set1 Q18	(a) Explanation of production of em waves1½(b) Depiction of em waves1½(a) An oscillating charge produces an oscillating electric fieldin space, which produces an oscillating magnetic field, whichin turn, is a source of oscillating electric field and so on.Thus, oscillating electric and magnetic fields generate eachother, they then propagate in space.	11⁄2	

	\rightarrow \rightarrow		
	antiparallel to \vec{B} :: $\vec{F} = 0$. [Alternatively,	1/2	
	If \vec{v} makes an angle of 0^0 or 180^0 with \vec{B} .]		
	(b) The radius of electron		
		1/2	
	$eV = \frac{1}{2}mv^{2}$ $\frac{mv^{2}}{r} = qvB$		
		1/2	
	$\therefore r = \frac{1}{B} \sqrt{\frac{2mV}{e}}$	1/2	
	$= \left[\sqrt{\frac{2 X 9.1 X 10^{-31} X 10^4}{1.6 X 10^{-19}}} X \frac{1}{0.04} \right] m$		
	$= 8.4 X 10^{-3} m$	1/2	3
Set1 Q22	Diagram1/2Path Difference1/2Condition for minima1/2Condition for maxima1/2Width of central maxima1/2Width of secondary maxima1/2		
	From S $M \stackrel{\theta}{\underset{M_2 \\ \theta}{\longrightarrow} } M_2 \stackrel{\theta}{\underset{M_2 \\ \theta}{\longrightarrow} } M_2$ To C $M_2 \stackrel{\theta}{\underset{M_2 \\ \theta}{\longrightarrow} } M_2$	1/2	
	The path difference NP - LP = NQ $= a \sin \theta \simeq a\theta$		
	$-u\sin \theta = u\theta$	1/2	
	By dividing the slit into an appropriate number of parts, we find that points P for which	1/2	
	i) $\theta = \frac{n\lambda}{a}$ are points of minima. ii) $\theta = \left(n + \frac{1}{2}\right)\frac{\lambda}{a}$ are points of maxima	1⁄2	
	/ $2/a$ $2/a$		

-			I
	Angular width of central maxima, $\theta = \theta_1 - \theta_{-1}$ $= \frac{\lambda}{a} - \left(-\frac{\lambda}{a}\right)$ $\theta = \frac{2\lambda}{a}$ Angular width of secondary maxima = $\theta_2 - \theta_1$	1⁄2	
	$= \frac{2\lambda}{a} - \frac{\lambda}{a} = \frac{\lambda}{a}$ $= \frac{1}{2}$ X Angular width of central maxima	1/2	3
Set1 Q23	Values displayed 1 + 1 Usefulness of solar panels ½ Name of semiconductor device ½ Diagram of the device ½ Working of device ½ a) Value displayed by mother: Inquisitive / scientific temperament / wants to learn / any other. Value displayed by Sunil: Knowledgeable / helpful/ considerate b) Provide clean / green energy Reduces dependence on fossil fuels, Environment friendly energy source. c) Solar Cell Image: Mathematical state of the	$1 \\ 1 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}$	
	(full marks for any one figure out of a &b) Working: When light falls on the device the solar cell generates an emf.	1/2	4

0.1.001			
Set1 Q24	a) (i) Principle of potentiometer 1		
	How to increase sensitivity $\frac{1}{2}$		
	(ii) Name of potentiometer $\frac{1}{2}$		
	Reason ¹ / ₂		
	b) Formula ¹ / ₂		
	(i) Ratio of drift velocities in series 1		
	(ii) Ratio of drift velocities in parallel 1		
	a) (i) The potential difference across any length of wire is directly proportional to the length provided current and		
	area of cross section are constant i.e., $E(l) = \phi l$ where ϕ is the potential drop per unit length.	1	
	It can be made more sensitive by decreasing current in the main circuit /decreasing potential gradient / increasing resistance put in series with the potentiometer	1/2	
	wire.	1/	
	ii) Potentiometer B	$\frac{1}{2}$	
	Has smaller value of V/l (slope / potential gradient).	1/2	
	b) In series, the current remains the same.	1/2	
	P_1 I P_2		
	· · · /		
	$\leftarrow V$		
	$I = neA_1V_{d1} = neA_2V_{d2}$ $\therefore \frac{V_{d1}}{V_{d2}} = \frac{A_2}{A_1}$	1/2	
	$\therefore \frac{u_1}{V_{d2}} = \frac{2}{A_1}$	1/2	
	In parallel potential difference is same but currents are different.		
	$V = I_1 R_1 = neA_1 V_{d1} \frac{\varrho l}{A_1} = ne\varrho V_{d1} l$	1⁄2	
	Similarly, $V = I_2 R_2 = ne \rho V_{d2} l$ $I_1 R_1 = I_2 R_2$ V_{d1-1}	1/2	5
	$\therefore \frac{\bar{V}_{d1}}{V_{d2}} = 1$		
	OR		
	(a) Definition of capacitance 1		
	Obtaining capacitance 2		
	(b) Ratio of capacitances 2		
	a) Conseitance equals the many its destified as future to the state of		
	a) Capacitance equals the magnitude of the charge on each plate needed to raise the potential difference between the plates by unity.	1	

	combination of two capacitors.		
	$C_{1} = K \frac{\epsilon_{0}A}{\left(\frac{3}{4}d\right)}$ $C_{2} = \frac{\epsilon_{0}A}{\left(\frac{1}{4}d\right)}$ $\left(K \frac{\epsilon_{0}A}{\left(\frac{3}{4}d\right)}\right) \left(\frac{\epsilon_{0}A}{\left(\frac{1}{4}d\right)}\right)$	1/2 1/2	
	$\therefore C = \frac{C_1 C_2}{C_1 + C_2} = \frac{\left(\frac{K \frac{\epsilon_0 A}{(\frac{3}{4}d)}}{(\frac{1}{4}d)}\right)\left(\frac{\epsilon_0 A}{(\frac{1}{4}d)}\right)}{\frac{\epsilon_0 A}{d} \left[\frac{4}{3}k + 4\right]}$ $= \frac{4}{(3+k)} \frac{\epsilon_0 A}{d} = \frac{4}{(3+k)} C_0$ $\frac{c}{c_0} = \frac{4}{k+3} $	1/2 1/2	5
Set1 Q25			
	a) Statement of Faraday's Law 1 b) Calculation of current 2 Graph of current 1 c) Lenz's Law 1 (a) Faraday's law: The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit. [Alternately: $e = -\frac{d\varphi}{dt}$] (b) Area= $\pi R^2 = \pi X 1.44 X 10^{-2}m^2$ $= 4.5 X 10^{-2}m^2$ For 0 <t<2 Emf $e_1 = \frac{d\varphi_1}{dt} = -A\frac{dB}{dt}$ $= -4.5 X 10^{-2} X \frac{1}{2}$ $I_1 = -\frac{e_1}{R} = -\frac{2.25 X 10^{-2}}{8.5} = -2.7 mA$</t<2 	1	
	$I_{1} = -\frac{1}{R} = -\frac{1}{8.5} = -2.7 \text{ mA}$ For 2 <t<4 $I_{2} = \frac{e_{2}}{R} = 0$ For 4<t<6 $I_{3} = -\frac{e_{3}}{R} = +2.7 \text{ mA}$</t<6 </t<4 	1/2 1/2 1/2	

