

Arithmetic Fundamentals

Table of Squares

Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	20	25
Square	1	4	9	16	25	36	49	64	81	100	121	144	169	196	225	256	400	625

Table of Cubes

Number	2	3	4	5	10`	20	100
Cube	8	27	64	125	1000	8000	1000000

Commonly used Decimal, Percent and Fractions(Less than 1)

Percent	10%	20%	25%	30%	33%	40%	50%	60%	66%	75%	80%	90%	100%
Fractions	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{1}{4}$	$\frac{3}{10}$	$\frac{1}{3}$	2 5	$\frac{1}{2}$	3 5	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5}$	$\frac{9}{10}$	1
Decimals	0.1	0.2	0.25	0.3	0.33	0.4	0.5	0.6	0.66	0.75	0.8	0.9	1

Commonly used Decimal, Percent and Fractions (Greater than 1)

Percent	100%	125%	133.33%	150%	200%
Fractions	1	$\frac{5}{4}$	$\frac{4}{3}$	$\frac{3}{2}$	2
Decimals	1	1.25	1.33	1.5	2.0

Divisibility Rule

Number	Rule	Example
2	If last digit is 0,2,4,6, or 8	22, 30, 50, 68, 1024
3	If sum of digits is divisible by 3	123 is divisible by 3 since $1 + 2 + 3 = 6$ (and 6 is divisible by 3)
4	If number created by the last 2 digits is divisible by 4	864 is divisible by 4 since 64 is divisible by 4
5	If last digit is 0 or 5	5, 10, 15, 20, 25, 30, 35, 2335
6	If divisible by 2 & 3	522 is divisible by 6 since it is divisible by 2 & 3
9	If sum of digits is divisible by 9	621 is divisible by 9 since $6 + 2 + 1 = 9$ (and 9 is divisible by 9)
10	If last digit is 0	10, 20, 30, 40, 50, 5550

Operations Involving Exponents

Multiplication	$a^m \times a^n = a^{(m+n)}$
Division	$a^m \div a^n = a^{(m-n)}$
Power	$(a^m)^n = a^{m \times n}$
Roots	$a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$

Special Exponents

Reciprocal	$\frac{1}{a^m} = a^{-m}$
Power 0	$a^0 = 1$
Power 1	$a^1 = a$

Logarithms

Definition: $y = log_b x \rightarrow x = b^y$	Properties
Example: $log_2 32 = 5 \rightarrow 32 = 2^5$	$log_x x = 1$ $log_x 1 = 0$
	$log_x x^n = n x^{log_x y} = y$
	$log_x(y^n) = nlog_x y$
	$log_x(a \times b) = log_x a + log_x b$
	$log_x\left(\frac{a}{b}\right) = log_x a - log_x b$

Progressions

Arithmetic Progression: <i>n</i> th term of an	Geometric Progression: <i>n</i> th term of a				
Arithmetic Progression	Geometric Progression				
$a_n = a_1 + (n-1)d$	$a_n = a_1 r^{(n-1)}$				
Sum of <i>n</i> terms of an arithmetic expression	Sum of <i>n</i> terms of a geometric progression:				
$s_n = \frac{n(a_1 + a_n)}{2} = \frac{n[2a_1 + (n-1)d]}{2}$	$s_n = \frac{a(r^{n+1}-1)}{r-1}$				
The first term is a_1 , the common difference is d , and the number of terms is n .	The first term is a_1 , the common ratio is r , and				
	the number of terms is <i>n</i> .				
Infinite Geometric Progression					
Sum of all terms in an infinite geometric series = $rac{a_1}{(1-r)}$ where $-1 < r < 1$					

Roots of a Quadratic Equation

A quadratic equation of type $ax^2 + bx + c$ has two solutions, called roots. These two solutions may or may not be distinct. The roots are given by the quadratic formula: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ where the \pm sign indicates that both $\frac{-b - \sqrt{b^2 - 4ac}}{2a}$ and $\frac{-b + \sqrt{b^2 - 4ac}}{2a}$ are solutions

Common Factoring Formulas

- **1.** $x^2 y^2 = (x y) \times (x + y)$
- 2. $x^2 + 2xy + y^2 = (x + y)^2$
- 3. $x^2 2xy + y^2 = (x y)^2$
- 4. $x^3 + 3yx^2 + 3y^2x + y^3 = (x + y)^3$
- 5. $x^3 3yx^2 + 3y^2x y^3 = (x y)^3$

Binomial Theorem

The coefficient of $x^{(n-k)}y^k$ in $(x + y)^n$ is:

$$_{k}^{n}C = \frac{n!}{k! (n-k)!}$$

Applies for any real or complex numbers x and y, and any non-negative integer n.

