MARKING SCHEME Chemistry – 2014 FOREIGN – SET (56/2/1)

1	Collectors enhance non-wettability of the mineral/ore particles	1		
2	van der Waals forces			
3	Because of high inter-electronic repulsion of non bonding electrons owing to the small			
	bond length / atomic size			
4	Coordination isomerism	1		
5	$r = \frac{\sqrt{3}}{4}a$ or $4r = \sqrt{3}a$	1		
6	2 – hydroxybenzaldehyde	1		
7	$CH_3 - NH_2$, because of the electron releasing (+I effect) tendency of methyl group	1/2+1/2		
8	Amylose and amylopectin	1		
9	m= z l t l=5 A t= 20 x 60s = 1200s			
	$m = \frac{\text{atomic mass}}{n \times F} \times I \times t$	1/2		
	$m = \frac{\frac{58.7 g mol^{-1}}{2 x 96500 C mol^{-1}}}{x 5 A x 1200 s}$			
		1/2		
	m= 1.825 g (or any other suitable method)	1		
10	Half-life of a reaction is the time in which the concentration of a reactant is reduced to	1		
	half of its initial concentration.			
	(i) (ii)	1/ . 1/		
	$t_{1/2} = \frac{[R]_0}{2k} \qquad \qquad t_{1/2} = \frac{0.693}{k}$	1/2+1/2		
	$c_{1/2} = 2k$ $c_{1/2} = k$			
11	$4Ag + 8 CN^{-} + 2H_2O + O_2 \rightarrow 4 [Ag(CN)_2]^{-} + 4 OH^{-}$	1		
	$2[Ag(CN)_2]^- + Zn \rightarrow [Zn(CN)_4]^{-2} + 2Ag$	1		
	Or			
	$Ag_2S + 4NaCN \rightarrow 2 Na[Ag(CN)_2] + Na_2S$			
	$2Na[Ag(CN)_2] + Zn \rightarrow Na_2 [Zn(CN)_4] + 2Ag$			
	(balancing of equation is not necessary)			
12	Rhombic and Monoclinic	1		
	Rhombic Sulphur	1/2		
	Rhombic sulphur changes to monoclinic sulphur	1/2		
10	OR	1		
12	a) High pressure and low temperature	1		
	 b) Because ionization of HSO⁻₄ is difficult / removal of proton from negatively sharged HSO⁻₄ is difficult 	1		
13	charged HSO ⁻⁴ is difficult.	1		
12	(i) $5S^{2-} + 2MnO_{4} + 16H^{+} \longrightarrow 2Mn^{2+} + 8H_2O + 5S$	1		
	$\operatorname{Cr}_2\operatorname{O_7}^{2-} + 2 \operatorname{OH}^{-} \rightarrow 2 \operatorname{CrO_4}^{2-} + \operatorname{H}_2\operatorname{O}$	1		
14	Hydridization : sp ³ d ² shape– octahedral	1/2+1/2		
	IUPAC – hexafluoridocobaltate(III)	1		

15	(i) $CH_3 CH_2$ - $CI + KOH (aq) \rightarrow CH_3 CH_2 - OH + KCI$	1
	$H_{3}C-C-Cl$ Anhyd. AlCl ₃ $H_{3}C-CH_{3}$ +	
	$\left[\right] + H_3C-C-Cl \xrightarrow{Anhyd. AlCl_3} \left[\right] CH_3 + \left[\right]$	
		1
16	a) 1-Bromobutane / CH ₃ CH ₂ CH ₂ CH ₂ Br	1/2+1/2
10	Because it is a primary alkyl halide	/2+/2
	b) Because carbocation formed in $S_N 1$ reaction is sp^2 hybridized and planar.	1
17	$HBr \rightarrow H^+ + Br^-$	
	Н	
	$CH_3 - CH_2 - O - H + H^+ \rightarrow CH_3 - CH_2 - O - H$	1⁄2
	$H \longrightarrow H^{+} H^{+} H^{+} H^{-} H \longrightarrow CH_{3} - CH_{2} + H_{2}O$	
	$CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 + H_2O$	1/2
		72
	$CH_{3} \xrightarrow{+} CH_{2} \xrightarrow{-} CH_{3} \xrightarrow{-} CH_{2} \xrightarrow{-} Br$	
	Or	1
	+	
	$Br^{-} + CH_{2} - OH_{2}^{+} \longrightarrow Br - CH_{2} + H_{2}O$	
	R (where $R = -CH_3$)	
18	(i) Br_2 / H_2O or aq. Br_2 (ii) LiALH or NaBH or H (Ni (or any other))	½x4=2
	 LiAlH₄ or NaBH₄ or H₂ / Ni (or any other) (iii) R – Cl and anhyd . Al Cl₃ 	
	(iv) Acidic or alkaline KMnO ₄ , K ₂ Cr ₂ O ₇ (acidic)	
19	(i) Schottky defect, due to similar size of K ⁺ and Cl ⁻ ion	1/2 +1/2
	(ii) n-type	1
	(iii) CO₂(iv) Ferromagnetic	1/2 1/2
20	a)	/2
	(i) The fuel cell runs continuously as long as the reactants are supplied	
	(ii) Highly efficient	1/2
	(iii) Pollution free	1/2
	(any two)	
	b) $\log \text{Kc} = \frac{nE^0 \text{cell}}{0.059}$	1/2
	2xE ⁰ cell	
	$\log \text{Kc} = \frac{2\text{x}\text{E}^{0}\text{cell}}{0.059}$	

