MARKING SCHEME SET 55/2/1

Q. No.	SET 55/2/1 Expected Answer / Value Points	Marks	Total
X . 1101			Marks
1.	Anticlockwise / a d c b a	1	1
2.	It is an equipotential surface, [alternatively if the electric field were not normal to the surface, then it would have a component along the surface which would cause work to be done in moving a charge on an equipotential surface.]	1	1
3.	When a charge of 1C, moving with velocity 1 m/s, normal to the magnetic field, experiences a force of 1N, magnetic field is said to be one tesla.	1	1
4.	It is due to conversion of neutron to proton or proton to neutron inside the nucleus.	1	
	Alternatively:-		
	$^{A}_{Z}X \rightarrow \beta^{-} + ^{A}_{Z+1}Y + \bar{\nu}$		
	${}^{A}_{Z}X \rightarrow \beta^{+} + {}^{A}_{Z-1}Y + \bar{\nu}$		1
5.	Microwave < Infrared <ultraviolet <="" <math="">\gamma - rays</ultraviolet>	1	1
6.	Negative;	1/2	1
7.	As charge is displaced against the force exerted by the field. Increase in intensity of the incident radiation corresponds to an increase in the	1/2 1/2	1
7.	number of incidents photons, resulting in the an increase in the number of photo electrons emitted.	1/2	1
8.	$\frac{\sin i}{\sin r} = \mu$	1⁄2	
	$\frac{\sin 60^{\circ}}{\sin r} = \sqrt{3} \text{gives } r = 30^{\circ}$	1⁄2	
	(Note: if a student just gives the answer 30°, award this 1 mark.)		1
9.	Calculation of resultant magnetic field1 1/2Direction1/2		
	$B = \frac{\mu_0 I r^2}{2(r^2 + x^2)^{3/2}}$	1⁄2	
	Net field at O, $B_0 = \sqrt{2}B = \frac{\sqrt{2}\mu_0 Ir^2}{2(r^2 + x^2)^{3/2}}$	1⁄2	

	For small loop($r \ll x$), $B_0 = \frac{\sqrt{2}\mu_0 I}{2x^3}$	1/2	
	Direction of B_0 is at 45° with the axis of any of the two loops.	1/2	2
10.	Derivation of current flowing through capacitor1 1/2To show current leads voltage1/2		
	If $V = V_0 sin\omega t$ $q = CV = CV_0 sin\omega t$	1/2 1/2	
	$I = \frac{dq}{dt} = \omega C V_0 cos \omega t$	1⁄2	
	Or I = $\omega CV_0 \sin(\omega t + \frac{\pi}{2})$ So, the current leads the applied voltage, in phase by $\frac{\pi}{2}$.	1/2	2
11.	Two points of difference 1 + 1		
	Diamagnetic Paramagnetic		
	1. Weakly repelled by external magnetic field.1. Weakly attracted by magnetic field.		
	2. Align perpendicular to the field2. Align parallel to the field.3. Move from stronger to3. Move from weaker to		
	3. Move from stronger to weaker region.3. Move from weaker to stronger region.4. Not affected by4. Affected by temperature.		
	temperature5. Susceptibility < 0		
	6. Permeability $\mu_r < 1$ 6. Permeability $\mu_r > 1$	1+1	
12.	(Any two points of difference)		2
12.	Calculation of charge 2		
	$I = \frac{2V}{30\Omega} = \frac{1}{15} A$	1/2	
	$V = IR = \frac{2}{3}V$	72 1/2	
	$v = IK = \frac{1}{3}v$ $q = CV = 4\mu C$	1/ . 1/	2
	Foreign SET I Page 2 of 18 Final Draft $12/3/2014$	$\frac{1}{2} + \frac{1}{2}$ 4:23 PM	2

13. Identification of equivalent gate 1 Logic symbol 1/2 Truth table 1/2		
OR gate	1	
Logic symbol of OR gate		
A B	1⁄2	
Truth table of OR gate		
Input Output A B Y 0 0 0 0 1 1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1⁄2	2
14. (i) To show $r_1 = r_2 = \frac{A}{2}$ 1 (ii) To show $D_m = 2i - A$ 1		
(i) From given figure, $A = r_1 + r_2$ As ray QR is parallel to the base BC,	1⁄2	
then $r_1 = r_2$, and $i = e$ Therefore, $2r_1$ (or $2r_2$) = A $\Rightarrow r_1 = r_2 = A/2$	1⁄2	
(ii) $D = (i - r_1) + (e - r_2)$ $D = (i + e) - (r_1 + r_2)$	1⁄2	
or $D = 2i - A$	1⁄2	2
Foreign SET IPage 3 of 18Final Draft12/3/2014	4:23 PM	

-			
18.	Condition for impedance to be minimum1Condition for wattless current to flow1		
	Impedance of series LCR circuit is given by $Z = \sqrt{R^2 + (X_L - X_c)^2}$		
		1/2	
	for Z to be minimum $X_L = X_C$ (or $\omega = \frac{1}{\sqrt{LC}}$)	1/2	
	 For wattless current to flow, circuit should not have any ohmic resistance i.e. <i>R</i>=0 		
	Alternatively : Power = $V_{rms}I_{rms}\cos\phi$ for $\phi = 90' = \pi/2$ Power = 0		