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
Q1	Writing Yes1/2Reason1/2Yes1/2	1/2	
	Reason - $v_{blue} > v_{red}$ [Alternatively: Energy of blue light photon is greater than energy of red light photon.]	1/2	1
Q2	Logic Symbol 1/2 Truth Table 1/2		
	A B Y O O O O O 1 1 1 0 1 1 1 1	1/2 1/2	1
	(a) (b)	, -	
Q3	i) $V_A > V_B$ ii) $V_A < V_B$	1/2 1/2	1
Q4	Formula 1		
	$c = \frac{1}{\sqrt{\mu\epsilon}}$ [Alternatively, $c = \frac{1}{\sqrt{\mu_0 \mu_r \epsilon_0 \epsilon_r}}$]	1	1
Q5	For writing yes1/2Justification1/2		
	Yes Justification: $m \alpha \frac{1}{f_0 f_e}$	1/2	
	And focal length depends on colour/ μ .	1⁄2	1
Q6	Ratio of drift velocities in series1Ratio of drift velocities in parallel1		
	In series, the current remains the same.		

MARKING SCHEME

]
	P_1 I P_2		
	\leftarrow V		
	$I = neA_1V_{d1} = neA_2V_{d2}$	1/2	
	$\therefore \frac{V_{d1}}{V_{d2}} = \frac{A_2}{A_1}$	1/	
	V_{d2} A_1 In parallel potential difference is same but currents are different.	1/2	
	$V = I_1 R_1 = neA_1 V_{d1} \frac{\varrho l}{A_1} = ne\varrho V_{d1} l$	1/2	
	Similarly, $V = I_2 R_2 = ne \varrho V_{d2} l$		
	$I_1 R_1 = I_2 R_2$ $\therefore \frac{V_{d1}}{V_{d2}} = 1$	1⁄2	2
Q7			
	Distinguishing the two nodes $(\frac{1}{2} + \frac{1}{2})$ One example of each $(\frac{1}{2} + \frac{1}{2})$		
	In point-to-point communication mode, communication takes place		
	over a link between a single transmitter and a single receiver.	1/2	
	In the breadcast mode, there are a large number of receivers		
	In the broadcast mode, there are a large number of receivers corresponding to a single transmitter.	1/2	
		1/	
	Example: Point-to-point: telephone (any other)	1/2	
	Broadcast: T.V., Radio (any other)	1/2	2
Q8	Formula ¹ / ₂		
	Image distance for $ u \le f + x $ $\frac{1}{2}$		
	$\begin{array}{ c c c } Image distance where x \le f & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$		
	$\frac{1}{v} + \frac{1}{u} = \frac{1}{f} \qquad (f \text{ is negative})$	1/2	
	$U = -f \Longrightarrow \frac{1}{v} = 0 \Longrightarrow v = \infty$	1/2	
	$U = -2f \Longrightarrow \frac{1}{v} = \frac{-1}{2f} \Longrightarrow v = -2f$	$\frac{1/2}{1/2}$	2
	Hence if $-2f < u < -f \implies -2f < v < \infty$	72	2
	[<u>Alternatively</u>		
	$\begin{vmatrix} 2f > u > f \\ -\frac{1}{2f} > -\frac{1}{u} > -\frac{1}{f} \end{vmatrix}$		
	$\left -\frac{1}{2f} \right ^{2} - \frac{1}{u} \right ^{2} - \frac{1}{f}$	1/2	
	$\left \frac{1}{f} - \frac{1}{2f} > \frac{1}{f} - \frac{1}{u} > \frac{1}{f} - \frac{1}{f}\right $	1/2	
	$\begin{vmatrix} f & 2f & f & u & f & f \\ \frac{1}{2f} & < \frac{1}{V} < 0 \end{vmatrix}$	14	2
	$\left \frac{2f}{2f} \times \overline{V} \right < 0$	1/2	4

	$2f < V < \alpha$]	1/2	
	OR		
	(a) Formula for magnification $\frac{1}{2}$ Conditions for large magnification $\frac{1}{2}$ (b) Any two reasons $\frac{1}{2} + \frac{1}{2}$		
	(a) $m = -\frac{f_0}{f_e}$	1/2	
	By increasing f_0 / decreasing f_e	1/2	
	 (b) Any two (i) No chromatic aberration. (ii) No spherical aberration. (iii) Mechanical advantage – low weight, easier to support. (iv) Mirrors are easy to prepare. (v) More economical 	1/2 + 1/2	2
Q9	Conversion of phase difference to path difference $\frac{1}{2}$ Formula for Intensity $\frac{1}{2}$ Finding intensity values $(\frac{1}{2} + \frac{1}{2})$		
	Path difference $\frac{\lambda}{4} \Rightarrow$ phase difference $\frac{\pi}{2}$ Path difference $\frac{\lambda}{3} \Rightarrow$ phase difference $(2\pi/3)$	} ½	
	$I = 4I_0 \cos^2\left(\frac{\emptyset}{2}\right)$	1/2	
	i) $I_1 = 4I_0 X \frac{1}{2} = 2I_0$	1⁄2	
	ii) $I_2 = 4I_0 X \frac{1}{4} = I_0$	1/2	2
Q10	Any two differences 1+1		
	Any two differences		
	S.no n- type semiconductor p- type semiconductor		
	1 Pentavalent impurity is Trivalent impurity is added	1+1	
	2Electrons are the majority charge carrier/ $(n_e \gg n_h)$ Holes are the majority charge carriers / 		
	3 New energy level formed near conduction band near valence band.		
			2

	$\therefore \frac{r_p}{r_\alpha} = \frac{q_\alpha}{q_p} = 2$	1/2	
	ii) $r = \frac{mv}{qB} = \frac{1}{B}\sqrt{\frac{2mV}{q}}$	1⁄2	
	for proton $r_p = \frac{1}{B} \sqrt{\frac{2m_p V}{q_p}}$		
	and for α particles $r_{\alpha} = \frac{1}{B} \sqrt{\frac{2m_{\alpha}V}{q_{\alpha}}}$	1/2	
	$\therefore \frac{r_p}{r_\alpha} = \sqrt{\frac{m_p}{q_p} \frac{q_\alpha}{m_\alpha}}$		
	$=\sqrt{\frac{2}{4}}=\frac{1}{\sqrt{2}}$	1/2	3
Q14	Diagram ¹ / ₂		
Q14	Path Difference1/2Condition for minima1/2		
	Condition for maxima ⁷² 1/2		
	Width of central maxima1/2		
	Width of secondary maxima 1/2		
	From S M_{2}^{\bullet}	1/2	
	The path difference		
	$NP - LP = NQ$ $= a \sin \theta \simeq a\theta$	14	
		1/2	
	By dividing the slit into an appropriate number of parts, we find that points P for which		
	i) $\theta = \frac{n\lambda}{n}$ are points of minima.	1/2	
	ii) $\theta = \left(n + \frac{1}{2}\right)\frac{\lambda}{a}$ are points of maxima	1/2	

