MARKING SCHEME SET 55/1/1 (Compartment)

Marks 1 1 2 1
1
1
1
/2
/2
/2
/2
1
1
1
1
2
2

		1	
	[Under the influence of the electric field of the incident wave, the electrons (of the scattering molecules), accelerated parallel to the double arrows, do not radiate energy towards the observer. Hence, the scattered light gets polarized.]	1/2 + 1/2	2
Set1,Q8 Set2,Q7 Set3,Q10	Reason for dispersion1Dependence of focal length of the lens on colour1		
	The refractive index of the glass of the prism is different for different wavelengths(colours). Hence, different colours get bent along different directions. Using lens maker's formula $\frac{1}{f} = (n_{21} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right), n_{21} = \frac{n_2}{n_1}$	1	
	As the refractive index of the medium with respect to air (medium 1) depends on the wavelength or colour of light, focal length of the lens would change with colour.	1	2
Set1,Q9 Set2,Q8 Set3,Q6	Calculation of the value of Plank's constant 2 According to Einstein's photoelectric equation		
	$V_o = \frac{h}{e}v - \frac{\phi_o}{e}$ In the given graph:	1⁄2	
	Stopping potential $V_o = 1.23 \text{ V}$ Change in frequency $\Delta v = 3 \times 10^{14} \text{Hz}$ (Alternatively : slope of the line $= \frac{h}{o}$)	1⁄2	
	$\frac{h}{e} = \frac{V_o}{\Delta v} = \frac{1.23}{3 \times 10^{14}}$ $\therefore h = \frac{1.23 \times 1.6 \times 10^{-19}}{3 \times 10^{14}} \text{J-s}$	1⁄2	
	$= 6.6 \times 10^{-34} \text{ J-s}$	1/2	2
Set1,Q10 Set2,Q9 Set3,Q7	Completion of nuclear reaction (a)1Completion of nuclear reaction (b)1		
	(a) ${}^{10}_{5}\text{B} + {}^{1}_{o}n \rightarrow {}^{4}_{2}\text{He} + {}^{7}_{3}\text{Li}$ (b) ${}^{94}_{42}\text{MO} + {}^{2}_{1}\text{H} \rightarrow {}^{95}_{43}\text{Te} + {}^{1}_{0}n$	1 1	
	[Note: For reaction (a) even if the candidate writes ${}_{3}^{7}X$, award 1 mark] OR		
	ge 2 of 15 final_draft 19/07/1	5 03:00 r	

	Explanation of conversion of mass into energy (vice versa)1Example1		
	Since proton number and neutron number are conserved, the total rest mass of neutron and protons is the same on either side of the nuclear reaction. But total binding energy of nuclei on the left side need not be the same as that on the right hand side. The difference in binding energy causes a release of energy in the reaction. Example : ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{0}^{1}n + energy$	1	
	Or $\binom{235}{92}$ U + ${}^{1}_{0}n \rightarrow {}^{144}_{56}$ Ba + ${}^{89}_{36}$ Kr + $3{}^{1}_{0}n$ + energy)	1	
	(Give full credit for any other one correct example.)		2
	Section C		
Set1,Q11 Set2,Q20 Set3,Q17	(i) Figure $\frac{1}{2}$ (ii) Derivation of torque $1 \frac{1}{2}$ (iii) Identification of two pairs $\frac{1}{2} + \frac{1}{2}$		
	$\mathbf{E} \qquad \mathbf{e} \qquad $	1⁄2	
	The force on charge $+q$ is $+q\vec{E}$ and on charge $-q$ is $-q\vec{E}$. These, two parallel forces, acting in the opposite direction, constitute a couple resulting in the torque τ .	1⁄2	
	Magnitude of torque= $qE \times 2a \sin \theta$ = $2qa E \sin \theta$	1⁄2	
	Therefore, $\vec{\tau} = \vec{p} \times \vec{E}$ where $\vec{p} = 2q\vec{a}$	1⁄2	
	(ii) Two pairs of perpendicular vectors: (i) \vec{x} is perpendicular to \vec{x}	1/	
	(i) $\vec{\tau}$ is perpendicular to \vec{p} (ii) $\vec{\tau}$ is perpendicular to \vec{E}	$\frac{1/2}{1/2}$	3
Set1,Q12 Set2,Q21 Set3,Q18	(a) Ratio of surface charge densities2(b) Identifying the constant quantity1		
	We have, $V = \frac{q_1}{c_1} = \frac{q_2}{c_2}$	1/2	

Page 3 of 15

19/07/15 03:00 p.m.

