<u>CHEMISTRY MARKING SCHEME</u> <u>DELHI -2014</u> <u>SET -56/1/1</u>

Qn	Answers	Marks	
1	2	1	
2	Lyophillic sol are liquid loving and lyophobic are liquid hating	1	
	(or any other suitable difference)		
3	F F	1	
4	SiO ₂ removes impurtiy FeS, FeO in the form of slag.	1	
5	Due to incomplete filling of d-orbitls	1	
6	CH ₃ CH (Br) CH ₂ CH ₂ CH ₃	1	
7	2-methylpropanal		
8	CH ₃ NH ₂		
9	Vapour pressure of a solvent decreases	1	
	This is due to fraction of surface area gets covered by non-volatile solute particles.	1	
10	a) IIIrd Order	1	
	b) $s^{-1}/\min^{-1}/\operatorname{time}^{-1}$	1	
11	a) In roasting, ore is heated in a regular supply of air.	1	
	b) In calcination, ore is heated in the absence or limited supply of air.	1	
12	i)	1	
	ii) $[PCl_4]^+ [PCl_6]^-$	1	

13			1
	from $(n-1)d$ and ns electrons in the interatomic metallic bonding ii) Due to stability of d^0 d^3 and d^5 orbitals		
	ii) Due to stability of d^0 , d^3 and d^5 orbitals		1
	OR		
13	i) The successive decrease in the size of atoms due to filling of inner orbitals in elen of atomic numbers 57 to 71 (in lanthanoid series) is called lanthanoid contraction		1
	ii)	It causes the radii (atomic sizes) of the third transition series to be very similar to those	1
	of the corresponding members of the second series.		
14	i)	Because of the ability of oxygen to form multiple bonding with metal.	1
	ii)	Due to increase in stability of their lower oxidation states	1
15	i)	R−X + R′- \ddot{Q} Na \longrightarrow R− \ddot{Q} -R′ + Na X	1
		OH ONa OH	
		NaOH, (i) CO, COOH	1
			-
	ii)	2-Hydroxybenzoic acid (Salicylic acid)	
	,		
16	i)	$CH_3-CH=CH_2$ H_{2O/H^+} $CH_3-CH(OH)-CH_3$	1
	ii)	CH ₃ -CH ₂ -Cl aq.NaOH CH ₃ - CH ₂ OH $\frac{[0]}{cro_{3/}PCC}$ CH ₃ - CHO	1
17	(or any other suitable method)17i)Because deficiency of vitamin A causes night blindness whereas deficiency of vitam		$\frac{1}{2} + \frac{1}{2}$
17	1)	C causes scurvy.	/2 1/2
	::)		1
	ii)	Nucleotide – base + sugar + phosphate whereas nucleoside is combiation of base and	1
		sugar.	
18		does not form the hydrogensulphite addition product with NaHSO3.	1
	The penta	aacetate of glucose does not react with hydroxylamine indicating the absence of free	1
	CHO gro	up.	
19	Mass per	$unit cell = \frac{63.55 \text{g mol}^{-1}}{6.023 \times 10^{23} \text{mol}^{-1}} \times 4 = 4.22 \times 10^{-22} \text{g}$	1⁄2
		of unit cell = $\frac{mass}{density}$ = 4.22x10 ⁻²² g / 8.95g cm ⁻³ = 4.71x10 ⁻²³ cm ³	1⁄2
		volume) ^{1/3} = $(4.71 \times 10^{-23} \text{ cm}^3)^{1/3}$	1
	$= 3.61 \times 10^{-8} \text{ cm} = 361 \text{ pm}$		
	$r = \frac{a}{a}$	•	1⁄2
	$r = \frac{a}{2\sqrt{2}}$		1⁄2
	$=\frac{361pm}{2x1.41}$	= 128 pm	

20	m HOCH ₂ CH ₂ OH = $\frac{\Delta T_f}{K_f} = \frac{15.0^{\circ}\text{C}}{1.86^{\circ}\text{C/m}} = 8.06\text{m}$	1
	$\Delta T_b = K_b \text{ m HOCH}_2 \text{CH}_2 \text{OH} = (0.52^{\circ} \text{C/m}) (8.06 \text{m}) = 4.19^{\circ} \text{C}$	1
	$T_b = 100.00^0 C + 4.19^0 C$	
	$=104.19^{\circ}C$	1
21	i) $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$	1⁄2
	$Log \frac{100}{85} = -(1.06 \times 10^{-3}) \min^{-1} \frac{t}{2.303}$	1⁄2
	$t = \frac{0.1635}{1.06x10^{-3} min^{-1}} = 153 min$	1⁄2
	ii) $\log \frac{100}{15} = -(1.06 \times 10^{-3}) \min^{-1} \frac{t}{2.303}$	1
	$t = \frac{0.824x2.303}{1.06x10^{-3}min^{-1}}$	1⁄2
	t = 1790 min	
22	a) The accumulation of molecular species at the surface rather than in the bulk of a solid or	1
	liquid is termed adsorption.	
	b) Peptization may be defined as the process of converting a precipitate into colloidal sol by	1
	shaking it with dispersion medium in the presence of a small amount of electrolyte.	
	c) Sol is solid dispersed in liquid medium	1
23	i) Pentaamminechloridocobalt (III) chloride	1
	ii) Potassium hexacyanidoferate (III)	1
	iii) Tetrachloridonickelate (II)	1
	OR	