Summary of counting methods

	Order matters	Order doesn't matter
With Replacement	If r objects are taken from a set of n objects, in a specific order with replacement, how many different samples are possible? $\underline{n^r}$	N/A
Without Replacement	Permutation Rule: If <i>r</i> objects are taken from a set of <i>n</i> objects without replacement, in a specific order, how many different samples are possible? ${}^{n}_{r}P = \frac{n!}{(n-r)!}$	Combination Rule : If <i>r</i> objects are taken from a set of <i>n</i> objects without replacement and disregarding order, how many different samples are possible? ${}^{n}_{r}C = \frac{n!}{r!(n-r)!}$

Probability

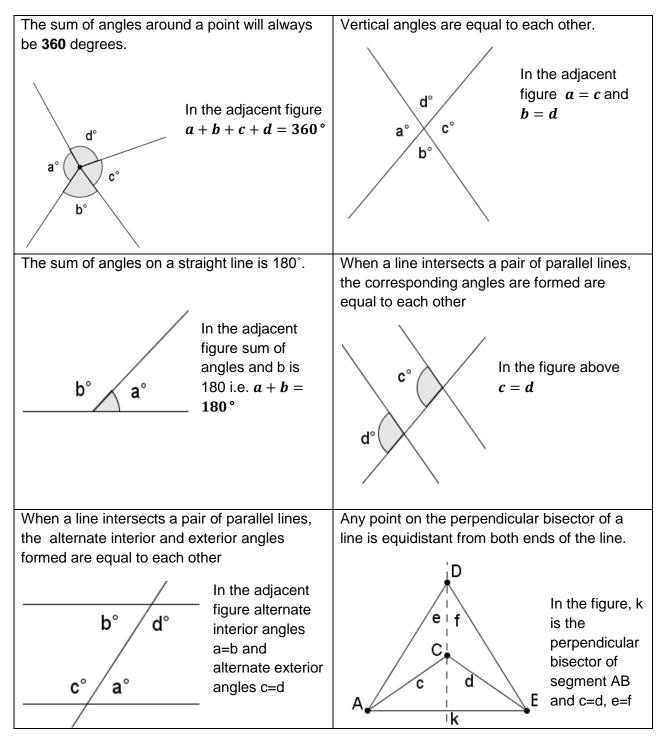
The probability of an event A, P(A) is defined as

$$P(A) = \frac{Number of outcomes that occur in event A}{Total number of likely outcomes}$$

Independent Events: If *A* and *B* are independent events, then the probability of *A* happening and the probability of *B* happening is:

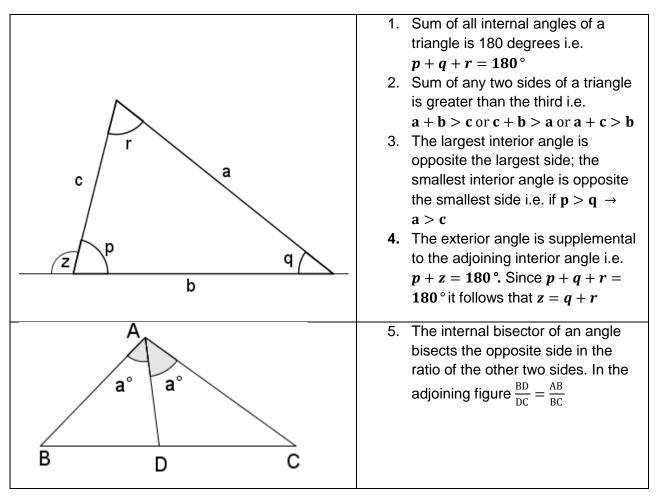
 $P(A \text{ and } B) = P(A) \times P(B)$

Dependent Events: If *A* and *B* are dependent events, then the probability of *A* happening and the probability of *B* happening, given *A*, is:


 $P(A \text{ and } B) = P(A) \times P(B \mid A)$

Conditional Probability: The probability of an event occurring given that another event has already occurred e.g. what is the probability that B will occur after A

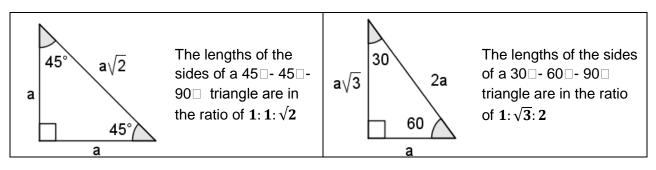
$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$


