SSLC EXAMINATION MARCH – 2018

CHEMISTRY (English)

Q No	Answer Key	Score	Total Score
1	4	1	<u>1</u>
2	B: $NH_4Cl(s) \leftrightarrow NH_3(g) + HCl(g)$	1	<u>1</u>
3	-СООН	1	<u>1</u>
4	Blue	1	<u>1</u>
5	Anlagesics	1	<u>1</u>
6	(a) 1:3:2	1	<u>2</u>
	(b) 4	1	
7	(a)At equilibrium, both the reactants and products coexist	1	<u>2</u>
	(b) Add Fe(NO ₃) ₃ or KCNS into the system	1	
8	(a) The solution turns blue	1	<u>2</u>
0	(b) $Cu_{(s)} + 2 AgNO_{3(aq)} \rightarrow Cu(NO_3)_{2(aq)} + 2 Ag_{(s)}$	1	∠
	(a)Tin / Lead (Any one)	1	
9	(b) Calcination is the process of heating the concentrated ore at a temperature below its melting point ton remove the volatile impurities	1	<u>2</u>
10	(a) CH ₃ -COO-CH ₂ -CH ₃	1	2
10	(b) CH_3 -COOH + CH_3 -CH ₂ -OH \rightarrow CH_3 -COO- CH_2 -CH ₃ + H_2 O	1	
	(a) Mass of an element equal to its atomic mass	1	
11	(b) (i) 5	1	<u>3</u>
	(ii) 5x 40g = 200 g	1	
	(a) 3	1	
12	(b) 16	1	<u>3</u>
	(c) p	1	
	(a) Rate of forward reaction decreases	1	<u>3</u>
13	(b) Rate of forward reaction increases	1	
	(c) Rate of forward reaction decreases	1	
	(a)Compounds having same molecular formula but different chemical and physical properties are called Isomers.	1	3
14	(b)CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -OH / CH ₃ -CH ₂ -CH ₂ -CH-CH ₃ OH CH ₃ -CH ₂ -CH-CH ₂ -CH ₃	2	