	iii)	Because of electron donating CH ₃ group, electron density on 'N' increases whereas in	1	
		aniline electron desnity on 'N' decreases due to resonance.		
26	i)	Ethene	1	
	ii)	Vinyl chloride	1	
	iii)	Phenol & formaldehyde	1	
27	i) Disinfectants are the chemicals applied to inanimate objects which either kill or			
	prevent the growth of microorganisms. For example: 1 per cent solution of phenol			
		(or any other suitable example)		
	ii)	Antacides are the drugs which neutralise acid in the stomach. For example: sodium	1/2+1/2	
		hydrogencarbonate. (or any other suitable example)		
	iii) Food preservatives prevent spoilage of food due to microbial growth. For example:			
		table salt (or any other suitable example)		
28	a) Conductivity of solution is inverse of resistivity			
	k = G l/A			
	Limiting molar conductivity – when concentration approches zero the conductivity is known as			
	limiting molar conductivity			
	b) Specific conductance = $\frac{1}{R}$ x cell constant			
	$=\frac{1}{100\Omega} \times 1.25 \text{ cm}^{-1}$			
		$= 1.244 \times 10^{-3} \Omega^{-1} \text{cm}^{-1}$	1	
	$\Lambda m = \frac{k}{c} = \frac{1.244 \times 10^{-3} \Omega^{-1} c m^{-1}}{c}$			
		OR		
28	a) i)	At cathode : $Ag^+ + e^- \rightarrow Ag$	1/2	
	At	t Anode : $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	1⁄2	
	ii)	At cathode : $H_2O + e^- \rightarrow \frac{1}{2}H_2 + OH^-$	1⁄2	
	At	t Anode : $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	1⁄2	
	b) n=	-4	1⁄2	

	$\Delta G = -nFE^0$	1⁄2
	$-960 \text{ kJ} = -4 \text{ x } 96500 \text{J} \text{x} \text{E}^{0}$	1
	$E^{0} = \frac{960000J}{4x96500J}$	1⁄2
	= 2.48V≈2.5V	1⁄2
29	a) i) $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$	1
	ii) $XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$	1
	b) i) Because of increase in electrongativity from Phorphorous to Chlorine	1
	ii) Because of decrease in oxidation state of Chlorine from HClO ₄ to HClO.	1
	iii) Because in vapour form, sulphur exists as S2 molecules and contains unpaired	1
	electrons.	
	OR	
29	$\begin{array}{c} O \\ 105^{\circ} \\ 105^{\circ} \\ 105^{\circ} \\ 100^{\circ} \\ 117^{\circ} \\ 0 \end{array} \\ \begin{array}{c} O \\ 110^{\circ} \\ 0 \\ 117^{\circ} \\ 0 \end{array} \\ \begin{array}{c} O \\ 130^{\circ} \\ 0 \\ 117^{\circ} \\ 0 \end{array} \\ \begin{array}{c} O \\ 130^{\circ} \\ 0 \\ 0 \\ 0 \end{array} \\ \begin{array}{c} O \\ 130^{\circ} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	1
	a) i) 121 pm	
	F Br F	
	ii)	1
	b) i) $SbH_3 < AsH_3 < PH_3 < NH_3$	1
	ii) Te <se<o<s< th=""><th>1</th></se<o<s<>	1
	iii) $I_2 < Br_2 < F_2 < Cl_2$	1

30	$2 \text{ CH}_3-\text{CHO} \xleftarrow{\text{dil. NaOH}} \text{CH}_3-\text{CH}-\text{CH}_2-\text{CHO}$	1
	Fither and	
	OH 3-Hydroxybutanal	
	a) i) (Aldol)	
	$H = O + H = O + Conc. KOH \longrightarrow H = OH + H = OK$ $H = OK$	1
	b) i) On heating with NaOH $+I_2$, ethanal forms yellow ppt of iodoform whereas propanal	1
	does not.	
	ii) Acetophenone- On heating with NaOH $+I_2$, forms yellow ppt of iodoform whereas	1
	Benzaldehyde does not (or any other test)	
	iii)As there is a misprint in the question, award 1 mark for any attempt.	1
	OR	
30	a) i) CH ₃ COCH ₂ CH(Cl)CH ₃	1
	ii)CH ₃ CH=CH-CHO	1
	b) i) CH ₂ (Br)COOH	1
	ii) CH ₃ CH ₂ OH	1
	iii)CH ₃ CH ₂ CH ₃	1

Sr. No.	Name	Sr. No.	Name	
1	Dr. (Mrs.) Sangeeta Bhatia	4	Sh. S.K. Munjal	
2	Dr. K.N. Uppadhya	5	Sh. Rakesh Dhawan	
3	Sh. D.A. Mishra	6	Ms. Garima Bhutani	