	\therefore wattless current flows when the impedance of the circuit is purely inductive/capacitive or the combination of the two.	1	2
19.	Ratio of (i) Induced voltages1(ii) Currents1(iii)Energies stored1		
	i) Induced emf (voltage) in a coil $e = -L \frac{dI}{dt}$	1⁄2	
	$\frac{e_1}{e_2} = \frac{L_1 \frac{di}{dt}}{L_2 \frac{di}{dt}} = \frac{L_1}{L_2} = \frac{4}{3}$	1⁄2	
	$\begin{array}{ccc} e_2 & L_2 \frac{dt}{dt} & L_2 & 3\\ ii) \text{ Power supplied P=eI} \end{array}$	1⁄2	
	As power is same for both coils $e_1i_1 = e_2i_2$		
	$\Rightarrow \frac{i_1}{i_2} = \frac{e_2}{e_1} = \frac{3}{4}$	1⁄2	
	iii) Energy stored in a coil $E = \frac{1}{2}LI^2$	1⁄2	
	$\therefore \ \frac{E_1}{E_2} = \frac{\frac{1}{2}L_1 \ i_1^2}{\frac{1}{2}L_2 \ i_2^2} = \frac{L_1 \ i_1^2}{L_2 \ i_2^2} = \frac{3}{4}$	1⁄2	
20.			3
	(a) Sketching of electric field lines 1		
	(b) Magnitude and direction of net field in regions II and III $4 \times \frac{1}{2} = 2$		

	(a) Q (t)	1	
	b) (i) For region II, $E_{II} = \frac{1}{2\epsilon_0} (\sigma_1 - \sigma_2)$ towards right side / from Sheet A to Sheet B	1/2 1/2	
	(ii) For region III, $E_{III} = \frac{1}{2\epsilon_0}(\sigma_1 + \sigma_2)$ towards right side /away from two sheets.	1/2 1/2	3
21.	a) Magnitude and direction of magnetic field at 'b' $\frac{1}{2} + \frac{1}{2}$ Magnitude and nature of force $\frac{1}{2} + \frac{1}{2}$ b) Diagram showing magnetic field and force 1		
	a) The magnitude of magnetic field produced by conductor 'a', at a point on the conductor b: $B = \frac{\mu_0 I_a}{2\pi d}$	1/2	
	Direction of magnetic field will be inward / outward perpendicular to the plane of two conductors, depending on the direction of flow of current in conductor 'a'.	1⁄2	
F	Foreign SET I Page 7 of 18Final Draft12/3/2014	4:23 PM	

i)) In a beam of Unpolarized light, the vibrations of light vectors are in all directions in a plane perpendicular to direction of propagation. In polarized light, these vibrations are only along one direction.	1	
ii	 i) Polaroids consist of long chain of molecules aligned in a particular direction. It polarizes light as it allows only one component of light (electric vectors parallel to the pass axis) to pass through it while the other component is absorbed. 	1/2 + 1/2	
ii	ii) The observer receives scattered light corresponding to only one of the two sets of accelerated charges i.e. electrons oscillating perpendicular to the direction of propagation.	1	3
27.	i.Calculation of capacitance1ii.Calculation of charge1iii.Effect on the charge on the plate1		
	i. $C = \frac{\epsilon_{0A}}{d}$ = $\frac{8.85 \times 10^{-12} \times 6 \times 10^{-3}}{3 \times 10^{-3}}$ F	1⁄2	
	$= 17.7 \text{ x } 10^{-12} \text{ F} = (17.7 \text{ pf})$	1/2	
	ii. $Q = CV$	1/2	
	=17.7 x 10^{-12} x 100C =17.7 x 10^{-10} C = (1.77nC)	1⁄2	
i	iii. $Q'=KQ$	1/2	
	$= 6 \times 17.7 \times 10^{-10} \text{ C}$ = 106.2 x 10 ⁻¹⁰ C (= 10.62 x 10 ⁻⁹ C = 10.62nC)	1⁄2	
			3

28.		
a) Expression for total energy of electron	3	
b) Calculation of wavelengths	1+1	
a) $mvr = \frac{nh}{2\pi}$		1/2
$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_o} \frac{e^2}{r^2}$		
$r = \frac{e^2}{4\pi\epsilon_o mv^2}$		
$r = \frac{ze^2}{4\pi\epsilon_o m \left(\frac{nh}{2\pi mr}\right)^2}$		1⁄2
$\Rightarrow r = \frac{\epsilon_0 n^2 h^2}{\pi m e^2}$		1⁄2
Potential energy U = $-\frac{1}{4\pi\epsilon_o} \cdot \frac{e^2}{r}$ = $-\frac{me^4}{4\epsilon_o n^2 h^2}$		1/2
$\mathrm{KE} = \frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{nh}{2\pi mr}\right)^2$		1⁄2
$=\frac{n^{2}h^{2}\pi^{2}m^{2}e^{4}}{8\pi^{2}m\epsilon_{o}{}^{2}n^{4}h^{4}}$		1⁄2
$\mathrm{KE} = \frac{me^4}{8\epsilon_o{}^2n^2h^2}$		
$TE = KE + PE$ $= - \frac{me^4}{8\epsilon_0^2 n^2 h^2}$		1⁄2
(Note: If a candidate does not use Bohr's postul the final expression for the energy in ter	ms of r award 1 mark.)	
