GATE 2018 Microbiology (XL-S) ## XL(S): Q. 1 – Q. 10 carry one mark each & Q. 11 – Q. 20 carry two marks each. | Q.1 David Baltimore's classification of viruses is based on differences in | | | ices in | | | | |--|---|--|---|-------------------------------|--|--| | | (B) the pathways(C) the modes of | ptors used by viruses
required to synthesize v
transmission of viruses
proteins on the surface of | | | | | | Q.2 | Which of the following immune system components can function as an opsonin? | | | | | | | | (A) Antibodies(C) Histamines | | (B) T-cell receptor
(D) Interferons | rs . | | | | Q.3 | The oral polio va | ccine (OPV) consists of | | | | | | | (A) live attenuate (C) viral toxin | d virus | (B) killed virus
(D) viral capsid su | bunit | | | | Q.4 | Which of the foll during autophagy | | ar components carries | out intracellular degradation | | | | | (A) Nucleus | (B) Golgi bodies | (C) Ribosomes | (D) Lysosomes | | | | Q.5 | Analysis of DNA originated from | sequences suggest that | eukaryotic mitochono | drial genomes primarily | | | | | (A) fungi | (B) protozoa | (C) algae | (D) bacteria | | | | Q.6 | Binomial nomeno | clature has NOT yet bee | n adopted for | | | | | | (A) bacteria | (B) fungi | (C) viruses | (D) protozoa | | | | Q.7 | Which of the foll | owing is NOT an accept | ted method for steriliz | cation? | | | | | (A) Autoclaving (C) Gamma rays | | (B) X-rays
(D) UV rays | | | | | Q.8 | The primary prod | luct of nitrogen fixation | is | | | | | | $(A) N_2$ | (B) NH ₄ ⁺ | (C) NO ₂ ⁻ | (D) NO ₃ | | | | Q.9 | In humans, the key stages in the life cycle of malarial parasites occur in | | | | | | | | (A) red blood cel(B) red blood cel(C) red blood cel(D) red blood cel | ls and platelets
ls and the pancreas | | | | | XL-S 1/3 GATE 2018 Microbiology (XL-S) Q.10 You have a 50 mg/mL stock solution of arginine. To prepare 1 liter of growth medium for an arginine auxotroph that requires 70 μ g/mL of arginine, the volume of this stock solution that should be added is ______ mL (up to 1 decimal point) . - Q.11 Accumulating evidence suggest that Domain Archaea is more closely related to Domain Eukarya than to Domain Bacteria. Which of the following properties are shared between eukaryotes and archaea? - (i) Protein biogenesis - (ii) Presence of sterol containing membranes - (iii) Ribosomal subunit structures - (iv) Adaptation to extreme environmental conditions - (v) Fatty acids with ester linkages in the cell membrane - (A) (ii), (iii) and (v) (B) (i), (ii), (iv), and (v) (C) (i) and (iii) - (D) (iii) and (iv) - Q.12 Match the antimicrobial agents in group I with their category/mode of action in group II. | | Group I | Group II | |-------|------------------|--| | (i) | Fluoroquinolones | (p) beta lactam antimicrobial | | (ii) | Amphotericin B | (q) inhibition of protein synthesis | | (iii) | Tetracycline | (r) inhibition of nucleic acid synthesis | | (iv) | Amoxicillin | (s) antifungal agent | - (A) (i)-(q), (ii)-(s), (iii)-(r), (iv)-(p) - (B) (i)-(s), (ii)-(r), (iii)-(p), (iv)-(q) - (C) (i)-(r), (ii)-(s), (iii)-(q), (iv)-(p) - (D) (i)-(s), (ii)-(r), (iii)-(q), (iv)-(p) - Q.13 Match the microorganisms to their predominant modes of transmission. | Microorganism | Mode of Transmission | | |-----------------------------|-----------------------|--| | (i) Bordetella pertussis | (p) Vector-borne | | | (ii) Dengue virus | (q) Blood-borne | | | (iii) Entamoeba histolytica | (r) Droplet infection | | | (iv) Hepatitis B virus | (s) Contaminated food | | - (A) (i)-(r), (ii)-(p), (iii)-(s), (iv)-(q) - (B) (i)-(s), (ii)-(q), (iii)-(p), (iv)-(r) - (C) (i)-(q), (ii)-(p), (iii)-(s), (iv)-(r) - (D) (i)-(s), (ii)-(r), (iii)-(p), (iv)-(q) - Q.14 Match the precursors/intermediates with the corresponding metabolic pathways. | Precursor/Intermediates | Metabolic pathway | | |---------------------------|-------------------------------|--| | (i) Inosine monophosphate | (p) L-methionine biosynthesis | | | (ii) Ornithine | (q) L-tryptophan biosynthesis | | | (iii) Chorismate | (r) Purine biosynthesis | | | (iv) Homocysteine | (s) L-arginine biosynthesis | | - (A) (i)-(q), (ii)-(r), (iii)-(s), (iv)-(p) - (B) (i)-(p), (ii)-(r), (iii)-(s), (iv)-(q) - (C) (i)-(r), (ii)-(p), (iii)-(s), (iv)-(q) - (D) (i)-(r), (ii)-(s), (iii)-(q), (iv)-(p) 2/3 XL-S **GATE 2018** Microbiology (XL-S) 0.15 Match the scientists to their area of major contribution | | Scientists | Area of major contribution | |-------|-------------------------|----------------------------| | (i) | Antonie van Leeuwenhoek | (p) Taxonomy | | (ii) | Carl Linnaeus | (q) Antimicrobial agents | | (iii) | Sir Alexander Fleming | (r) Vaccination | | (iv) | Louis Pasteur | (s) Microscopy | - (A) (i)-(s), (ii)-(q), (iii)-(p), (iv)-(r) - (B) (i)-(s), (ii)-(p), (iii)-(q), (iv)-(r) - (C) (i)-(p), (ii)-(s), (iii)-(r), (iv)-(q) - (D) (i)-(q), (ii)-(p), (iii)-(r), (iv)-(s) - Q.16 Which of the following combinations would improve the resolution of a microscope? - Increasing the half aperture angle of the objective lens (i) - (ii) Decreasing the wavelength of the illumination source - Decreasing the numerical aperture of the objective lens (iii) - Decreasing the refractive index of immersion medium (iv) - (A) (i) and (ii) - (B) (ii) and (iii) - (C) (ii) and (iv) - (D) (i) and (iii) - Active transport involves the movement of a biomolecule against a concentration gradient across the cell membrane using metabolic energy. If the extracellular concentration of a biomolecule is 0.005M and its intracellular concentration is 0.5M, the least amount of energy that the cell would need to spend to transport this biomolecule from the outside to the inside of the cell is _____ kcal/mol (up to 2 decimal points). (Temperature T = 298K and universal gas constant R = 1.98 cal/mol·K) A continuous cell culture being carried out in a stirred tank Q.18 reactor is described in terms of its cell mass concentration X and substrate concentration S. The concentration of the substrate in the sterile feed stream is $S_F = 10$ g/L and yield coefficient $Y_{x/s} = 0.5$. The flow rates of the feed stream and the exit stream are equal (F=5 mL/min) and constant. If the specific growth rate (h⁻¹) $\mu = \frac{0.3 \text{ s}}{(1+\text{s})}$, the steady state concentration of S is _____ g/L (up to 1 decimal point). - The initial concentration of cells (N₀) growing unrestricted in a culture is 1.0×10^6 cells/mL. If the specific growth rate (µ) of the cells is 0.1 h⁻¹, the time required for the cell concentration to become 1.0×10^8 cells/mL is hours (up to 2 decimal points). - Q.20 The following stoichiometric equation represents the conversion of glucose to lactic acid in a cell: Glucose + 2Pi + 2ADP $$\rightarrow$$ 2Lactate + 2ATP +2H₂O If the free energy of conversion of glucose to lactic acid only is $\Delta G^0 = -47000$ cal/mol, the efficiency of energy transfer is ______ % (up to 1 decimal point). $(\Delta G^0 \text{ for ATP hydrolysis is } -7.3 \text{ kcal/mol})$ ## END OF THE QUESTION PAPER XL-S 3/3