Geometry Fundamentals

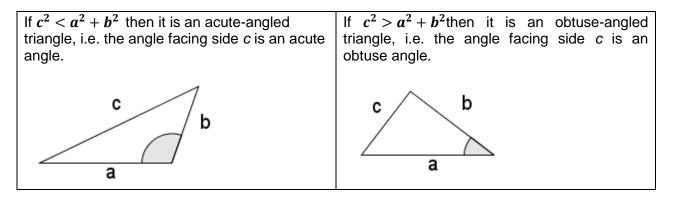
SNAPWIZ The smart way to learn online http://www.snapwiz.co.in

Quantitative Ability Formula Sheet CAT and Management Entrance Tests

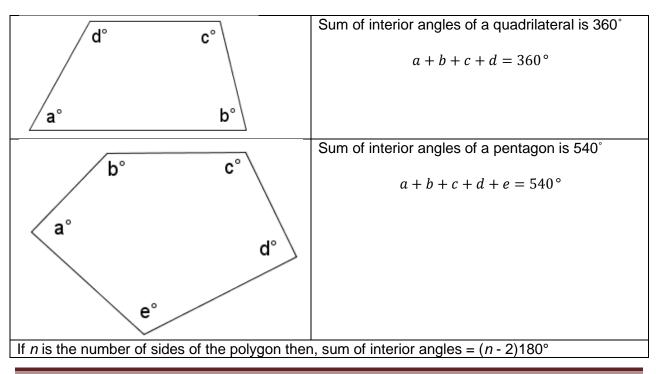
Triangle Properties



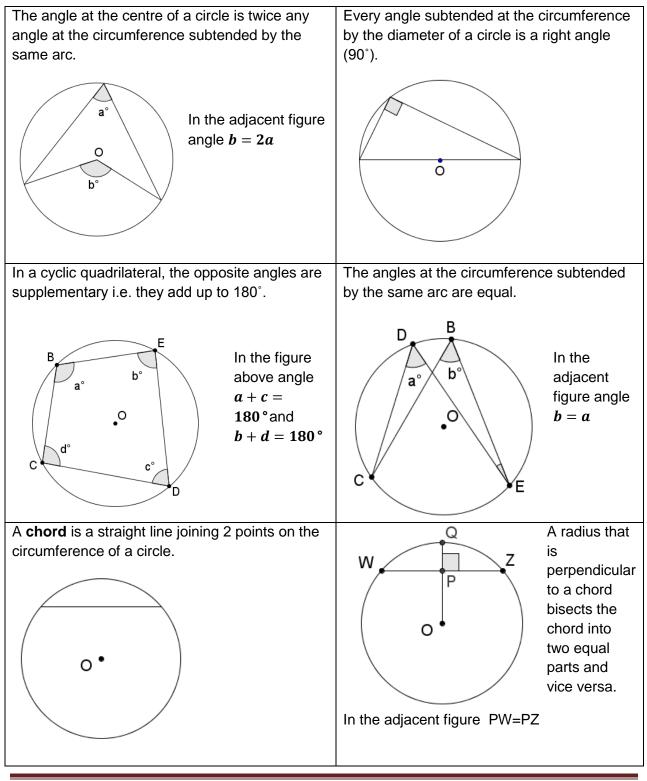
Pythagoras Theorem


	Commonly Used Pythagorean Triples					
	Height, Base	Hypotenuse				
	3,4 or 4,3	5				
Ь	6,8 or 8,6	10				
$c^2 = a^2 + b^2$	5, 12 or 12,5	13				
	7, 24 or 24,7	25				