b) Rydberg formula :For first member of Lyn	nan series	1/2
$\frac{1}{\lambda} = R \left(\frac{1}{1^2} - \frac{1}{2^2}\right)$		16
$\lambda = \frac{\frac{4}{3R}}{\frac{4}{3R}}$		1/2
For first member of Balmer Series	S	
$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$		1/2
	al Draft 12/3/2014	4:23 PM

(Note:Award full marks if the student calculates the value of λ in the two cases by taking the value of $R = 1.097 \times 10^7 \text{m}^{-1}$) OR a) Definition of (i) half life 1 (ii) average life 1 Relationship of half life & average life with decay constant $\frac{1}{12} + \frac{1}{12}$ b) Calculation of time taken 2 (a) Definition: (i) Half life: Time taken by a radioactive nuclei to reduce to half of the initial number of radio nuclei. (ii) Average life – Ratio of total life time of all radioactive nuclei, to the total number of nuclei in the sample. Relation between half life and decay constant: $T_{1/2} = \frac{0.693}{\lambda}$ Relation between average life and decay constant $\tau = \frac{1}{\lambda}$ (b) $N = N_o e^{-\lambda t} \frac{3}{4} N_o = N_o e^{-(0.3465)t} e^{(0.3465)t} e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(\frac{4}{3}) = 2.303[log4 - log3] = 2.303[log4 - log4] = 2.303[log4 -$	$\lambda = \frac{36}{5R}$	1/2
a) Definition of (i) half life 1 (ii) average life 1 Relationship of half life & average life with decay constant $\frac{V_2 + V_2}{V_2 + V_2}$ b) Calculation of time taken 2 (a) Definition: (i) Half life: Time taken by a radioactive nuclei to reduce to half of the initial number of radio nuclei. (ii) Average life – Ratio of total life time of all radioactive nuclei, to the total number of nuclei in the sample. Relation between half life and decay constant: $T_{1/2} = \frac{0.693}{\lambda}$ Relation between average life and decay constant $\tau = \frac{1}{\lambda}$ (b) $N = N_o e^{-\lambda t}$ $\frac{3}{4}N_o = N_o e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(\frac{4}{3})$ = 2.303[log4 - log3] = 2.303[log4 - log3] = 2.303[0.6020 - 0.4771] $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{t = 2.303 \times 0.1249}$		λ
(ii) average life 1 Relationship of half life & average life with decay constant $\frac{1/2+1/2}{1/2}$ b) Calculation of time taken 2 (a) Definition: (i) Half life: Time taken by a radioactive nuclei to reduce to half of the initial number of radio nuclei. (ii) Average life – Ratio of total life time of all radioactive nuclei, to the total number of nuclei in the sample. Relation between half life and decay constant: $T_{1/2} = \frac{0.693}{\lambda}$ Relation between average life and decay constant $\tau = \frac{1}{\lambda}$ (b) $N = N_o e^{-\lambda t}$ $\frac{3}{4}N_o = N_o e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(4/3)$ = 2.303[log4 - log3] = 2.303[log20 - 0.4771] $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{t - \frac{0.23}{t - 0.23}}}$	OR	
Relationship of half life & average life with decay constant $\frac{1/2+1/2}{1/2}$ b) Calculation of time taken 2 (a) Definition: (i) Half life: Time taken by a radioactive nuclei to reduce to half of the initial number of radio nuclei. (ii) Average life – Ratio of total life time of all radioactive nuclei, to the total number of nuclei in the sample. Relation between half life and decay constant: $T_{1/2} = \frac{0.693}{\lambda}$ Relation between average life and decay constant $\tau = \frac{1}{\lambda}$ (b) $N = N_o e^{-\lambda t}$ $\frac{3}{4}N_o = N_o e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(\frac{4}{3})$ $= 2.303[log4 - log3]$ $= 2.303[log20 - 0.4771]$ $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{1}$	Definition of (i) half life 1	
b) Calculation of time taken 2 (a) Definition: (i) Half life: Time taken by a radioactive nuclei to reduce to half of the initial number of radio nuclei. (ii) Average life – Ratio of total life time of all radioactive nuclei, to the total number of nuclei in the sample. Relation between half life and decay constant: $T_{1/2} = \frac{0.693}{\lambda}$ Relation between average life and decay constant $\tau = \frac{1}{\lambda}$ (b) $N = N_0 e^{-\lambda t}$ $\frac{3}{4} N_0 = N_0 e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(\frac{4}{3})$ $= 2.303[log4 - log3]$ $= 2.303[log4 - log3]$ $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{1 - \frac{0.43}{1 - \frac$	Relationship of half life & average life with decay constant	
(i) Half life: Time taken by a radioactive nuclei to reduce to half of the initial number of radio nuclei. (ii) Average life – Ratio of total life time of all radioactive nuclei, to the total number of nuclei in the sample. Relation between half life and decay constant: $T_{1/2} = \frac{0.693}{\lambda}$ Relation between average life and decay constant $\tau = \frac{1}{\lambda}$ (b) $N = N_o e^{-\lambda t}$ $\frac{3}{4}N_o = N_o e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(\frac{4}{3})$ = 2.303[log4 - log3] = 2.303[0.6020 - 0.4771] $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{\lambda}$		