	Angular width of central maxima, $\theta = \theta_1 - \theta_{-1}$ = $\frac{\lambda}{a} - \left(-\frac{\lambda}{a}\right)$		
	$\theta = \frac{2\lambda}{a}$	1/2	
	Angular width of secondary maxima = $\theta_2 - \theta_1$ = $\frac{2\lambda}{a} - \frac{\lambda}{a} = \frac{\lambda}{a}$		
	a a $a= \frac{1}{2} X Angular width of central maxima$	1/2	3
Q15	Bohr quantum condition1/2Expression for Time period21/2		
	$mvr = \frac{nh}{2\pi}$ Bohr postulate	1/2	
	Also, $\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$	1/2	
	$\Leftrightarrow mv^2r = \frac{e^2}{4\pi\epsilon_0}$	1/2	
	$mvr = \frac{nh}{2\pi} \qquad \text{ Bohr postulate}$ Also, $\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$ $\Leftrightarrow mv^2r = \frac{e^2}{4\pi\epsilon_0}$ $\therefore v = \frac{e^2}{4\pi\epsilon_0} X \frac{2\pi}{nh} = \frac{e^2}{2\epsilon_0 nh}$	1/2	
	$T = \frac{2\pi r}{v} = \frac{2\pi mvr}{mv^2}$	1/2	
	$v mv^2 2\pi \left(\frac{nh}{2\pi}\right)$		
	$=\frac{2\pi\left(\frac{nh}{2\pi}\right)}{m\left(\frac{e^2}{2\epsilon_0 nh}\right)^2}$		
	$=\frac{4n^3h^3\epsilon_0^2}{me^4}$	1/2	3
	me^4 (Also accept if the student calculates T by obtaining expressions for both v and r.)		
Q16	Calculation of current1 ½Calculation of potential across capacitor1 ½		
	In steady state branch BE is	1/2	
	eliminated $A \xrightarrow{5V} 2\Omega$	1⁄2	
	$I = \frac{10V - 5V}{(3+2)\Omega} A$	1/2	
	$= 1 \text{ A} \qquad $		
	For loop EBCDE $-v_c - 5 + 10 - 3 \times 1 = 0$	1/2	

	$-V_c + 10 - 8 = 0$ $\therefore V_c = 2 \text{ volt}$	1/2 1/2	3
Q17	 (a) Explanation of production of em waves 11/2 (b) Depiction of em waves 11/2 (a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each other, they then propagate in space. [Alternatively, if a student writes Electromagnetic waves are produced by oscillating electric and magnetic fields / oscillating charges produce em waves. Award 1 mark] 	11/2	3
Q18	a) Process of $\overline{\beta}$ decay1Explanation of emission of β particles1Reason $\frac{1}{2}$ b) Correct identification $\frac{1}{2}$		
	(a) A nucleus, that spontaneously decays by emitting an electron, or a positron, is said to undergo β decay [Alternatively ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^{-} + \bar{\nu}$ (antineutrino) ${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + e^{+} + \nu$ (neutrino)] [Any one] During β decay, nucleons undergo a transformation.	1	
	We can have $n \rightarrow p + e^- + \bar{v}$ \rightarrow A neutron converts into a proton and an electron [Alternatively $p \rightarrow n + e^+ + v$ [A proton converts into a neutron and a positron] It is because the neutrinos, or antineutrino, carry off different amounts of energy.	1 ½	

	(b) The daughter nuclei have more binding energy per nucleon.	1/2	3
Q19	Sky wave propagation1Frequency range, reason1Frequency range through free space1In sky wave propagation, long distance communication is achieved by ionospheric reflection of radio waves back towards the earth.	1	
	The frequency range is from a few Mega hertz to 30/40 Mega hertz. The ionospheric layers can act as a reflector over the frequency range (3 MHz to 30/40 MHz). Higher frequencies penetrate through it.	1	
	The frequency range for communication of radio waves through free space is the entire range of radio frequencies, i.e. a few hundred kHz to a few GHz. (waves having frequency beyond 40 MHz)	1	3
Q20	(a) Plotting of graph1/2Marking saturation current1/2Marking stopping potential1/2(b) Photoelectric equation1/2Calculation of increases in stopping potential1		
	(a) Graph: Photoelectric Current Photoelectric Current Saturation current $-\frac{-\sqrt{5}}{-\sqrt{5}}$ Collector plate potential \rightarrow	1/2+1/2+ 1/2	
	(b) We know that $eV_0 = hv - \phi$ $\therefore eV_1 = hv_1 - \phi$ and $eV_2 = hv_2 - \phi$ Increase in potential	1/2	
	$\therefore V_2 - V_1 = \frac{h}{e} (v_2 - v_1)$ = $\frac{6.63 \times 10^{-34}}{1.6 \times 10^{-19}} (8 \times 10^{15} - 4 \times 10^{15}) V$ = 16.5 V	1/2	3

Q21	Derivation of instantaneous current2Derivation of average power dissipated1		
	$\overline{\text{Given } V} = V_0 \sin wt$		
	$V = L \frac{di}{dt} \Longrightarrow di = \frac{V}{L} dt$	1/2	
	$\therefore di = \frac{V_0}{L} \sin wt dt \qquad $	1/2	
	Integrating $i = -\frac{V_0}{wL} \cos wt$	1/2	
	$\therefore i = -\frac{V_0}{wL}\sin(\pi/2 - wt) = I_0\sin(\pi/2 - wt)$	1⁄2	
	where $I_0 = \frac{V_0}{wL}$ Average power		
	$P_{av} = \int_{0}^{T} v i dt$	1/2	
	$=\frac{-V_0^2}{wL}\int_0^T \sin wt \cos wt dt$	72	
	$=\frac{-V_0^2}{2wL}\int_0^T\sin(2wt)dt$		
	=0	1/2	3
Q22	Biot Savart's Law1/2Deduction of Expression2Direction of magnetic field1/2		