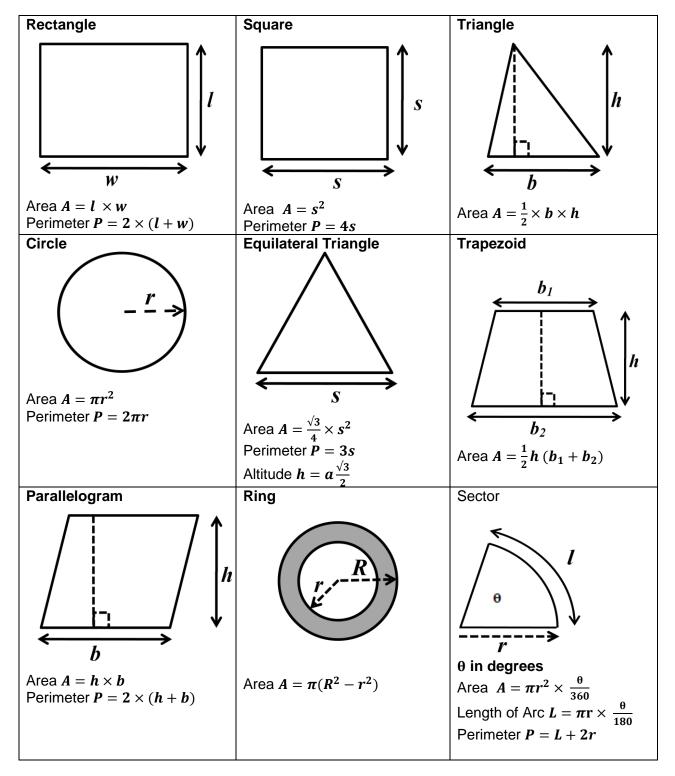
SNAPWIZ The smart way to learn online http://www.snapwiz.co.in


Special Right Triangles

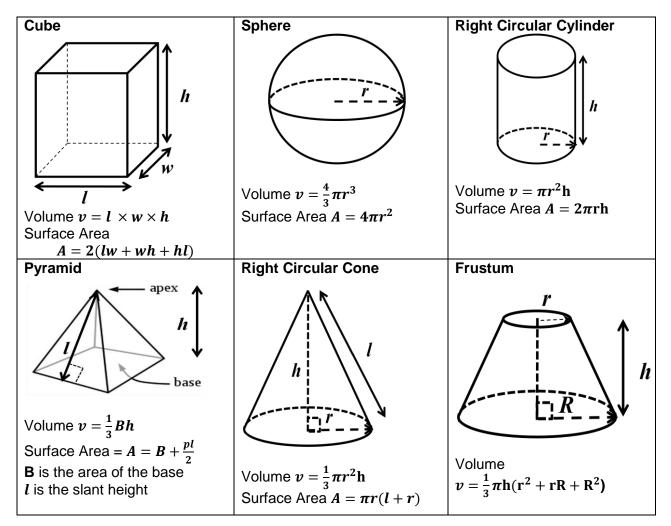
Test of Acute and Obtuse Triangles


Polygons

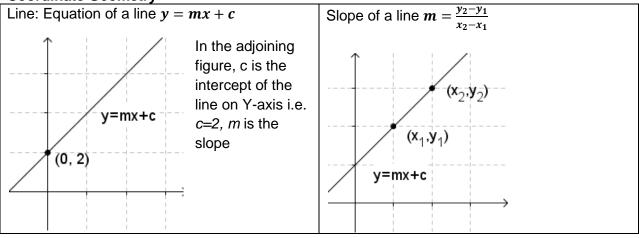
Visit http://www.snapwiz.co.in for free mock CAT tests


Properties of a Circle

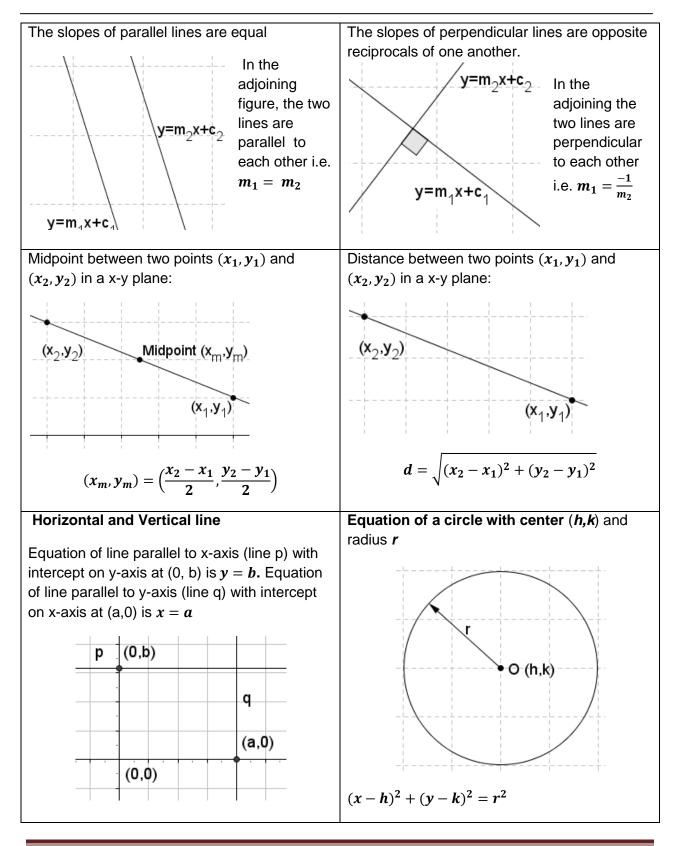
Visit http://www.snapwiz.co.in for free mock CAT tests