(i) Half life: Time taken by a radioactive nuclei to reduce to half of the initial number of radio nuclei. (ii) Average life – Ratio of total life time of all radioactive nuclei, to the total number of nuclei in the sample. Relation between half life and decay constant: $T_{1/2} = \frac{0.693}{\lambda}$ Relation between average life and decay constant $\tau = \frac{1}{\lambda}$ (b) $N = N_o e^{-\lambda t}$ $\frac{3}{4}N_o = N_o e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(\frac{4}{3})$ = 2.303[log4 - log3] = 2.303[0.6020 - 0.4771] $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{\lambda}$	efinition:	
to the total number of nuclei in the sample. Relation between half life and decay constant: $T_{1/2} = \frac{0.693}{\lambda}$ Relation between average life and decay constant $\tau = \frac{1}{\lambda}$ (b) $N = N_o e^{-\lambda t}$ $\frac{3}{4} N_o = N_o e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(\frac{4}{3})$ $= 2.303[log4 - log3]$ $= 2.303[0.6020 - 0.4771]$ $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{\lambda}$	Half life: Time taken by a radioactive nuclei to reduce to half	1
$T_{1/2} = \frac{0.693}{\lambda}$ Relation between average life and decay constant $\tau = \frac{1}{\lambda}$ (b) $N = N_o e^{-\lambda t}$ $\frac{3}{4} N_o = N_o e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(\frac{4}{3})$ $= 2.303[log4 - log3]$ $= 2.303[0.6020 - 0.4771]$ $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{1000}$	to the total number of nuclei in the sample.	, 1
(b) $N = N_{o} e^{-\lambda t}$ $\frac{3}{4} N_{o} = N_{o} e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_{e}(4/3)$ $= 2.303[log4 - log3]$ $= 2.303[0.6020 - 0.4771]$ $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{1000}$		1/2
$N = N_{o} e^{-\lambda t}$ $\frac{3}{4} N_{o} = N_{o} e^{-(0.3465)t}$ $e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_{e}(\frac{4}{3})$ $= 2.303[log4 - log3]$ $= 2.303[0.6020 - 0.4771]$ $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{3}$	Relation between average life and decay constant $\tau = \frac{1}{\lambda}$	1/2
$e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(\frac{4}{3})$ $= 2.303[log4 - log3]$ $= 2.303[0.6020 - 0.4771]$ $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{4}$		
$e^{(0.3465)t} = \frac{4}{3}$ $0.3465 \times t = log_e(\frac{4}{3})$ $= 2.303[log4 - log3]$ $= 2.303[0.6020 - 0.4771]$ $= 2.303 \times 0.1249$ $t = \frac{2.303 \times 0.1249}{4}$	$N = N_o e^{-\lambda t} \frac{3}{4} N_o = N_o e^{-(0.3465)t}$	1/2
$= 2.303[\log 4 - \log 3]$ = 2.303[0.6020 - 0.4771] = 2.303 × 0.1249 $t - \frac{2.303 \times 0.1249}{2.303 \times 0.1249}$	$e^{(0.3465)t} = \frac{4}{3}$	1⁄2
t	$= 2.303[\log 4 - \log 3]$ = 2.303[0.6020 - 0.4771]	1/2
0.3465	t —	
\therefore t = 0.83 days or 19.92 hours	\therefore t = 0.83 days or 19.92 hours	1/2

	<u>Alternatively:</u> Also accept if the student takes N=25% $N_0 = \frac{1}{4} N_0$ and does the calculations as follows.		
	$T_{\frac{1}{2}} = \frac{0.693}{\lambda} = \frac{0.693}{0.3465} = 2 \text{ days}$	1/2	
	$N = = \frac{N_0}{2^n}$ or $\frac{25}{100} = \frac{1}{2^n}$ Time taken to reduce to 50% = 2days (one half)	1⁄2	
	$\Rightarrow n = 2$ But $\frac{t}{T_{\frac{1}{2}}} = n$, $\Rightarrow t = 4 \text{ days}$ Additional time taken to reduce to (one fourth) 25% = 2 \text{ days} $\therefore \text{ Total time taken to reduce to one fourth}$ $(25\%)=2+2 \text{ days} = 4 \text{ days}$	1/2	
	$\Rightarrow t = 4 \text{ days}$ $\Rightarrow t = 4 \text{ days}$ $\therefore \text{ Total time taken to reduce to one fourth} (25\%)=2+2\text{ days} = 4\text{ days}$	1⁄2	5
			5
29.	(a) Principle of potentiometer $\frac{1}{2}$ Definition of potential gradiant $\frac{1}{2}$ Expression for potential gradiant1(b) Determination of1i. $\frac{e_1}{e_2}$ $1\frac{1}{2}$ ii. Position of null point for cell E ₁ only $1\frac{1}{2}$		
	(a) Principle: When a steady current flows through a wire of uniform cross -section, the potential drop across any segment is directly proportional to the length of the segment of the wire i.e. $V \propto l$	1⁄2	
	Potential gradiant is the potential drop across the wire per unit length of the wire i.e. $K = \frac{V}{l}$	1⁄2	
	Potential gradient $K = \frac{V}{l} = \frac{IR}{l}$	1⁄2	

$K = \frac{ip\frac{L}{A}}{l}$ $K = \frac{ip\frac{L}{A}}{l}$ $K = \frac{ip\frac{L}{A}}{l}$ $(b) (i) \frac{e_1 - e_2}{e_1 + e_2} = \frac{120}{300} = \frac{2}{5}$ $\frac{e_1}{e_2} = \frac{7}{3}$ $(ii) \frac{e_1 + e_2}{e_1} = \frac{300}{x}$ $(ii) \frac{1}{e_1} = \frac{1}{e_1} $			
