MARKING SCHEME
 Chemistry - 2014
 FOREIGN - SET (56/2/1)

1	Collectors enhance non-wettability of the mineral/ore particles	1
2	van der Waals forces	1
3	Because of high inter-electronic repulsion of non bonding electrons owing to the small bond length / atomic size	1
4	Coordination isomerism	1
5	$r=\frac{\sqrt{3}}{4} \mathrm{a} \quad$ or $4 \mathrm{r}=\sqrt{3} \mathrm{a}$	1
6	2 - hydroxybenzaldehyde	1
7	$\mathrm{CH}_{3}-\mathrm{NH}_{2}$, because of the electron releasing (+l effect) tendency of methyl group	$1 / 2+1 / 2$
8	Amylose and amylopectin	1
9	$\begin{aligned} & \mathrm{m}=\mathrm{zIt} \quad \mathrm{I}=5 \mathrm{~A} \quad \mathrm{t}=20 \times 60 \mathrm{~s}=1200 \mathrm{~s} \\ & \mathrm{~m}=\frac{\text { atomic mass }}{\mathrm{n} \times \mathrm{F}} \times 1 \times \mathrm{t} \\ & \mathrm{~m}=\frac{58.7 \mathrm{~g} \mathrm{~mol}^{-1}}{2 \times 96500 \mathrm{C} \mathrm{~mol}^{-1}} \times 5 \mathrm{~A} \times 1200 \mathrm{~s} \\ & \mathrm{~m}=1.825 \mathrm{~g} \end{aligned}$ (or any other suitable method)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 \\ & \hline \end{aligned}$
10	Half-life of a reaction is the time in which the concentration of a reactant is reduced to half of its initial concentration. (i) (ii) $t_{1 / 2}=\frac{[\mathrm{R}]_{0}}{2 k}$ $t_{1 / 2}=\frac{0.693}{k}$	1 $1 / 2+1 / 2$
11	$\begin{aligned} & 4 \mathrm{Ag}+8 \mathrm{CN}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+4 \mathrm{OH}^{-} \\ & 2\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Zn} \rightarrow\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{-2}+2 \mathrm{Ag} \\ & \mathrm{Or} \\ & \mathrm{Ag}_{2} \mathrm{~S}+4 \mathrm{NaCN} \rightarrow 2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Na}_{2} \mathrm{~S} \\ & 2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Zn} \rightarrow \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]+2 \mathrm{Ag} \\ & \text { (balancing of equation is not necessary) } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
12	Rhombic and Monoclinic Rhombic Sulphur Rhombic sulphur changes to monoclinic sulphur	$\begin{aligned} & 1 \\ & 1 / 2 \\ & 1 / 2 \\ & \hline \end{aligned}$
	OR	
12	a) High pressure and low temperature b) Because ionization of HSO_{4}^{-}is difficult / removal of proton from negatively charged HSO_{4} is difficult.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
13	$\begin{aligned} & \text { (i) } 5 \mathrm{~S}^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{~S} \\ & \text { (ii) } \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
14	Hydridization : $\mathrm{sp}^{3} \mathrm{~d}^{2} \quad$ shape-octahedral IUPAC - hexafluoridocobaltate(III)	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \\ & \hline \end{aligned}$

15	(i) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Cl}+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}+\mathrm{KCl}$ (ii)	
16	a) 1-Bromobutane / $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ Because it is a primary alkyl halide b) Because carbocation formed in $\mathrm{S}_{\mathrm{N}} 1$ reaction is sp^{2} hybridized and planar.	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \\ & \hline \end{aligned}$
17	$\mathbf{H B r} \rightarrow \mathbf{H}^{+}+\mathrm{Br}^{-}$ $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{CH}} \mathrm{H}_{2} \xrightarrow{\mathrm{Br}^{-}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$ Or (where $\mathrm{R}=-\mathrm{CH}_{3}$)	$1 / 2$ $1 / 2$ $1 / 2$
18	(i) $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ or aq. Br_{2} (ii) LiAlH_{4} or NaBH_{4} or $\mathrm{H}_{2} / \mathrm{Ni}$ (or any other) (iii) $\mathrm{R}-\mathrm{Cl}$ and anhyd. $\mathrm{Al} \mathrm{Cl}_{3}$ (iv) Acidic or alkaline $\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (acidic)	$1 / 2 \times 4=2$
19	(i) Schottky defect, due to similar size of K^{+}and Cl^{-}ion (ii) n-type (iii) CO_{2} (iv) Ferromagnetic	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 \\ & 1 / 2 \\ & 1 / 2 \\ & \hline \end{aligned}$
20	a) (i) The fuel cell runs continuously as long as the reactants are supplied (ii) Highly efficient (iii) Pollution free (any two) b) $\begin{aligned} & \log K c=\frac{\mathrm{nE}^{0} \text { cell }}{0.059} \\ & \log K c=\frac{2 \times \mathrm{E}^{0} \text { cell }}{0.059} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ $1 / 2$