Butane CO - Poisoning CO ₂ - Global warming 10 3s < 3p < 3d B: 3d ¹⁰ 4s ¹ To attain extra stability In molten state or in aqueous solution, ions of move freely. These ions are responsible for the lectricity by the electrolytes. Sodium chloride trical conductor because its ions have no free sodium at Cathode , Chlorine from the Anochydrogen at Cathode , Chlorine from the Are Bauxite (Al ₂ O ₃ .2H ₂ O) Look at the figure given Reactions in which an atom or a group in a coaced by another atom or a group are called suctions. Ctions in which unsaturated organic compound	ne conduction in solid state is not an dom of movement. de node mpound is	1 1/2 1/2 1/2 1 1 1 1 1 1 1 3	<u>4</u>
CO ₂ - Global warming 10 3s < 3p < 3d B: 3d ¹⁰ 4s ¹ To attain extra stability In molten state or in aqueous solution, ions of move freely. These ions are responsible for the lectricity by the electrolytes. Sodium chloride trical conductor because its ions have no free sodium at Cathode, Chlorine from the Anothydrogen at Cathode, Chlorine from the Areauxite (Al ₂ O ₃ .2H ₂ O) Look at the figure given Reactions in which an atom or a group in a contact of the	ne conduction in solid state is not an dom of movement. de node mpound is	1/2 1 1 1 1 1 1 1 3	
B: 3d ¹⁰ 4s ¹ To attain extra stability In molten state or in aqueous solution, ions of move freely. These ions are responsible for the lectricity by the electrolytes. Sodium chloride trical conductor because its ions have no free sodium at Cathode, Chlorine from the Anothydrogen at Cathode, Chlorine from the Are Bauxite (Al ₂ O ₃ .2H ₂ O) Look at the figure given Reactions in which an atom or a group in a contact of the contact of the solutions. Sodium at Cathode and the contact of the co	ne conduction in solid state is not an dom of movement. de node mpound is	1 1 1 2 1 1 1 3	4
B: 3d ¹⁰ 4s ¹ To attain extra stability In molten state or in aqueous solution, ions of move freely. These ions are responsible for the lectricity by the electrolytes. Sodium chloride trical conductor because its ions have no free sodium at Cathode, Chlorine from the Anothydrogen at Cathode, Chlorine from the Are Bauxite (Al ₂ O ₃ .2H ₂ O) Look at the figure given Reactions in which an atom or a group in a contact of the contact of the solutions. Sodium at Cathode and the contact of the co	ne conduction in solid state is not an dom of movement. de node mpound is	1 1 1 2 1 1 1 3	4
B: 3d ¹⁰ 4s ¹ To attain extra stability In molten state or in aqueous solution, ions of move freely. These ions are responsible for the lectricity by the electrolytes. Sodium chloride trical conductor because its ions have no free sodium at Cathode, Chlorine from the Anothydrogen at Cathode, Chlorine from the Are Bauxite (Al ₂ O ₃ .2H ₂ O) Look at the figure given Reactions in which an atom or a group in a contact of the	ne conduction in solid state is not an dom of movement. de node mpound is	1 1 2 1 1 1 3	4
In molten state or in aqueous solution, ions of move freely. These ions are responsible for the lectricity by the electrolytes. Sodium chloride trical conductor because its ions have no free sodium at Cathode, Chlorine from the Anothydrogen at Cathode, Chlorine from the Areauxite (Al ₂ O ₃ .2H ₂ O) Look at the figure given Reactions in which an atom or a group in a contact by another atom or a group are called suctions. Contact in which unsaturated organic compounts.	ne conduction in solid state is not an dom of movement. de node mpound is	1 2 1 1 1 3	4
move freely. These ions are responsible for the lectricity by the electrolytes. Sodium chloride trical conductor because its ions have no free sodium at Cathode, Chlorine from the Anothydrogen at Cathode, Chlorine from the Arabauxite (Al ₂ O ₃ .2H ₂ O) Look at the figure given Reactions in which an atom or a group in a contact by another atom or a group are called suctions. Ctions in which unsaturated organic compounds	ne conduction in solid state is not an dom of movement. de node mpound is	1 1 1 3	
Hydrogen at Cathode, Chlorine from the Ar Bauxite (Al ₂ O ₃ .2H ₂ O) Look at the figure given Reactions in which an atom or a group in a co aced by another atom or a group are called su ctions. ctions in which unsaturated organic compoun	mpound is	1 1 3	4
Bauxite (Al ₂ O ₃ .2H ₂ O) Look at the figure given Reactions in which an atom or a group in a coaced by another atom or a group are called suctions. ctions in which unsaturated organic compound	mpound is	3	4
Look at the figure given Reactions in which an atom or a group in a co- aced by another atom or a group are called su- ctions. ctions in which unsaturated organic compoun	=	3	<u>4</u>
Reactions in which an atom or a group in a coaced by another atom or a group are called suctions. Compoundation of the compoundation o	=		<u>4</u>
aced by another atom or a group are called suctions. ctions in which unsaturated organic compoun	=	2	
ble bond or triple bond react with other mole rated compounds are called addition reaction	npounds with molecules to form		
(i) CH ₃ -CH ₂ -Cl	Bauxite	1	
ii) CH ₃ -CH ₂ -CH-CH ₃	(AI,O,2H,O) Hot NaOH solution Sodium aluminate solution (NaAlO)	1	
(iv) CH ₃ -CH ₂ -CH ₂ -CH ₃	Impurities are removed from the solution by filtration. Diluted with	1	4
CH ₃ -CH-CH ₃	water after adding a little Al(OH) ₃ to precipitate Al(OH) ₃		
OH	Precipitate [Al(OH) ₃] The precipitate is separated, washed well		
(i) and (ii) OR CH ₃ -CH ₂ -CO-CH ₃ / CH ₃ -CH ₂ -CH ₂ -CHO	Alumina (AlO ₂)		
CH ₃ -CH-CH ₃			
 CH ₃			
	I (iv) CH ₃ -CH ₂ -CH ₂ -CH ₃ CH ₃ -CH-CH ₃ OH (i) and (ii) OR CH ₃ -CH ₂ -CO-CH ₃ / CH ₃ -CH ₂ -CHO CH ₃ -CH-CH ₃	Inpurities are removed from the solution (NaAlO ₃) CH ₃ -CH-CH ₃ CH ₃ -CH-CH ₃ OH (i) and (ii) OR CH ₃ -CH ₂ -CO-CH ₃ / CH ₃ -CH ₂ -CHO CH ₃ -CH-CH ₃	I (iv) CH ₃ -CH ₂ -CH ₂ -CH ₃ CH ₃ -CH-CH ₃ OH (i) and (ii) OR CH ₃ -CH ₂ -CO-CH ₃ / CH ₃ -CH ₂ -CH ₀ CH ₃ -CH-CH ₃