(ii) $\frac{e_1 + e_2}{e_1} = \frac{300}{x}$ $\Rightarrow x = 210 \text{ cm}$ (where x is the position of null point with cell e_1 only.) OR (a) Definition of drift velocity 1 mark Expression for current density 1 mark (b) Calculation of power 3 marks (a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor. $l = neAv_d$ $= neA\frac{eE}{m}\tau$ \therefore current density $J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $l = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ $\frac{V_2}{V_2}$ \therefore Power dissipated in the 5Ω resistor $= (8)^2X$ $5W = 320W$ V_2	$K = \frac{l\rho \frac{l}{A}}{l}$ $K = \frac{l\rho}{A}$	1⁄2	
(ii) $\frac{e_1 + e_2}{e_1} = \frac{300}{x}$ $\Rightarrow x = 210 \text{ cm}$ (where x is the position of null point with cell e_1 only.) OR (a) Definition of drift velocity 1 mark Expression for current density 1 mark (b) Calculation of power 3 marks (a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor. $l = neAv_d$ $= neA\frac{eE}{m}\tau$ \therefore current density $J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $l = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ $\frac{V_2}{V_2}$ \therefore Power dissipated in the 5Ω resistor $= (8)^2X$ $5W = 320W$ V_2			
(ii) $\frac{e_1 + e_2}{e_1} = \frac{300}{x}$ $\Rightarrow x = 210 \text{ cm}$ (where x is the position of null point with cell e_1 only.) OR (a) Definition of drift velocity 1 mark Expression for current density 1 mark (b) Calculation of power 3 marks (a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor. $l = neAv_d$ $= neA\frac{eE}{m}\tau$ \therefore current density $J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $l = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ $\frac{V_2}{V_2}$ \therefore Power dissipated in the 5Ω resistor $= (8)^2X$ $5W = 320W$ V_2		1	
(ii) $\frac{e_1 + e_2}{e_1} = \frac{300}{x}$ $\Rightarrow x = 210 \text{ cm}$ (where x is the position of null point with cell e_1 only.) OR (a) Definition of drift velocity 1 mark Expression for current density 1 mark (b) Calculation of power 3 marks (a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor. $l = neAv_d$ $= neA\frac{eE}{m}\tau$ \therefore current density $J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $l = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ $\frac{V_2}{V_2}$ \therefore Power dissipated in the 5Ω resistor $= (8)^2X$ $5W = 320W$ V_2	(b) (i) $\frac{e_1 - e_2}{e_1 - e_2} = \frac{120}{e_1 - e_2} = \frac{2}{e_1 - e_2}$	1	
(ii) $\frac{e_1 + e_2}{e_1} = \frac{300}{x}$ $\Rightarrow x = 210 \text{ cm}$ (where x is the position of null point with cell e_1 only.) OR (a) Definition of drift velocity 1 mark Expression for current density 1 mark (b) Calculation of power 3 marks (a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor. $l = neAv_d$ $= neA\frac{eE}{m}\tau$ \therefore current density $J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $l = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ $\frac{V_2}{V_2}$ \therefore Power dissipated in the 5Ω resistor $= (8)^2X$ $5W = 320W$ V_2	$e_1 + e_2 = 300 = 5$	1/2	
(ii) $\frac{e_1 + e_2}{e_1} = \frac{300}{x}$ $\Rightarrow x = 210 \text{ cm}$ (where x is the position of null point with cell e_1 only.) OR (a) Definition of drift velocity 1 mark Expression for current density 1 mark (b) Calculation of power 3 marks (a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor. $l = neAv_d$ $= neA\frac{eE}{m}\tau$ \therefore current density $J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $l = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ $\frac{V_2}{V_2}$ \therefore Power dissipated in the 5Ω resistor $= (8)^2X$ $5W = 320W$ V_2	$\frac{c_1}{\rho_2} = \frac{r_1}{3}$	/2	
(ii) $\frac{1}{e_1} = \frac{1}{x}$ $\Rightarrow x = 210 \text{ cm}$ (where x is the position of null point with cell e_1 only.) OR (a) Definition of drift velocity 1 mark Expression for current density 1 mark (b) Calculation of power 3 marks (a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor. $l = neAv_d = neA\frac{eE}{m}\tau$ \therefore current density $J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = l^2R$ Current flowing through the resistance 2Ω l_2 $l = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ $\frac{1}{V_2}$ 1 \therefore Power dissipated in the 5Ω resistor $= (8)^2X 5W = 320W$ l_2			
$\Rightarrow x = 210 \text{ cm}$ (where x is the position of null point with cell e ₁ only.) OR (a) Definition of drift velocity 1 mark Expression for current density 1 mark (b) Calculation of power 3 marks (a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor. $I = neAv_d$ $= neA\frac{eE}{n}\tau$ \therefore current density J = $\frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ Current through 5Ω ; $I = \frac{80}{10}A = 8A$ \therefore Power dissipated in the 5Ω resistor $= (8)^2X 5W = 320W$ V_2	$e_1 + e_2 = 300$	1	