	$\begin{array}{ll} \log 10=\frac{2 \times \mathrm{E}^{0} \text { cell }}{0.059} & {[\log 10=1]} \\ \mathrm{E}_{\text {cell }}^{0}=\frac{0.059}{2}=0.0295 \mathrm{~V} & \end{array}$	
21	$\mathrm{SO}_{2} \mathrm{Cl}_{2}$ $\rightarrow \mathrm{SO}_{2}+$ Cl_{2} $\mathrm{At} \mathrm{t}=0 \mathrm{~s}$ 0.4 atm 0 atm 0 atm $\mathrm{Att}=100 \mathrm{~s}$ $(0.4-\mathrm{x}) \mathrm{atm}$ x atm x atm $\mathrm{Pt}=0.4-\mathrm{x}$ $+\mathrm{x}+\mathrm{x}$ $\mathrm{Pt}=0.4+\mathrm{x}$ $0.7=0.4+\mathrm{x}$ $\mathrm{x}=0.3$ $\mathrm{k}=\frac{2.303}{\mathrm{t}}$ $\log \frac{p_{i}}{2 p_{i}-p_{t}}$ $\mathrm{k}=\frac{2.303}{\mathrm{t}}$ $\log \frac{0.4}{0.8-0.7}$ $\mathrm{k}=\frac{2.303}{100}$ $\log \frac{0.4}{0.1}$ $\mathrm{k}=\frac{2.303}{100} \times 0.6021=1.39 \times 10^{-2} \mathrm{~s}^{-1}$	1 1 1 1
22	a) $\frac{x}{m}=\mathrm{kp}^{1 / \mathrm{n}} \quad$ or $\log (\mathrm{x} / \mathrm{m})=\log \mathrm{k}+1 / \mathrm{n} \log \mathrm{p}$ b) Dispersed phase $=$ liquid \quad Dispersion medium $=$ Solid c) Because of coagulation of colloidal particles	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$
23	a) $+3+2+4$ oxidation states b) Transition elements (i) Form coloured compounds (ii) Form complexes (iii) Act as catalysts (iv) Paramagnetic (v) Form alloys (vi) Form interstitial compounds (any two) Or any other c) Zn , because of fully filled d orbitals	1 $\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & \hline \end{aligned}$
	OR	
23	a) Because of stable half filled orbitals $\left(3 d^{5}\right)$ b) Because Zn has no unpaired electrons in d orbitals. c) Because of the presence of one unpaired electron in Ti^{3+} whereas there is no unpaired electron in Sc^{+3}	
24	(i) $\quad \mathrm{A}=\mathrm{CH}_{3} \mathrm{CN} \quad \mathrm{B}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2} \quad \mathrm{C}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (ii) $\quad \mathrm{A}=\mathrm{CH}_{3} \mathrm{CONH}_{2} \quad \mathrm{~B}=\mathrm{CH}_{3} \mathrm{NH}_{2} \quad \mathrm{C}=\mathrm{CH}_{3} \mathrm{NC}^{2}$	$\begin{aligned} & 1 / 2+1 / 2+1 / 2 \\ & 1 / 2+1 / 2+1 / 2 \end{aligned}$
25	(i) Anomers - are the isomers which differ only in the configuration of hydroxyl group at $\mathrm{C}-1$ of glucose Or	1