$B_3 = \frac{\mu_0}{4\pi} \frac{2(4I)}{3r} = \frac{\mu_0}{4\pi} \left(\frac{8I}{3r}\right) \text{out of the plane of the paper/(O)}.$ $B_A = B_2 - B_3 \text{ into the paper.}$ $= \frac{\mu_0}{4\pi} \left(\frac{10I}{3r}\right) \text{ into the plane of the paper.}(\otimes)$	1/2 1/2	
(ii) $F_{21} = \frac{\mu_0}{4\pi} \frac{2I(3I)}{r}$ away from wire1 (/towards 3)	1/2	
$F_{23} = \frac{\mu_0}{4\pi} \frac{2(3I)(4I)}{2r}$ away from wire 3 (towards 1) $F_{\text{net}} = F_{23} - F_{21}$ towards wire1	1/2	
$= \frac{\mu_0}{4\pi} \frac{6(I)^2}{r} \text{ towards wire 1}$	1/2	3
Q23 Values displayed 1+1 Usefulness of solar panels ½ Name of semiconductor device ½ Diagram of the device ½ Working of device ½ a) Value displayed by mother: Inquisitive / scientific temperament / wants to learn / any other. Value displayed by Sunil: Knowledgeable / helpful/ considerate b) b) Provide clean / green energy Reduces dependence on fossil fuels, Environment friendly energy source. c) Solar Cell (full marks for any one figure out of a &b) Working: When light falls on the device the solar cell generates an emf.	$ \begin{array}{c} 1 \\ 1 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $	4

	(b) From Snell's law $\mu_1 \sin i = \mu_2 sinr$	1/2	
	Given $\mu_1 = \sqrt{2}$, $\mu_2 = 1$ and $r = 90^{\circ}$ (just grazing)	, -	
	$\therefore \sqrt{2} \sin i = 1 \sin 90^0 \Longrightarrow \sin i \frac{1}{\sqrt{2}}$	14	
	$or i = 45^{\circ}$	$\frac{1/2}{1/2}$	5
	07 1 - 45	, 2	~
Q25	a) (i) Principle of potentiometer1How to increase sensitivity $\frac{1}{2}$ (ii) Name of potentiometer $\frac{1}{2}$ Reason $\frac{1}{2}$ b) Formula $\frac{1}{2}$ (i) Ratio of drift velocities in series1(ii) Ratio of drift velocities in parallel1a) (i) The potential difference across any length of wire is directly proportional to the length provided current and area of cross section are constant i.e., $E(l) = \phi l$ where ϕ is the potential drop per unit length.It can be made more sensitive by decreasing current in the main circuit /decreasing potential gradient /	1	
	increasing resistance put in series with the potentiometer wire.	1/	
	ii) Potentiometer B Has smaller as $fV(x)$ (show (not satisfied and limit)	$\frac{1/2}{1/2}$	
	Has smaller value of V/l (slope / potential gradient).	72	
	b) In series, the current remains the same.	1⁄2	
	$\xrightarrow{P_1} \xrightarrow{I} \xrightarrow{P_2} \xrightarrow{\bullet}$		
	$I = neA_1V_{d1} = neA_2V_{d2}$	1⁄2	
	$\therefore \frac{V_{d1}}{V_{d2}} = \frac{A_2}{A_1}$ In parallel potential difference is same but currents are different.	1⁄2	
	$V = I_1 R_1 = neA_1 V_{d1} \frac{\varrho l}{A_1} = ne\varrho V_{d1} l$	1⁄2	
	Similarly, $V = I_2 R_2 = ne \varrho V_{d2} l$ $I_1 R_1 = I_2 R_2$ $\therefore \frac{V_{d1}}{V_{d2}} = 1$	1/2	5
	OR		
	1	1	

,			1
	$\therefore c = \left(\frac{4k}{k+3}\right)\frac{\epsilon_0 A}{d}$ $\therefore \frac{c}{c_0} = \frac{4k}{k+3}$		
	[Alternatively, $c_0 \kappa + 5$		
	The capacitance, with dielectric, can be treated as a series combination of two capacitors.	1⁄2	
		1⁄2	
	$C_{1} = K \frac{\epsilon_{0}A}{\left(\frac{3}{4}d\right)}$ $C_{2} = \frac{\epsilon_{0}A}{\left(\frac{1}{4}d\right)}$	1⁄2	
	$\therefore C = \frac{C_1 C_2}{C_1 + C_2} = \frac{\left(K \frac{\epsilon_0 A}{\left(\frac{3}{4}d\right)}\right) \left(\frac{\epsilon_0 A}{\left(\frac{1}{4}d\right)}\right)}{\frac{\epsilon_0 A}{d} \left[\frac{4}{3}k + 4\right]}$	1/2	5
	$= \frac{4}{(3+k)} \frac{\epsilon_0 A}{d} = \frac{4}{(3+k)} C_0$ $\frac{c}{c_0} = \frac{4}{k+3}]$		
Q26	a) Statement of Faraday's Law1b) Calculation of current2Graph of current1c) Lenz's Law1		
	(a) Faraday's law: The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit. [Alternately: $e = -\frac{d\phi}{dt}$]	1	
	(b) Area= $\pi R^2 = \pi X 1.44 X 10^{-2} m^2$ = 4.5 X 10 ⁻² m ² For 0 <t<2 Emf $e_1 = \frac{d \phi_1}{dt} = -A \frac{dB}{dt}$</t<2 	1⁄2	
	$=-4.5 X 10^{-2} X \frac{1}{2}$ $I_1 = -\frac{e_1}{R} = -\frac{2.25 X 10^{-2}}{8.5} = -2.7 mA$	1⁄2	
	For 2 <t<4 $I_2 = \frac{e_2}{R} = 0$</t<4 	1⁄2	

SET 55/2/2

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
Q1	For writing yes1/2Justification1/2		
	Yes	1/2	
	Justification: $m \alpha \frac{1}{f_0 f_e}$		
02	And focal length depends on colour/ μ .	1/2	1
Q2	Writing Yes1/2Reason1/2		
	Yes	1⁄2	
	Reason - $v_{blue} > v_{red}$ [Alternatively:	1/2	
	Energy of blue light photon is greater than energy of red light photon.]		1
Q3	Logic Symbol1/2Truth Table1/2		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2 1/2	1
Q4	i) $V_A > V_B$ ii) $V_A < V_B$	1/2 1/2	1
Q5	Formula 1	72	1
	$c = \frac{1}{\sqrt{\mu\epsilon}}$ [Alternatively, $c = \frac{1}{\sqrt{\mu_0 \mu_r \epsilon_0 \epsilon_r}}$]	1	1
Q6	Formula $\frac{1}{2}$ Image distance for $ u \le f + x $ $\frac{1}{2}$ Image distance where $ x \le f $ 1		
	$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ (<i>f</i> is negative)	1/2	