$\begin{array}{c c} -2 x = 210 \text{ cm} \\ \text{(where } x \text{ is the position of null point with cell } e_1 \text{ only.)} \\ \hline \mathbf{OR} \\ \hline \mathbf{(a) Definition of drift velocity & 1 mark \\ Expression for current density & 1 mark \\ \text{(b) Calculation of power } 3 marks \\ \hline \mathbf{(a) Drift velocity - The average velocity gained by free electrons, when a unit electric field is applied across the conductor. \\ I = neAv_d \\ = neA\frac{eE}{m}\tau \\ \therefore \text{ current density } J = \frac{1}{A} = \frac{ne^2E\tau}{m} \\ \hline \mathbf{(b) } P = I^2R \\ \text{Current flowing through the resistance } 2\Omega \\ I = \sqrt{\frac{200}{2}} = 10A \\ \hline \mathbf{(current through 5\Omega; I = \frac{80}{10}A = 8A \\ \therefore \text{ Power dissipated in the 5}\Omega \text{ resistor } = (8)^2X 5W = 320W \\ \hline \mathbf{(current flowing in the conduction of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline (current flowing through the for the combination flow for the combination for the $	$(11) \frac{1}{e_1} = \frac{1}{x}$		
$\begin{array}{c c} -2 x = 210 \text{ cm} \\ \text{(where } x \text{ is the position of null point with cell } e_1 \text{ only.)} \\ \hline \mathbf{OR} \\ \hline \mathbf{(a) Definition of drift velocity & 1 mark \\ Expression for current density & 1 mark \\ \text{(b) Calculation of power } 3 marks \\ \hline \mathbf{(a) Drift velocity - The average velocity gained by free electrons, when a unit electric field is applied across the conductor. \\ I = neAv_d \\ = neA\frac{eE}{m}\tau \\ \therefore \text{ current density } J = \frac{1}{A} = \frac{ne^2E\tau}{m} \\ \hline \mathbf{(b) } P = I^2R \\ \text{Current flowing through the resistance } 2\Omega \\ I = \sqrt{\frac{200}{2}} = 10A \\ \hline \mathbf{(current through 5\Omega; I = \frac{80}{10}A = 8A \\ \therefore \text{ Power dissipated in the 5}\Omega \text{ resistor } = (8)^2X 5W = 320W \\ \hline \mathbf{(current flowing in the conduction of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current flowing through the for the combination of 400 and 10 \Omega = 80V)} \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline \mathbf{(current through 5}\Omega; I = \frac{80}{10}A = 8A \\ \hline (current flowing through the for the combination flow for the combination for the $			
OR(a) Definition of drift velocity1 markExpression for current density1 mark(b) Calculation of power3 marks(a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor.1 $I = neAv_d$ $= neA\frac{e_B}{m}\tau$ $\frac{1}{2}$ \therefore current density $J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ $\frac{1}{2}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ $\frac{1}{2}$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10 \Omega = 80V$ $\frac{1}{2}$ $\frac{1}{2}$ \therefore Power dissipated in the 5Ω resistor $=(8)^2X 5W = 320W$ $\frac{1}{2}$	$\Rightarrow x = 210 \text{cm}$	1⁄2	
(a) Definition of drift velocity1 mark 1 mark Lxpression for current density1 mark mark(b) Calculation of power3 marks(a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor.1 $I = neAv_d$ $= neA\frac{eE}{m}\tau$ $\frac{1}{2}$ \therefore current density $J = \frac{1}{A} = \frac{ne^2 E \tau}{m}$ $\frac{1}{2}$ (b) $P = I^2 R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ $\frac{1}{2}$ \therefore Potential drop across the 2Ω resistor $=20V$ Current through 5Ω ; $I = \frac{80}{10} A = 8A$ \therefore Power dissipated in the 5Ω resistor $= (8)^2 X 5W = 320W$ $\frac{1}{2}$	(where x is the position of null point with cell e_1 only.)		
(a) Definition of drift velocity1 mark 1 mark Lxpression for current density1 mark mark(b) Calculation of power3 marks(a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor.1 $I = neAv_d$ $= neA\frac{eE}{m}\tau$ $\frac{1}{2}$ \therefore current density $J = \frac{1}{A} = \frac{ne^2 E \tau}{m}$ $\frac{1}{2}$ (b) $P = I^2 R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ $\frac{1}{2}$ \therefore Potential drop across the 2Ω resistor $=20V$ Current through 5Ω ; $I = \frac{80}{10} A = 8A$ \therefore Power dissipated in the 5Ω resistor $= (8)^2 X 5W = 320W$ $\frac{1}{2}$			
Expression for current density1 mark(b) Calculation of power3 marks(a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor.1 $I = neAv_d$ $= neA \frac{eE}{m} \tau$ $\frac{1}{2}$ \therefore current density $J = \frac{1}{A} = \frac{ne^2 E \tau}{m}$ $\frac{1}{2}$ (b) $P = I^2 R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ $\frac{1}{2}$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ 1 $\frac{1}{2}$ \therefore Power dissipated in the 5Ω resistor $=(8)^2 X 5W = 320W$ $\frac{1}{2}$	OR		