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\(\alpha\) and \(\beta\) forms of glucose are called anomers \\
(ii) Denaturation of proteins - when native protein is subjected to physical or chemical change, it loses its biological activity and is called denaturation. \\
(iii) Essential amino acids are the amino acids required in our diet for the growth of the body / which are not synthesized by our body and obtained through diet.
\end{tabular} \& 1
1 \\
\hline 26 \& (i) The drugs which are used to prevent the interaction of histamine with the
receptors present in the stomach wall. Eg. Cimetidine / Ranitidine /
Dimetapp (or any other)
(ii) Chloramphenicol
(iii) Because it is unstable at cooking temperature \& \begin{tabular}{l}
\[
1 / 2+1 / 2
\] \\
1 \\
1
\end{tabular} \\
\hline 27 \& \begin{tabular}{l}
(i) Concern towards environment / caring / socially aware / team work. (atleast two values) \\
(ii) Polymers which can be degraded by the action of microorganisms. Eg. PHBV , Nylon -2-nylon- 6/ any natural polymer \\
(iii) Homo polymer
\end{tabular} \& \begin{tabular}{l}
1
\[
1 / 2+1 / 2
\] \\
1
\end{tabular} \\
\hline 28 \& \begin{tabular}{l}
(i) Raoult's law : state that for a solution containing volatile components, the partial vapour pressure of each component is directly proportional to its mole fraction. \\
Ideal solution. \\
(ii)
\[
\begin{aligned}
\& \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{~K}_{\mathrm{b}} \times \frac{\mathrm{Wcacl}_{2}}{\mathrm{Mcacl}_{2}} \times \frac{1000}{w \mathrm{H}_{2} \mathrm{O}} \\
\& =3 \times 0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{10 \mathrm{~g}}{111 \mathrm{gmol}^{-1}} \times \frac{1000}{200 \mathrm{~kg}} \\
\& =0.69 \mathrm{~K} \text { or } 0.69^{\circ} \mathrm{C}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{tabular} \\
\hline \& OR \& \\
\hline 28 \& \begin{tabular}{l}
a) \\
(i) Azeotrope is a liquid mixture which boils at constant temperature with constant composition. \\
(ii) Osmotic pressure : is the pressure applied on the solution side to stop the flow of solvent across the semi permeable membrane from lower concentration of the solution to higher concentration. \\
(iii) Colligative properties : are the properties of solution which depend upon the no of moles of solute or concentration of solute and not on the nature of solute. \\
b)
\[
\begin{aligned}
\& \mathrm{M}=\frac{n_{B}}{\mathrm{~V}(\mathrm{~L})}=\frac{w_{B}}{m_{B}} \times \frac{1000}{\mathrm{~V}(m L)} \quad(\mathrm{B} \rightarrow \text { Solute }) \\
\& \mathrm{M}=\frac{9.8 g}{98 g \mathrm{~mol}^{-1}} \times \frac{1000}{100} \times 1.02 \\
\& \mathrm{M}=1.02 \mathrm{M}
\end{aligned}
\]
\end{tabular} \& 1
1
1
1

$1 / 2$
$1 / 2$
1

\hline 29 \& | a) (i) Because Bi is more stable in +3 oxidation state. |
| :--- |
| (ii) Because of the availability to d orbital in P which is not in $\mathrm{N} /$ nitrogen cannot extend its covalency beyond 4 |
| (iii) Because of the formation of $\mathrm{H}_{2}(\mathrm{~g})$ which prevents the oxidation of Fe^{+2} to Fe^{+3} / HCl is only a mild oxidising agent | \& $1 \times 3=3$

\hline
\end{tabular}

	a) (i) (ii)	1+1
	OR	
29	a) (i) (ii) Polymeric b) (i) Because of the presence of two unpaired electrons . (ii) Because of high ionization enthalpy of He . (iii) Because of the presence of two $\mathrm{P}-\mathrm{H}$ bonds in $\mathrm{H}_{3} \mathrm{PO}_{2}$ whereas in $\mathrm{H}_{3} \mathrm{PO}_{3}$ one $\mathrm{P}-\mathrm{H}$ bond is present.	1
30	a) (i) $\mathrm{CH}_{3}-\mathrm{CHO} \xrightarrow{\mathrm{CH}_{3} \mathrm{MgBr}} \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{OMgBr} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$ (ii) $\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow[\text { Conc } \mathrm{HCl}]{\mathrm{Zn} \mathrm{Hg}} \mathrm{CH}_{3}-\mathrm{CH}_{3}$ (iii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{CH}_{3}-\mathrm{CHO} \xrightarrow{\text { dil } \mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CHO}$ (Award full marks even if only products are given) b) (i) Add NaHCO_{3}, benzoic acid will give brisk effervescence whereas ethyl benzoate will not give this test. (or any other test) (ii) Add tollen's reagent, propanal will give silver mirror whereas Butan-2-one will not give this test. (or any other test)	1 1 1 1 1
	OR	

30	a) (i) Because the positve charge on carbonyl carbon of $\mathrm{CH}_{3} \mathrm{CHO}$ decreases to a lesser extent due to one electron releasing (+l effect) CH_{3} group as compared to $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ (two electron releasing CH_{3} groups) and hence more reactive. (ii) because one of the $-\mathrm{NH}_{2}$ is involved in resonance with carbonyl group and hence acquires positive charge. (b) (i) (ii) (iii) (or any other suitable reaction)	1 1 1 1 1 1 1 1

Sr. No.	Name \& Address		Sr. No.	Name \& Address	
1	Dr. (Mrs.) Sangeeta Bhatia		9	Sh. Partha Sarathi Sarkar	
2	Dr. K.N. Uppadhya		10	Mr. K.M. Abdul Raheem	
3	Prof. R.D. Shukla		11	Mr. Akileswar Mishra	
4	Sh. S.K. Munjal		12	Sh. Maya George	
5	Sh. Rakesh Dhawan		13	Sh. Virendra Singh Phogat	
6	Sh. D.A. Mishra		15	Dr. (Mrs.) Sunita Ramrakhiani	Ms. Garima Bhutani
7	Sh. Deshbir Singh				
8	Ms. Neeru Sofat				