MARKING SCHEME

	1 o	1/2	
	$U = -f \Longrightarrow \frac{1}{\nu} = 0 \Longrightarrow \nu = \infty$	72	
	$U = -2f \Longrightarrow \frac{1}{v} = \frac{-1}{2f} \Longrightarrow v = -2f$	1/2	
	Hence if $-2f < u < -f \implies -2f < v < \infty$	1⁄2	2
	[<u>Alternatively</u>		
	2f > u > f		
	2f > u > f $-\frac{1}{2f} > -\frac{1}{u} > -\frac{1}{f}$	17	
	2f u f 1 1 1 1 1 1	1/2	
	$\frac{1}{f} - \frac{1}{2f} > \frac{1}{f} - \frac{1}{u} > \frac{1}{f} - \frac{1}{u}$	1/2	
	$\frac{2f}{f} - \frac{u}{2f} > \frac{1}{f} - \frac{1}{u} > \frac{1}{f} - \frac{1}{h}$ $\frac{1}{2f} < \frac{1}{V} < 0$	17	
	$\frac{2f}{2f < V < \alpha}$	$\frac{1/2}{1/2}$	2
	OR	,2	-
	(a) Formula for magnification $\frac{1}{2}$		
	Conditions for large magnification $\frac{1}{2}$ (b) Any two reasons $\frac{1}{2} + \frac{1}{2}$		
	$m = -\frac{f_0}{f_e}$	1/2	
		1/2	
	By increasing f_0 / decreasing f_e	/ =	
	(a) Any two		
	(i) No chromatic aberration.		
	 (ii) No spherical aberration. (iii) Mechanical advantage – low weight, easier to 		
	support.		2
	(iv) Mirrors are easy to prepare.	$\frac{1}{2} + \frac{1}{2}$	
	(v) More economical		
Q7	Formulae $\frac{1}{2}+\frac{1}{2}$ Finding Intensity $\frac{1}{2}+\frac{1}{2}$		
	Phase difference $=\frac{2\pi}{\lambda}$ × Path diffrence		
	Path difference $\frac{\lambda}{6} \Longrightarrow$ phase difference $= \frac{\pi}{3}$	1/2	
	Path difference $\frac{\lambda}{2}$ \implies phase difference= π	1⁄2	
	$I = 4I_0 \cos^2\left(\frac{\phi}{2}\right)$		
	(2)		
	i. $I_1 = 4I_0 \times \frac{3}{4} = 3I_0$	1⁄2	
1			

Q8	Circuit Diagram 1		
	Working 1		
	p-side n-side	1	
	When photodiode is illuminated with light (photons), with energy ($h\nu > E_g$), electron-hole pairs are generated near the depletion region of the diode. The direction of electric field is such that electrons reach n-side and holes reach p-side and give current(in reverse direction)	1	2
Q9	Distinguishing the two nodes $(\frac{1}{2} + \frac{1}{2})$ One example of each $(\frac{1}{2} + \frac{1}{2})$		
	In point-to-point communication mode, communication takes place over a link between a single transmitter and a single receiver.	1/2	
	In the broadcast mode, there are a large number of receivers corresponding to a single transmitter.	1/2	
	Example: Point-to-point: telephone (any other)	1/2	
	Broadcast: T.V., Radio (any other)	1/2	2
Q10	Effect on brightness1Explanation1		
	Brightness decreases	1	
	Explanation:- Self inductance of solenoid increases; this increases the impedance of the circuit and hence current decreases .	1	2
	(Even if student just writes self inductance increases, award this 1 mark.)		

	Section: C		
Q11	i. Formula ¹ / ₂ Finding ratio 1 ii. Formula ¹ / ₂ Finding ratio 1		
	i. $r = \frac{mv}{qB}$ For proton $r_p = \frac{m_p v}{q_p B}$	1⁄2	
	For α particle $r_{\alpha} = \frac{m_{\alpha}v}{q_{\alpha}B}$ $r_p \ m_p \ q_{\alpha} \ 1$	1	
	$\frac{r_p}{r_\alpha} = \frac{m_p}{q_p} \frac{q_\alpha}{m_\alpha} = \frac{1}{2}$ ii. $r = \frac{\sqrt{2mK}}{qB}$	1/2	
	$r_p = \frac{\sqrt{2m_p K}}{q_p B}$		
	$r_{\alpha} = \frac{\sqrt{2m_{\alpha}K}}{q_{\alpha}B}$		
	$\frac{r_p}{r_\alpha} = \frac{q_\alpha}{q_p} \sqrt{\frac{m_p}{m_\alpha}} = \frac{1}{1}$	1	3
Q12	Intensity distribution graph for interference1Intensity distribution graph for diffraction1Any two differences $\frac{1}{2} + \frac{1}{2}$		
	$ \begin{array}{c} I \\ I_{max} \\ \hline J_{max} \\ \hline \hline \hline Path differnce \\ \hline \end{array} $	1	
	Path dilernce		

SET 55/2/3

	<u>[8-4]</u> 2	1	
	$I = \left[\frac{8-4}{4+2}\right] \mathbf{A} = \frac{2}{3}\mathbf{A}$	-	
	$V_{AF} = V_{BE}$	1/2	
	$\Rightarrow 4 - 2 \times \frac{2}{3} = 4 - V_c$		
	$\Rightarrow V_c = \frac{4}{3} V$	1/2	
	Charge, $Q = CV_c$ $Q = (10\mu F \times \frac{4}{3})$		
	= 13.33 μC	1	3
Q15	(a) Explanation of production of em waves 1 ¹ / ₂ (b) Depiction of em waves 1 ¹ / ₂		
	(a) An oscillating charge produces an oscillating electric field in space, which produces an oscillating magnetic field, which in turn, is a source of oscillating electric field and so on. Thus, oscillating electric and magnetic fields generate each other, they then propagate in space.	11/2	
	[Alternatively, if a student writes Electromagnetic waves are produced by oscillating electric and magnetic fields / oscillating charges produce em waves. Award 1 mark]		
	Electric field OR βfield EM waves EM waves The second	11/2	3
016			
Q16	(a) Derivation (b) Formula Calculation (a) $N(t)=N_0 e^{-\lambda t}$ When $t=T_{1/2} \implies N(t) = \frac{N_0}{2}$ $\therefore \frac{N_0}{2} = N_0 e^{-\lambda} T_{1/2}$	1/2 1/2	

	1		
	$\Longrightarrow \frac{1}{2} = e^{-\lambda} T_{1/2}$		
	$\implies -\lambda T_{\frac{1}{2}} = -ln2$	1/2	
	$\implies T_{\frac{1}{2}} = \frac{ln2}{\lambda} = \frac{0.693}{\lambda}$	1/2	
	(b) $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \qquad n = \frac{t}{T_{1/2}}$	1/2	
	Given $\frac{N}{N_0} = \frac{1}{4} = \left(\frac{1}{2}\right)^n$		
	$\left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^2$ $\therefore \text{ Number of half lives}= 2$		
	$\Rightarrow \frac{1000}{T_{1/2}} = 2$ $\Rightarrow T_{\frac{1}{2}} = \frac{1000}{2} = 500 \text{ years}$	1⁄2	
	[<i>Alternatively</i> 1000 years = 2 half lives ∴ Half life = 500 years]		3
Q17	Expression for electric field $1\frac{1}{2}$ Expression for potential $\frac{1}{2}$ Plot of graph (E $V_s r$) $\frac{1}{2}$ Plot of graph (V $V_s r$) $\frac{1}{2}$		
	Surface charge Gaussian density σ RO rP		
	By Gauss theorem $\oint \vec{E} \cdot d\vec{s} = \frac{q}{E_0}$	1/2 1/2	
	q =0 in interval 0 < x < R $\implies E = 0$	1/2	