Expression for current density1 mark(b) Calculation of power3 marks(a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor.1 $I = neAv_d$ $= neA \frac{eE}{m} \tau$ $\frac{1}{2}$ \therefore current density $J = \frac{1}{A} = \frac{ne^2 E \tau}{m}$ $\frac{1}{2}$ (b) $P = I^2 R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ $\frac{1}{2}$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ 1 $\frac{1}{2}$ \therefore Power dissipated in the 5Ω resistor $=(8)^2 X 5W = 320W$ $\frac{1}{2}$			
(b) Calculation of power3 marks(a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor.1 $I = neAv_d$ $= neA \frac{eE}{m}\tau$ $\frac{1}{2}$ \therefore current density $J = \frac{1}{A} = \frac{ne^2 E \tau}{m}$ $\frac{1}{2}$ (b) $P = I^2 R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ $\frac{1}{2}$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ 1 $\frac{1}{2}$ \therefore Power dissipated in the 5Ω resistor $=(8)^2 X 5W = 320W$ $\frac{1}{2}$			
(a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor. $I = neAv_d$ $= neA\frac{eE}{m}\tau$ \therefore current density $J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ U Current through 5Ω ; $I = \frac{80}{10}A = 8A$ \therefore Power dissipated in the 5Ω resistor $= (8)^2X 5W = 320W$ U	Expression for current density I mark		
(a) Drift velocity – The average velocity gained by free electrons, when a unit electric field is applied across the conductor. $I = neAv_d$ $= neA\frac{eE}{m}\tau$ \therefore current density $J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ U Current through 5Ω ; $I = \frac{80}{10}A = 8A$ \therefore Power dissipated in the 5Ω resistor $= (8)^2X 5W = 320W$ U	(b) Calculation of power 3 marks		
unit electric field is applied across the conductor. $I = neAv_d$ $= neA\frac{eE}{m}\tau$ $\therefore \text{ current density } J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ $\therefore Potential drop across the 2\Omega resistor =20VTherefore Potential across parallel combination of 40\Omega and 10\Omega = 80VCurrent through 5\Omega; I = \frac{80}{10}A = 8A\therefore Power dissipated in the 5\Omega resistor = (8)^2X 5W = 320W Y_2$			
unit electric field is applied across the conductor. $I = neAv_d$ $= neA\frac{eE}{m}\tau$ $\therefore \text{ current density } J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ $\therefore Potential drop across the 2\Omega resistor =20VTherefore Potential across parallel combination of 40\Omega and 10\Omega = 80VCurrent through 5\Omega; I = \frac{80}{10}A = 8A\therefore Power dissipated in the 5\Omega resistor = (8)^2X 5W = 320W Y_2$			
unit electric field is applied across the conductor. $I = neAv_d$ $= neA\frac{eE}{m}\tau$ $\therefore \text{ current density } J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ $\therefore Potential drop across the 2\Omega resistor =20VTherefore Potential across parallel combination of 40\Omega and 10\Omega = 80VCurrent through 5\Omega; I = \frac{80}{10}A = 8A\therefore Power dissipated in the 5\Omega resistor = (8)^2X 5W = 320W Y_2$			
unit electric field is applied across the conductor. $I = neAv_d$ $= neA\frac{eE}{m}\tau$ $\therefore \text{ current density } J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ (b) $P = I^2R$ Current flowing through the resistance 2Ω $I = \sqrt{\frac{200}{2}} = 10A$ $\therefore Potential drop across the 2\Omega resistor =20VTherefore Potential across parallel combination of 40\Omega and 10\Omega = 80VCurrent through 5\Omega; I = \frac{80}{10}A = 8A\therefore Power dissipated in the 5\Omega resistor = (8)^2X 5W = 320W Y_2$			
$I = neAv_d$ $= neA\frac{eE}{m}\tau$ $\therefore \text{ current density } J = \frac{1}{A} = \frac{ne^2E\tau}{m}$ $(b) P = I^2R$ $Current flowing through the resistance 2\Omega$ $I = \sqrt{\frac{200}{2}} = 10A$ $\therefore Potential drop across the 2\Omega resistor = 20V$ $Therefore Potential across parallel combination of 40\Omega and 10 \Omega = 80V$ V_2 $I = \sqrt{200} = \frac{80}{10}A = 8A$ $\therefore Power dissipated in the 5\Omega resistor = (8)^2X 5W = 320W$ V_2		1	
$I = neAv_d$ $= neA \frac{eE}{m} \tau$ $\therefore \text{ current density } J = \frac{I}{A} = \frac{ne^2 E\tau}{m}$ $(b) P = I^2 R$ $Current flowing through the resistance 2\Omega I = \sqrt{\frac{200}{2}} = 10A \therefore Potential drop across the 2\Omega resistor =20V Therefore Potential across parallel combination of 40\Omega and 10\Omega = 80V \frac{1}{2} Current through 5\Omega; I = \frac{80}{10}A = 8A \therefore Power dissipated in the 5\Omega resistor = (8)^2 X 5W = 320W \frac{1}{2}$	unit electric field is applied across the conductor.		