		1	1
	$\frac{q_1}{4\pi\varepsilon_o R_1} = \frac{q_2}{4\pi\varepsilon_o R_1} \Longrightarrow \frac{q_1}{R_1} = \frac{q_2}{R_2}$ $\frac{\sigma_1}{\sigma_2} = \frac{q_1}{4\pi\varepsilon_o R_1^2} \times \frac{4\pi\varepsilon_o R_2^2}{q_2}$ $= \frac{q_1}{q_2} \times \frac{R_2^2}{R_1^2}$	1/2 1/2	
	$= \frac{q_1}{q_2} \times \frac{R_2^2}{R_1^2}$ $= \frac{R_1}{R_2} \times \frac{R_2^2}{R_1^2} = \frac{R_2}{R_1}$	1/2	
	(b) Current	1	3
Set1,Q13 Set2,Q22 Set3,Q19	Readings of ideal ammeter and ideal voltmeter in fig (a) and (b) $1\frac{1}{2} + 1\frac{1}{2}$		
5005,015	In circuit (a) Total emf=15 V Total Resistance = 2Ω		
	Current $i = (15/2)A = 7.5 A$ Potential Difference between the terminals of 6 V battery	1/2	
	V=E-iR	1⁄2	
	$ = [6-(7.5\times1)]V = -1.5 V V V = -1.5 V V V V = -1.5 V V V V V V V V V V V V V $	1	
	In circuit (b)		
	Effective emf= $(9-6)$ V = 3 V		
	Current $i=(3/2)A=1.5 A$ Potential Difference across 6V cell V=E+iR	1⁄2	
	$=6+1.5\times1$	1⁄2	
	=7.5 V	1	
	OR		
	Finding current through each resistor3		
	Total emf in the circuit = $8V - 4V = 4V$ Total resistance of the circuit = 8Ω Hence current flowing in the circuit	1/2 1/2	
	$i = \frac{V}{R} = \frac{4}{8} A = 0.5 A$	1⁄2	
	R 8 Current flowing through the resistors: Current throgh 0.5 Ω , 1.0 Ω and 4.5 Ω is 0.5 A	1/2	
	Current through 3.0 Ω is $\frac{1}{3}$ A	1⁄2	
	Current through 6.0 Ω is $\frac{1}{6}$ A	1⁄2	3
			5
			1

Set1,Q14 Set2,Q11 Set3,Q20	Definition of(i) Magnetic declination and diagram $\frac{1}{2} + \frac{1}{2}$ (ii) Angle of dip and diagram $\frac{1}{2} + \frac{1}{2}$ Direction of compass needle at the $\frac{1}{2}$ (ii) Poles $\frac{1}{2}$ (ii) Equator $\frac{1}{2}$		
	Magnetic declination : Angle between the magnetic axis and geographical axis. Alternatively: Angle between magnetic meridian and geographical meridian.	1/2	
	N D Declination	1⁄2	
	Angle of dip: It is the angle which the magnetic needle makes with the horizontal in the magnetic meridian. Alternatively: The angle which the total magnetic field of the earth makes with the surface of the earth.	1/2	
		1⁄2	
	Direction of compass needle is vertical to the earth's surface at poles and is parallel to the earth's surface at equator.	¹ / ₂ + ¹ / ₂	3
Set1,Q15 Set2,Q12 Set3,Q21	Derivation of magnetic energy2Comparison of magnetic energy per unit volume with1		
	Rate of work done $\frac{dW}{dt} = \varepsilon I$ $= \left(LI \frac{dI}{dt}\right)$ $dW = LIdI$ Total amount of work done $\int dW = \int LIdI$	1⁄2	
	$W = \frac{1}{2}LI^2$	1/2	