	$T = \frac{2\pi r}{v} = \frac{2\pi mvr}{mv^2}$ $= \frac{2\pi \left(\frac{nh}{2\pi}\right)}{m\left(\frac{e^2}{2\epsilon_0 nh}\right)^2}$	1/2	3
	$= \frac{4n^3h^3\epsilon_0^2}{me^4}$ (Also accept if the student calculates T by obtaining expressions for both v and r.)	1⁄2	
Q19	 a) Graph of photo current vs collector potential for different frequencies b) Einstein's photo electric equation b) Explanation of graph c) Graph of photocurrent with collector potential for different intensities 		
	(a) Photoelectric $\nu_3 > \nu_2 > \nu_1$ $\nu_3 > \nu_2 > \nu_1$ $\nu_3 > \nu_2 > \nu_1$ $\nu_3 > \nu_2 > \nu_1$ $\nu_2 > \nu_1$ $\nu_1 > \nu_2 > \nu_1$ $\nu_2 > \nu_1$ $\nu_1 > \nu_2 > \nu_1$ $\nu_2 > \nu_2$ $\nu_1 > \nu_2$ $\nu_2 > \nu_2$ $\nu_2 > \nu_2$ $\nu_1 > \nu_2$ $\nu_2 > \nu_2$ ν_2 $\nu_2 > \nu_2$ ν_2 $\nu_$	1	
	(b) According to Einstein's photoelectric equation $K_{max} = hv - \phi_0$ If V_0 is stopping potential then $eV_0 = hv - \phi$ Thus for different value of frequency(v) there will be a different value of cut off potential V_0 .	1/2	
	(c) $I_{3} > I_{2} > I_{1}$ $I_{3} > I_{2} > I_{2} > I_{1}$ $I_{3} > I_{2} > I_{2} > I_{1}$ $I_{3} > I_{2} > I_{2} > I_{2} > I_{1}$ $I_{3} > I_{2} >$	1	3

	(i) Magnitude of magnetic field at A1Direction of magnetic field at A1/2Magnitude of magnetic force on conductor 21Direction of magnitude force on conductor 21/2		
	(i) $B_2 = \frac{\mu_0}{4\pi} \frac{2(3I)}{r} = \frac{\mu_0}{4\pi} \left(\frac{6I}{r}\right)$ into the plane of the paper/(\otimes).	1/2	
	$B_3 = \frac{\mu_0}{4\pi} \frac{2(4I)}{3r} = \frac{\mu_0}{4\pi} \left(\frac{8I}{3r}\right) \text{out of the plane of the paper/(O).}$ $B_1 = B_2 B_2 \text{ into the paper}$	1/2	
	$B_A = B_2 - B_3$ into the paper. = $\frac{\mu_0}{4\pi} \left(\frac{10I}{3r}\right)$ into the plane of the paper.(\otimes)	1/2	
	(ii) $F_{21} = \frac{\mu_0}{4\pi} \frac{2I(3I)}{r}$ away from wire1 (/towards 3)	1/2	
	$F_{23} = \frac{\mu_0}{4\pi} \frac{2(3I)(4I)}{2r}$ away from wire 3 (towards 1) $F_{\text{net}} = F_{23} - F_{21}$ towards wire1	1/2	
	$=\frac{\mu_0}{4\pi}\frac{6(I)^2}{r}$ towards wire 1	1/2	3
Q21	Definition of space wave propagation1Naming system of communication1/2Definition of radio horizon1/2Explanation1		
	Propagation of waves, along a straight path from the transmitting antenna to receiving antenna, using line of sight (LOC) communication is called space wave propagation.	1	
	Relevant system of communication: Television broadcast, microwave links and satellite communication (any one)	1/2	
	'Radio horizon' equals the distance between the transmitting antenna and the point on the earth where the direct waves get blocked due to the curvature of the earth.	1/2	
	[Also accept $d = \sqrt{2hR}$; h = height of transmitting antenna, R = Radius of the earth.]		
	At frequencies above 40 MHz, relatively smaller antennas are needed and communication is essentially limited to line of	1	

sight paths.		
[Alternatively, At frequencies (more than 40 MHz), e.m. waves do not g bent or reflected by ionosphere. Therefore space wave propagation has to be used for frequencies above 40 MHz	1	3
Q22Derivation of instantaneous current2Derivation of average power dissipated1		
$\frac{V_{0}}{V_{0}} = V_{0} \sin wt$		
$V = L \frac{di}{dt} \Longrightarrow di = \frac{V}{L} dt$	1/2	
$\therefore di = \frac{V_0}{L} \sin wt dt \qquad \qquad v = v_0 \sin wt$	1/2	
Integrating $i = -\frac{V_0}{wL} \cos wt$ $\therefore i = -\frac{V_0}{wL} \sin(\pi/2 - wt) = I_0 \sin(\pi/2 - wt)$ where $I_0 = \frac{V_0}{wL}$ Average power	1/2 1/2	
$P_{av} = \int_{0}^{T} vidt$ $= \frac{-V_0^2}{wL} \int_{0}^{T} \sin wt \cos wt dt$	1/2	
$=\frac{-V_0^2}{2wL}\int_0^T\sin(2wt)dt$		
=0	1/2	3
Q23Values displayed1 +Usefulness of solar panels1/2Name of semiconductor device1/2Diagram of the device1/2Working of device1/2	1	
a) Value displayed by mother:		