$= neA \frac{eE}{m} \tau$ $\therefore \text{ current density } J = \frac{1}{A} = \frac{ne^2 E \tau}{m}$ $(b) P = I^2 R$ $Current flowing through the resistance 2\Omega$ $I = \sqrt{\frac{200}{2}} = 10A$ $\therefore Potential drop across the 2\Omega resistor = 20V$ $Therefore Potential across parallel combination of 40\Omega and 10 \Omega = 80V$ $\frac{1}{2}$ $Current through 5\Omega; I = \frac{80}{10}A = 8A$ $\therefore Power dissipated in the 5\Omega resistor = (8)^2 X 5W = 320W$ $\frac{1}{2}$	$I - ne \Delta u$	1⁄2	
$\therefore \text{ current density } J = \frac{I}{A} = \frac{ne^2 E\tau}{m}$ (b) $P = I^2 R$ Current flowing through the resistance 2Ω $\frac{1}{2}$ $I = \sqrt{\frac{200}{2}} = 10A$ $\therefore \text{Potential drop across the } 2\Omega \text{ resistor } = 20V$ $\frac{1}{2}$ Therefore Potential across parallel combination of 40Ω and $10\Omega = 80V$ $\frac{1}{2}$ Current through 5Ω ; $I = \frac{80}{10}A = 8A$ $\therefore \text{Power dissipated in the } 5\Omega \text{ resistor } = (8)^2 X 5W = 320W$ $\frac{1}{2}$			
(b) $P = I^2 R$ Current flowing through the resistance 2Ω 1/2 $I = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10 \Omega = 80V$ Current through 5Ω ; $I = \frac{80}{10} A = 8A$ \therefore Power dissipated in the 5Ω resistor $= (8)^2 X 5W = 320W$ 1/2		14	
(b) $P = I^2 R$ Current flowing through the resistance 2Ω 1/2 $I = \sqrt{\frac{200}{2}} = 10A$ \therefore Potential drop across the 2Ω resistor $=20V$ Therefore Potential across parallel combination of 40Ω and $10 \Omega = 80V$ Current through 5Ω ; $I = \frac{80}{10} A = 8A$ \therefore Power dissipated in the 5Ω resistor $= (8)^2 X 5W = 320W$ 1/2	\therefore current density $J = \frac{1}{4} = \frac{ne^{-Et}}{m}$	72	
Current flowing through the resistance 2Ω $\frac{1}{2}$ $I = \sqrt{\frac{200}{2}} = 10A$ $\frac{1}{2}$ \therefore Potential drop across the 2Ω resistor $=20V$ $\frac{1}{2}$ Therefore Potential across parallel combination of 40Ω and $10 \Omega = 80V$ $\frac{1}{2}$ Current through 5Ω ; $I = \frac{80}{10} A = 8A$ 1 \therefore Power dissipated in the 5Ω resistor $= (8)^2 X 5W = 320W$ $\frac{1}{2}$	A m		
Current flowing through the resistance 2Ω $\frac{1}{2}$ $I = \sqrt{\frac{200}{2}} = 10A$ $\frac{1}{2}$ \therefore Potential drop across the 2Ω resistor $=20V$ $\frac{1}{2}$ Therefore Potential across parallel combination of 40Ω and $10 \Omega = 80V$ $\frac{1}{2}$ Current through 5Ω ; $I = \frac{80}{10} A = 8A$ 1 \therefore Power dissipated in the 5Ω resistor $= (8)^2 X 5W = 320W$ $\frac{1}{2}$	(b) $P = I^2 R$		
$I = \sqrt{\frac{200}{2}} = 10A$ $\therefore Potential drop across the 2\Omega resistor = 20V$ $Therefore Potential across parallel combination of 40\Omega and 10 \Omega = 80V$ I_{2} $I_{$		1⁄2	
$\therefore \text{Potential drop across the } 2\Omega \text{ resistor } = 20\text{V}$ $\text{Therefore Potential across parallel combination of } 40\Omega \text{ and } 10\Omega = 80\text{V}$ $\frac{1/2}{1/2}$ $\text{Current through } 5\Omega; I = \frac{80}{10}\text{ A} = 8\text{A}$ $\therefore \text{Power dissipated in the } 5\Omega \text{ resistor } = (8)^2X \ 5W = 320\text{W}$ $\frac{1}{2}$			
Therefore Potential across parallel combination of 40Ω and $10 \Omega = 80V$ Current through 5Ω ; $I = \frac{80}{10} A = 8A$ \therefore Power dissipated in the 5Ω resistor = $(8)^2 X 5W = 320W$ $\frac{1}{2}$	$I = \sqrt{\frac{2}{2}} = 10A$		
Therefore Potential across parallel combination of 40Ω and $10 \Omega = 80V$ Current through 5Ω ; $I = \frac{80}{10} A = 8A$ \therefore Power dissipated in the 5Ω resistor = $(8)^2 X 5W = 320W$ $\frac{1}{2}$			
Current through 5Ω ; $I = \frac{80}{10} A = 8A$ \therefore Power dissipated in the 5Ω resistor = $(8)^2 X 5W = 320W$ 1/2	·		
Current through 5Ω ; $I = \frac{1}{10} A = 8A$ \therefore Power dissipated in the 5Ω resistor = $(8)^2 X 5W = 320W$ $\frac{1}{2}$			
$\therefore \text{Power dissipated in the } 5\Omega \text{ resistor} = (8)^2 X 5W = 320W \qquad 1/_2$	Current through 5 Ω ; $I = \frac{80}{10} A = 8A$	1	
	10	1/2	
		, -	5

()R		
(a) Three distinctive features betwee diffraction fringes.	en the patterns of interference and 3		
(b) Calculation of width of slit.	2		
Interference	Diffraction		
1. Width of central maxima is same as that of the other fringes.	1. Width of central maxima is more than of the other fringes.	1	
2. All bright fringes are of equal intensity.	2. Intensity of secondary maxima keeps on decreasing.	1	
3. Large number of fringes.	3. Only a small number of fringes.	1	
(or any other re	levant difference)		
(b) $y_n = \frac{n\lambda D}{d}$ $d = \frac{n\lambda D}{d}$		1⁄2	
$d = \frac{n\lambda D}{y_n} = \frac{1 X 500 X 10^{-9} X 1}{2.5 X 10^{-3}} m$		1⁄2	
$= 2.5 \times 10^{-3} \text{ m}$ = 2 × 10 ⁻⁴ m (=0.2mm)		1	