Page 5 of 15

	For the solenoid :		
	Inductance, $L = \mu_0 n^2 A l$; also $B = \mu_0 n l$		
	$\therefore W = U_B = \frac{1}{2}LI^2$	1⁄2	
	$\frac{1}{2} \frac{1}{2} \frac{1}$		
	$\frac{1}{2}(\mu_o n^2 A \ell) \left(\frac{B}{\mu_o n}\right)^2$ $= \frac{B^2 A \ell}{2\mu_o}$		
	$\frac{2}{B^2 A \ell}$		
	$=\frac{1}{2\mu_o}$	1/2	
	\Rightarrow Magnetic energy per unt volume = $\frac{B^2}{2\mu_o}$	1/2	
	Also, Electrostatic energy stored per unit volume = $\frac{1}{2} \varepsilon_o E^2$		
		1/2	3
Set1,Q16			
Set2,Q13 Set3,Q22	(i) Calculation of rms value of current2(ii) Calculation of total average power consumed.1		
	(i) $X_L = \omega L = 100 \times 80 \times 10^{-3} = 8 \Omega$	1⁄2	
	(i) $X_L = \omega L = 100 \times 80 \times 10^{-3} = 8 \Omega$ $X_C = \frac{1}{\omega C} = \frac{1}{100 \times 250 \times 10^{-6}} \Omega$		
	$\omega C = 100 \times 250 \times 10^{-6}$		
	$=40 \ \Omega$		
	Total Impedance $(7) - V = V$	1⁄2	
	Total Impedence (Z) = $X_C - X_L$ = 32 Ω		
	$I_{rms} = \frac{240}{32} \text{ A} = 7.5 \text{ A}$	1/2	
	52	1/	
	(ii) Average power consumed = 0	$\frac{1}{2}$	3
	(As there is no ohmic resistance in the current.)		-
Set1,Q17 Set2,Q14	Answers of part (i) and (ii) $1\frac{1}{2} + 1\frac{1}{2}$		
Set3,Q11	(i) It absorbs ultraviolet radiations from sun and prevents them from	1/2	
	reaching on the earth's surface causing damage to life.		
	Identification : ultraviolet radiations	1/2	
	Identification . unraviolet radiations	72	
	one correct application (=sanitization, forensics)	1⁄2	
	(ii) Water molecules present in most materials readily absorbs	1/2	
	infra red waves. Hence, their thermal motion increases. Therefore,		
	they heat their surroundings.	1/	
	They are produced by hot bodies and molecules. Incoming visible light is absorbed by earth's surface and radiated as	1/2	
	infra red radiations. These radiation are trapped by green house gases.	1⁄2	3

Set3,012	Definition of critical angle1/2Drawing of Ray diagram1Calculation of area of water surface.1 1/2		
ran is	or an incident ray, travelling from an optically denser medium to optically rer medium, the angle of incidence, for which the angle of refraction is 90°, s called the critical angle.		
	Iternatively: $\mu = \frac{1}{\sin i_c}$ = $\sin^{-1}\left(\frac{1}{\mu}\right)$	1/2	
	x x x x x x x x x x x x x x x x x x x		
	S 15 cm	1	
μ	$=\frac{1}{\sin i_c}$		
CO ta	n $i_c = \frac{3}{4}$ os $i_c = \frac{\sqrt{7}}{4}$ n $i_c = \frac{3}{\sqrt{7}}$	1/	
Fre	For $i_c = \frac{1}{\sqrt{7}}$ From figure, $n i_c = \frac{x}{7} => \frac{3}{\sqrt{7}} => x = 3\sqrt{7}cm$	1/2 1/2	
	$rea = \pi x^2 = 63\pi \text{ cm}^2$	72 1⁄2	3
Set1,Q19 Set2,Q16 Set3,Q13	Selection of lens for objective and eyepiece of(i) Telescope1 ½(ii) Microscope1 ½		
	(i) Telescope L_2 : objective L_3 : eyepiece Reason	$\frac{1/2}{1/2}$ $\frac{1}{2}$	
	: Light gathering power and magnifying power will be larger.		
	(ii) Microscope L_3 : objective L_1 : eyepiece Reason : Angular magnification is more for short focal	1/2 1/2 1/2	
Page 7	length of objective and eyepiece.of 15final draft19/07/1	 5 03:00 p	3 .m.