Area and Perimeter of Common Geometrical Figures



Volume and Surface Area of 3 Dimensional Figures



Coordinate Geometry

Visit http://www.snapwiz.co.in for free mock CAT tests

Trigonometry Basics

			•	Tan and Co		
$sin^2\theta$ +	$cos^2\theta =$	= 1	t	$an\theta = \frac{\sin\theta}{\cos\theta}$)	
$tan^2\theta$	+1 = se					
$cot^2\theta$	+ 1 = cs	$c^2 \theta$	С	$\cot\theta = \frac{1}{\sin\theta}$	-	
Half Angle Formulas				Even/Odd		
$sin^2\theta =$	$=\frac{1}{2}(1-a)$	cos(2θ))				
$cos^2\theta =$	$=\frac{1}{2}(1+6)$	cos(2θ))				
$\tan^2\theta = \frac{(1+\cos(2\theta))}{(1+\cos(2\theta))}$						
$\sin(2\theta) = 2\sin\theta\cos\theta, \cos(2\theta) = \cos^2\theta - \sin^2\theta$						
	0°	30°	45°	60°	90°	
Sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	
				_		
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	
Tan	0	$\frac{1}{\sqrt{3}}$	1	√3	∞	
	$tan^{2}\theta$ $cot^{2}\theta$ Half An $sin^{2}\theta =$ $cos^{2}\theta =$ $tan^{2}\theta =$ $sin(2\theta)$ Sin Cos	$tan^{2}\theta + 1 = se$ $cot^{2}\theta + 1 = cs$ Half Angle Form $sin^{2}\theta = \frac{1}{2}(1 - c)$ $cos^{2}\theta = \frac{1}{2}(1 + c)$ $tan^{2}\theta = \frac{(1 - cc)}{(1 + cc)}$ $sin(2\theta) = 2sin$ 0° Sin 0 Cos 1	$sin^{2}\theta = \frac{1}{2}(1 - \cos(2\theta))$ $cos^{2}\theta = \frac{1}{2}(1 + \cos(2\theta))$ $tan^{2}\theta = \frac{(1 - \cos(2\theta))}{(1 + \cos(2\theta))}$ $sin(2\theta) = 2sin\theta cos\theta, cos$ $Sin \qquad 0 \qquad \frac{1}{2}$ $Cos \qquad 1 \qquad \frac{\sqrt{3}}{2}$	$tan^{2}\theta + 1 = sec^{2}\theta$ $cot^{2}\theta + 1 = csc^{2}\theta$ Half Angle Formulas $sin^{2}\theta = \frac{1}{2}(1 - cos(2\theta))$ $cos^{2}\theta = \frac{1}{2}(1 + cos(2\theta))$ $tan^{2}\theta = \frac{(1 - cos(2\theta))}{(1 + cos(2\theta))}$ $sin(2\theta) = 2sin\theta cos\theta, cos(2\theta)$ $\boxed{0^{\circ} 30^{\circ} 45^{\circ}}$ $Sin 0 \frac{1}{2} \frac{1}{\sqrt{2}}$ $\boxed{Cos} 1 \frac{\sqrt{3}}{2} \frac{1}{\sqrt{2}}$	$tan^{2}\theta + 1 = sec^{2}\theta$ $cot^{2}\theta + 1 = csc^{2}\theta$ Half Angle Formulas $sin^{2}\theta = \frac{1}{2}(1 - cos(2\theta))$ $cos^{2}\theta = \frac{1}{2}(1 + cos(2\theta))$ $tan^{2}\theta = \frac{(1 - cos(2\theta))}{(1 + cos(2\theta))}$ $sin(2\theta) = 2sin\theta cos\theta, cos(2\theta) = cos^{2}\theta - \frac{1}{2}(1 + cos(2\theta))$ $sin(2\theta) = 2sin\theta cos\theta, cos(2\theta) = cos^{2}\theta - \frac{1}{2}(1 + cos(2\theta))$ $cos^{2}\theta = \frac{1}{2}(1 + cos(2\theta))$	