and $\tan \Delta NIM = \frac{MN}{MI}$ For ΔNOC , i is exterior angle, therefore $i = \Delta NOM + \Delta NCM = \frac{MN}{OM} + \frac{MN}{MC}$ Similarly $r = \frac{MN}{MC} - \frac{MN}{MI}$ For small angles Snells law can be written as $n_1 i = n_2 r$ $\therefore \frac{n_1}{OM} + \frac{n_2}{MI} = \frac{n_2 - n_1}{MC}$ $\therefore OM = -u, MI = +v$ MC = +R (using sign conversion) $\therefore \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$ (b) Lens Maker's formula is $\frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$ Let f be the focal length of the lens in water $\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3}$ Or $f' = \frac{120 \times 1.3}{3} = 52cm$ (a) Diagram $\frac{1}{2}$ Obtaining the relation 3 (b) Numerical $\frac{1}{12}$	MN		
$i = \angle NOM + \angle NCM = \frac{MN}{OM} + \frac{MN}{MC}$ Similarly $r = \frac{MN}{MC} - \frac{MN}{MI}$ For small angles Snells law can be written as $n_1 i = n_2 r$ $\therefore \frac{n_1}{OM} + \frac{n_2}{MI} = \frac{n_2 - n_1}{MC}$ $\therefore OM = -u, MI = +v MC = +R \text{ (using sign conversion)}$ $\therefore \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$ $(b) \text{ Lens Maker's formula is}$ $\frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$ V_2 Let f be the focal length of the lens in water $\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3}$ V_2 $Or f' = \frac{120 \times 1.3}{3} = 52 cm$ V_3 $(a) \text{ Diagram}$ V_4	and $\tan \angle NIM = \frac{1}{MI}$		
i = $\angle NOM + \angle NCM = \frac{mn}{OM} + \frac{mn}{MC}$ Similarly $\mathbf{r} = \frac{MN}{MC} - \frac{MN}{MI}$ For small angles Snells law can be written as $n_1 \mathbf{i} = n_2 \mathbf{r}$ $\therefore \frac{n_1}{OM} + \frac{n_2}{MI} = \frac{n_2 - n_1}{MC}$ $\therefore OM = -\mathbf{u}, MI = +\mathbf{v} MC = +R (using sign conversion)$ $\therefore \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$ (b) Lens Maker's formula is $\frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \frac{1}{20} = (1.6 - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$ Let f be the focal length of the lens in water $\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3}$ Or $f' = \frac{120 \times 1.3}{3} = 52 cm$ (a) Diagram $\frac{1}{2}$ (b) Diagram $\frac{1}{2}$ (c) Diagram \frac	For $\triangle NOC$, i is exterior angle, therefore		
Similarly $\mathbf{r} = \frac{m_C}{MC} - \frac{m_I}{ML}$ For small angles Snells law can be written as $n_1 \mathbf{i} = n_2 \mathbf{r}$ $\therefore \frac{n_1}{0M} + \frac{n_2}{MI} = \frac{n_2 - n_1}{MC}$ $\therefore OM = - \mathbf{u}, MI = +\mathbf{v} MC = +R (using sign conversion)$ $\therefore \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$ (b) Lens Maker's formula is $\frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \frac{1}{20} = (1.6 - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$ Let f be the focal length of the lens in water $\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3}$ Or $f' = \frac{120 \times 1.3}{3} = 52 cm$ (a) Diagram $\frac{1}{2}$ Otaining the relation $\frac{1}{2}$	$\mathbf{i} = \angle NOM + \angle NCM = \frac{MN}{OM} + \frac{MN}{MC}$	1/2	
$n_{1}i = n_{2}r$ $\therefore \frac{n_{1}}{0M} + \frac{n_{2}}{Ml} = \frac{n_{2}-n_{1}}{MC}$ $\therefore OM = -u, MI = +v MC = +R \text{ (using sign conversion)}$ $\therefore \frac{n_{2}}{v} - \frac{n_{1}}{u} = \frac{n_{2}-n_{1}}{R}$ $(b) \text{ Lens Maker's formula is}$ $\frac{1}{f_{a}} = \left(\frac{n_{2}-1}{n_{1}}\right)\left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right)$ $\therefore \frac{1}{20} = (1.6 - 1)\left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right)$ $\therefore \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$ V_{2} $Let f be the focal length of the lens in water$ $\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3}\left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right) = \frac{0.3}{12 \times 1.3}$ V_{2} $Or f' = \frac{120 \times 1.3}{3} = 52cm$ V_{2} S $(a) Diagram \frac{V_{2}}{Obtaining the relation}$ V_{2}	Similarly $\mathbf{r} = \frac{MN}{MC} - \frac{MN}{MI}$	1/2	
$ \begin{array}{c} \therefore \frac{n_1}{0M} + \frac{n_2}{Ml} = \frac{n_2 - n_1}{MC} \\ \therefore \text{ OM} = -\text{ u, MI} = +\text{v} \text{MC} = +\text{R (using sign conversion)} \\ \therefore \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R} \\ \text{(b) Lens Maker's formula is} \\ \qquad $	For small angles Snells law can be written as		
$ \therefore \frac{n_1}{0M} + \frac{n_2}{Ml} = \frac{n_2 - n_1}{MC} $ $ \therefore OM = -u, MI = +v MC = +R \text{ (using sign conversion)} $ $ \therefore \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R} $ $ (b) \text{ Lens Maker's formula is} $ $ \frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) $ $ \therefore \frac{1}{20} = (1.6 - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) $ $ \therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12} $ $ \text{Let f be the focal length of the lens in water} $ $ \therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3} $ $ Or f' = \frac{120 \times 1.3}{3} = 52 cm $ $ \frac{0R}{(a) \text{ Diagram}} $ $ \frac{v_2}{2} $	n_1 i = $n_2 r$		
$\begin{vmatrix} \vdots \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R} \\ \text{(b) Lens Maker's formula is} \\ \frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \\ \vdots \frac{1}{20} = (1.6 - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \\ \vdots \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12} \\ \text{Let f be the focal length of the lens in water} \\ \vdots \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3} \\ \text{Or } f' = \frac{120 \times 1.3}{3} = 52 cm \\ \frac{1}{20} \\ \text{OR} \\ \hline \\ (a) \text{ Diagram} \\ 0 \text{ biaining the relation} \\ \end{matrix}$	$\therefore \frac{n_1}{OM} + \frac{n_2}{MI} = \frac{n_2 - n_1}{MC}$	1/2	
(b) Lens Maker's formula is $\frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \frac{1}{20} = (1.6 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$ $\frac{1}{20}$ Let f be the focal length of the lens in water $\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3}$ $\frac{1}{2}$ Or $f' = \frac{120 \times 1.3}{3} = 52cm$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	\therefore OM= - u, MI = +v MC= +R (using sign conversion)		
$\frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \frac{1}{f_a} = \left(1.6 - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$ $\frac{1}{2}$ Let f be the focal length of the lens in water $\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3}$ $\frac{1}{2}$ Or $f' = \frac{120 \times 1.3}{3} = 52 cm$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\therefore \frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$	1⁄2	
$\frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \frac{1}{20} = (1.6 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$ Let f be the focal length of the lens in water $\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3}$ Or $f' = \frac{120 \times 1.3}{3} = 52 cm$ $\frac{0R}{(a) \text{ Diagram}}$ $\frac{\frac{1}{2}}{2}$	(b) Lens Maker's formula is		
$\therefore \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$ Let f be the focal length of the lens in water $\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right) = \frac{0.3}{12 \times 1.3}$ $\frac{1}{2}$ Or $f' = \frac{120 \times 1.3}{3} = 52 cm$ $\frac{1}{2}$ OR (a) Diagram $\frac{1}{2}$ Obtaining the relation $\frac{1}{2}$	$\frac{1}{f_a} = \left(\frac{n_2 - 1}{n_1}\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1/2	
$\therefore \left(\frac{R_1}{R_1} - \frac{R_2}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$ Let f be the focal length of the lens in water $\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{0.3}{12 \times 1.3}$ $\int \frac{1}{2}$ Or $f' = \frac{120 \times 1.3}{3} = 52 cm$ $\int \frac{1}{2}$ $\int \frac{1}{2}$ $\int \frac{1}{2}$ $\int \frac{1}{2}$	$\therefore \frac{1}{20} = (1.6 - 1)(\frac{1}{R_1} - \frac{1}{R_2})$		
$\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \frac{0.3}{12 \times 1.3}$ $\int \frac{1}{2}$ Or $f' = \frac{120 \times 1.3}{3} = 52 cm$ $\int \frac{0R}{0}$ (a) Diagram $\frac{1}{2}$ Obtaining the relation 3	$\therefore \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{20 \times 0.6} = \frac{1}{12}$	1/2	
Or $f' = \frac{120 \times 1.3}{3} = 52 cm$ OR (a) Diagram $\frac{1}{2}$ Obtaining the relation 3	Let f be the focal length of the lens in water		
OR (a) Diagram 1/2 Obtaining the relation 3	$\therefore \frac{1}{f'} = \frac{1.6 - 1.3}{1.3} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = \frac{0.3}{12 \times 1.3}$	1/2	
(a) Diagram1/2Obtaining the relation3	Or $f' = \frac{120 \times 1.3}{3} = 52cm$	1/2	5
Obtaining the relation 3	OR		
Obtaining the relation 3	(a) Diagram ¹ / ₂		
(b) Numerical 1 ¹ / ₂			
	(b) Numerical 1 ¹ / ₂		