	$\log 10 = \frac{2xE^{0} \text{ cell}}{0.059}$ $E^{0}_{\text{ cell}} = \frac{0.059}{2} = 0.0295 \text{ V}$	[log 10 = 1]	1
21	$SO_2 Cl_2$	\rightarrow SO ₂ + Cl ₂	1
	At $t = 0s$ 0.4 atm	0 atm 0 atm	
	At $t = 100s$ (0.4 – x) atm	x atm x atm	
	$Pt=0.4-x\ +\ x\ +\ x$		
	Pt = 0.4 + x		
	0.7 = 0.4 + x		
	x = 0.3		
	$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$		1
	$k = \frac{2.303}{t} \log \frac{0.4}{0.8 - 0.7}$		1
	$k = \frac{2.303}{100} \log \frac{0.4}{0.1}$		
	$k = \frac{2.303}{100} \times 0.6021 = 1.39 \times 10^{-2} \text{ s}^{-1}$		1
22	a) $\frac{x}{m} = k p^{1/n}$ or log (x/m)= log k + 1/n log p b) Dispersed phase = liquid Dispersion medium = Solid c) Because of coagulation of colloidal particles		
23	 a) +3 +2 +4 oxidation states b) Transition elements (i) Form coloured compounds (ii) Form complexes (iii) Act as catalysts (iv) Paramagnetic (v) Form alloys 		1
	(vi) Form interstitial compounds Or any other	(any two)	1/2+1/2
	c) Zn, because of fully filled d orbitals	0.0	1/2+1/2
23	a) Because of stable half filled orbital	OR (3d ⁵)	1
	b) Because Zn has no unpaired electr	ons in d orbitals.	1
	 c) Because of the presence of one un unpaired electron in Sc⁺³ 	paired electron in Ti ³⁺ whereas there is no	1
24	(i) $A = CH_3CN$ $B = CH_3CH_2$		1/2+1/2+1/2
25	 (ii) A = CH₃ CONH₂ B = CH₃NH₂ (i) Anomers – are the isomers which a group at C-1 of glucose Or 	C = CH ₃ NC differ only in the configuration of hydroxyl	<u>1</u>

		\propto and β forms of glucose are called anomers	
	(ii)	Denaturation of proteins – when native protein is subjected to physical or	1
	(iii)	chemical change, it loses its biological activity and is called denaturation. Essential amino acids are the amino acids required in our diet for the growth	1
	(111)	of the body / which are not synthesized by our body and obtained through	T
		diet.	
26	(i)	The drugs which are used to prevent the interaction of histamine with the	1/2+1/2
20	(')	receptors present in the stomach wall. Eg. Cimetidine / Ranitidine /	/21/2
		Dimetapp (or any other)	
	(ii)	Chloramphenicol	1
	(iii)	Because it is unstable at cooking temperature	1
27	(i) Concer	n towards environment / caring / socially aware / team work. (atleast	1
	two values)		
	(ii) Polym	ers which can be degraded by the action of microorganisms. Eg. PHBV	1⁄2+1⁄2
	, Nylon -2	-nylon- 6/ any natural polymer	
	(iii) Homo	polymer	1
28			1
28	(i)	Raoult's law : state that for a solution containing volatile components, the partial vapour pressure of each component is directly proportional to its	T
		mole fraction.	
		Ideal solution.	1
	(ii)	$\Delta T_{b} = i K_{b} x \frac{W cacl_{2}}{M cacl_{2}} x \frac{1000}{w H_{2}O}$	1
		= 3x0.512 K kg mol ⁻¹ x $\frac{10g}{111 gmol^{-1}}$ x $\frac{1000}{200 kg}$	1
		iii ymot 200 kg	
		= 0.69K or 0.69°C	1
		OR	
28	a)		
	(i)	Azeotrope is a liquid mixture which boils at constant temperature with	1
		constant composition.	
	(ii)	Osmotic pressure : is the pressure applied on the solution side to stop the	1
		flow of solvent across the semi permeable membrane from lower	
	(:::)	concentration of the solution to higher concentration.	1
	(iii)	Colligative properties : are the properties of solution which depend upon the no of moles of solute or concentration of solute and not on the nature of	1
		solute.	
	b)		1/2
	U)	$V(L) m_B V(m_L)$	
		$M = \frac{9.8 g}{98 g mol^{-1}} \times \frac{1000}{100} \times 1.02$	1/2
		M = 1.02M	1
29	a) (i) E	Because Bi is more stable in +3 oxidation state.	
	(ii) B	Because of the availability to d orbital in P which is not in N/ nitrogen cannot	
		covalency beyond 4	
		ecause of the formation of $H_2(g)$ which prevents the oxidation of Fe^{+2} to Fe^{+3} /	1x3=3
	HCl is only	a mild oxidising agent	

Sr.	Name & Address	Sr.	Name & Address	
No. 1	Dr. (Mrs.) Sangeeta Bhatia	No. 9	Sh. Partha Sarathi Sarkar	
2	Dr. K.N. Uppadhya	10	Mr. K.M. Abdul Raheem	
3	Prof. R.D. Shukla	11	Mr. Akileswar Mishra	
4	Sh. S.K. Munjal	12	Sh. Maya George	
5	Sh. Rakesh Dhawan	13	Sh. Virendra Singh Phogat	
			5 5	
6	Sh. D.A. Mishra	14	Dr. (Mrs.) Sunita Ramrakhiani	
7	Sh. Deshbir Singh	15	Ms. Garima Bhutani	
8	Ms. Neeru Sofat			