	 the valence band is predominantly due to the impurity in the extrinsic semiconductors. [Any one of the above, or any one, other, correct distinguishing feature.] At absolute zero temperature conductivities of both type of semi-conductors will be zero. For equal doping, an n-type semi conductor will have more conductivity than a p-type semiconductor, at room temperature. 	1/2 1/2	3
Set1,Q22 Set2,Q19 Set3,Q16	 (a) Identification of X and Y 1/2 + 1/2 Their functions 1/2 + 1/2 (b) Distinction between point to point and broadcast mode. 1 (a) X : Transmitter Y: Channel 	1/2 1/2	
	Their functions: Transmitter : To convert the message signal into suitables form for transmission through channel. Channel : It sends the signal to the reciever. (b) In point to point mode, communication takes place between a	1/2 1/2	
	single transmitter and receiver. In broadcast mode, large number of receivers are connected to a single transmitter. Section D	1	3
Set1,Q23 Set2,Q23 Set3,Q23	(i) Qualities / values of Rohit. 1 (ii) Advantage of CFLs/ LEDs over traditional incandescent lamps. 1 (iii) Role of earthing in reduction of electricity bills 1 (i) Co-operative attitude and scientific temperament. (or any other two correct values.) 1 (ii) a) Low operational voltage and less power. b) fast action and no warm up time required. (Any one) (Any one) (iii) In the absence of proper earthing, the consumer can get (extra)	1+ 1 1 1	
	charges for the electrical energy NOT consumed by the devices in her/his premises.		4
Set 1 024	Section E		
Set1,Q24 Set2,Q26 Set3,Q26	(a) Derivation of the expression2(b) Magnetic field lines due to the coil1(c) Magnetic field at the center of the loop2		
	(a) $ \begin{array}{c} $	1⁄2	
Do/	ge 9 of 15 final draft 19/07/1	5 03:00 p	n m

Page 9 of 15

19/07/15 03:00 p.m.

According to Biot- Savart law,

$$d\vec{B} = \frac{\mu_o}{4\pi} \frac{I(\vec{d}\vec{l} \times \vec{r})}{r^3}$$

$$dB = \frac{\mu_o}{4\pi} \frac{I \, dl}{(x^2 + R^2)} \qquad \begin{bmatrix} \because \left| \vec{dl} \times \vec{r} \right| = r \, dl; \\ r = (x^2 + R^2)^{\frac{1}{2}} \end{bmatrix}$$

From figure

$$\cos\theta = \frac{R}{\left(x^2 + R^2\right)^{\frac{1}{2}}}$$

 \therefore Net contribution along x-direction

$$\vec{B} = \frac{\mu_o I R^2}{2 (R^2 + x^2)^{\frac{3}{2}}} \hat{i}$$

$$\frac{J_0}{R^2} = \frac{\mu_o I R^2}{2 (R^2 + x^2)^{\frac{3}{2}}} \hat{i}$$

1/2

1

1⁄2

19/07/15 03:00 p.m.

$9 \times 10^9 \times 2 \times 256 \times 10^{-38} \times 80$		
$7.7 \times 1.6 \times 10^{-13} = \frac{9 \times 10^9 \times 2 \times 2.56 \times 10^{-38} \times 80}{r_o}$	1⁄2	
$r_o = \frac{9 \times 10^9 \times 2 \times 2.56 \times 10^{-38} \times 80}{7.7 \times 1.6 \times 10^{-13}} \mathrm{m}$		
$= 299 \times 10^{-16} \text{ m}$		
$= 29.9 \times 10^{-15} \mathrm{m} \approx 30 \times 10^{-15} \mathrm{m}$	1⁄2	5
OR		
(a) Two important limitations of Rutherford model $\frac{1}{2} + \frac{1}{2}$ Explanation of these limitations in Bohr's model $\frac{1}{2} + \frac{1}{2}$ Calculation of wavelength of the H $_{\alpha}$ line1(b) Derivation of the expression for the radius of the n th orbit.2		
(a) (i) Electron moving in a circular orbit around the nucleus would get accelerated, therefore it would spiral into the nucleus, as it looses its energy.	1/2	
(ii) It must emit a continuous spectrum.	1/2	
According to Bohr's model of hydrogen atom,		
(i) Electron in an atom can revolve in certain stable orbits without the emission of radiant energy.	1/2	
(ii) Energy is released /absorbed only, when an electron jumps from one stable orbit to another stable orbit. This results in a discrete spectrum. 1 - p(1 - 1)	1⁄2	
$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right)$	1⁄2	
$rac{1}{\lambda}=1.1 imes10^7\left(rac{1}{4}\!-\!rac{1}{9} ight)$		
(b) We have $\frac{mv^2}{r_n} = \frac{1}{4\pi\varepsilon_o} \cdot \frac{e^2}{r_n^2}$	1/2	
$\Rightarrow r_n = \frac{e^2}{4\pi\varepsilon_o v_n^2} \dots (`1)$	1/2	
From Bohr's Postulates:		
$m\nu_n r_n = \frac{nh}{2\pi}$		
$mv_n r_n = \frac{nh}{2\pi}$ $v_n = \frac{nh}{2\pi m r_n}$	1/2	
Substituting for v_n , in equation (1), we get $r_n = \frac{\varepsilon_o n^2 h^2}{\pi m e^2}$	1	5

19/07/15 03:00 p.m.