	(a) A M_{38} P B C S	1⁄2	
	From fig $\angle A + \angle QNR = 180^{\circ}$ (1) From triangle $\triangle QNR$ $r_{1+}r_2 + \angle QNR = 180^{\circ}$ (2) Hence from equ (1) &(2)	1⁄2	
	$\therefore \angle A = r_1 + r_2$	1/2	
	The angle of deviation $\delta = (i - r_1) + (e - r_2) = i + e - A$ At minimum deviation i=e and $r_1 = r_2$	1⁄2	
	$\therefore r = \frac{A}{2}$	1/2	
	And i = $\frac{A + \delta m}{2}$	1/2	
	Hence refractive index $\mu = \frac{\sin i}{\sin r} = \frac{\sin \left(\frac{A + \delta m}{2}\right)}{\sin A/2}$	1⁄2	
	(b) From Snell's law $\mu_1 \sin i = \mu_2 sinr$ Given $\mu_1 = \sqrt{2}$, $\mu_2 = 1$ and $r = 90^0$ (just grazing)	1⁄2	
	$\therefore \sqrt{2} \sin i = 1 \sin 90^{0} \Longrightarrow \sin i \frac{1}{\sqrt{2}}$ or $i = 45^{0}$	1/2 1/2	5
Q25	a)(i) Principle of potentiometer1How to increase sensitivity1/2(ii) Name of potentiometer1/2Reason1/2b)Formula1/2(i) Ratio of drift velocities in series1(ii) Ratio of drift velocities in parallel1		
	a) (i) The potential difference across any length of wire is directly proportional to the length provided current and		

· · · · · · · · · · · · · · · · · · ·		
area of cross section are constant i.e., $E(l) = \phi l$ where ϕ is the potential drop per unit length.	1	
φ is the potential drop per unit length.		
It can be made more sensitive by decreasing current in		
the main circuit /decreasing potential gradient /	1⁄2	
increasing resistance put in series with the potentiometer		
wire.	1/	
ii) Potentiometer B	1/2 1/2	
Has smaller value of V/l (slope / potential gradient).	1/2	
b) In series, the current remains the same.	1/2	
$\stackrel{P_1}{\longrightarrow} \stackrel{I}{\longrightarrow} \stackrel{P_2}{\longrightarrow} \stackrel{\bullet}{\longrightarrow}$		
$\leftarrow \qquad \qquad$		
	1/2	
$I = neA_1V_{d1} = neA_2V_{d2}$	/2	
$\therefore \frac{V_{d1}}{V_{d2}} = \frac{A_2}{A_1}$	1/2	
In parallel potential difference is same but currents are		
different.		
$V = I_1 R_1 = neA_1 V_{d1} \frac{\varrho l}{A_1} = ne\varrho V_{d1} l$	1/2	
1	72	
Similarly, $V = I_2 R_2 = ne \varrho V_{d2} l$		
$I_1 R_1 = I_2 R_2$	1/2	5
$I_1 R_1 = I_2 R_2$ $\therefore \frac{V_{d1}}{V_{d2}} = 1$		
OR		
(a) Definition of capacitance 1		
Obtaining capacitance 2		
(b) Ratio of capacitances 2		
a) Capacitance equals the magnitude of the charge on each	1	
plate needed to raise the potential difference between	1	
the plates by unity.		
OR The constitution is defined as		
[The capacitance is defined as		
$c = \frac{q}{V}$]		
		1

	$C_{1} = K \frac{\epsilon_{0}A}{\left(\frac{3}{4}d\right)}$ $C_{2} = \frac{\epsilon_{0}A}{\left(\frac{1}{4}d\right)}$	1/2	
	$\therefore C = \frac{C_1 C_2}{C_1 + C_2} = \frac{\binom{(4^{-1})}{\binom{K}{\binom{4}{3}}} \binom{\epsilon_0 A}{\binom{1}{\binom{4}{3}}}}{\frac{\epsilon_0 A}{d} \binom{4}{\binom{4}{3}} k + 4}$	1/2	
	$= \frac{4}{(3+k)} \frac{\epsilon_0 A}{d} = \frac{4}{(3+k)} C_0$ $= \frac{4}{c_0} = \frac{4}{k+3} $	1/2	
	$\frac{1}{c_0} - \frac{1}{k+3}$	1⁄2	5
Q26	a) Statement of Faraday's Law 1 b) Calculation of current 2 Graph of current 1 c) Lenz's Law 1 (a) Faraday's law: The magnitude of the induced emf in a circuit is equal to the time rate of change of magnetic flux through the circuit. [Alternately: $e = -\frac{d\varphi}{dt}$] (b) Area= $\pi R^2 = \pi X 1.44 X 10^{-2}m^2$ $= 4.5 X 10^{-2}m^2$ For 0 <t<2 Emf $e_1 = \frac{d\varphi_1}{dt} = -A \frac{dB}{dt}$ $= -4.5 X 10^{-2} X \frac{1}{2}$ $I_1 = -\frac{e_1}{R} = -\frac{2.25 X 10^{-2}}{8.5} = -2.7 mA$ For 2<t<4 $I_2 = \frac{e_2}{R} = 0$ For 4<t<6 $I_3 = -\frac{e_3}{R} = +2.7 mA$</t<6 </t<4 </t<2 	1 1/2 1/2 1/2 1/2	

