SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2018

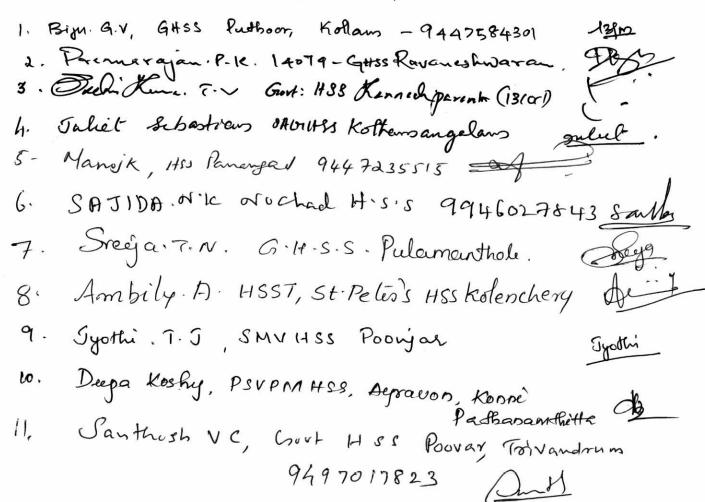
SUBJECT: STATISTICS

CODE NO. 9020

Qn No	Scoring key	Split score	Total score
1 a	(iv) 0.5	1	2
1 b 2	(ii) 20 A B (i) No correlation (d) $r = 0$ (ii) $\frac{Cov(x,y)}{\sigma_x \times \sigma_y}$ (c) Correlation coefficient (iii) $1 - \frac{6\sum d^2}{n^3 - n}$ (a) Rank correlation coefficient (iv) Perfect correlation (b) $r = \pm 1$	1 ½ × 4	2
3	$\sum X = 247, \sum Y = 263, \sum X^{2} = 7345, \sum Y^{2} = 7537, \sum XY = 7259, n = 10$ $r = \frac{n\sum XY - \sum X\sum Y}{\sqrt{n\sum X^{2} - (\sum X)^{2}} \times \sqrt{n\sum Y^{2} - (\sum Y)^{2}}}$ $= \frac{10 \times 7259 - 247 \times 263}{\sqrt{10 \times 7345 - 247^{2}} \times \sqrt{10 \times 7537 - 263^{2}}}$ $= \frac{7629}{\sqrt{12441 \times 6201}} = 0.87$ (or $r = \frac{Cov(x, y)}{\sigma_{x} \times \sigma_{y}}$) $r = \frac{76.29}{11.15 \times 7.87} = 0.87$	1 ½ ½	2
4	Since f(x) is a pdf, we have $\int_{-\infty}^{+\infty} f(x)dx = 1$ $ie, \int_{0}^{2} kx dx = 1$ $\Rightarrow k \left[\frac{x^{2}}{2} \right]_{0}^{2} = 1 \qquad \Rightarrow k = \frac{1}{2}$	½ ½ 1	2
5	Simple AM price index = $\frac{\sum x}{n}$, where x is the price relative. Here $\sum x = 111.11 + 122.86 + 110.42 = 344.39$, n = 3 \therefore Simple AM price index = $\frac{344.39}{3} = 114.797$	1 ½ ½	2
6	$b_{yx} = 0.23, \ \gamma = 0.45, \ \sigma_x = 10, \ \sigma_y = ?$ We have, $b_{yx} = \gamma \frac{\sigma_y}{\sigma_x}$ $\Rightarrow 0.23 = 0.45 \times \frac{\sigma_y}{10}$ $\Rightarrow \sigma_y = 5.11$	1 ½ ½	2
7	Let μ be the average mileage of that particular model automobile. Here, $H_0: \mu=23$ and $H_1: \mu\neq 23$ (or use $H_1: \mu<23$) Given that $\overline{x}=21.8, s^2=7.84$ and $n=50$ Since n is large, the test statistic to be used is: $Z=\frac{(\overline{x}-\mu)}{s\sqrt{n}}\sim N(0,1)$	1/2 1/2 1/2	2

		1/2				
	For $\alpha = 0.05$,					
	Here $ Z = 3.03$					
	∴ We reject H	1/2				
	manufacturer.	.₩. 20.0.				-
8.	We have the tr					
			-	on with shifted origin is: k = 2015 – 2010 = 5	1	
		_	2			
	ie, y = 18	1				
9.	Given $n = 100$,	0.04x + 216.7				
9.	$\overline{p} = \frac{d}{mn} = \frac{1}{10}$	$\frac{70}{100} = 0.17$	and $\overline{q}=1-0.1$	17 = 0.83	1/2	
	The control lim				1,	
	$CL = n\overline{p} = 100$				1/2	2
	$LCL = n\overline{p} - 3$	$\sqrt{n\overline{p}\overline{q}} = 17 - 1$	$3\sqrt{14.11} = 5.73$		1/2	
	$UCL = n\overline{p} + 3$	$\sqrt{n\overline{p}\overline{a}} = 17 +$	$3\sqrt{14.11} = 28.2$	77		
	CCL IIP S	Vipq III	5 V 1 111 2012	•	1/2	
10	Mean = E(X)	$=\sum xp(x)=$	$= 1 \times 0.5 + 2 \times 0.$	$3+3\times0.2=1.7$	1	
	$E(X^2) = \sum x$	$p(x) = 1^2 \times 0$	$0.5 + 2^2 \times 0.3 + 3$	$3^2 \times 0.2 = 3.5$	1	3
	Variance = E				1/2	3
	1	(A) - [E(A)] $5 - 1.7^2 = 0.6$, ,			
	= 3.:	$5-1.7^{\circ}=0.6$	(1)		1/2	
11			3, 11, 15, 17 and			
	The population	mean =	-11+15+17+1 5	$\frac{1}{5} = \frac{1}{5} = 14.8$	1	
	1		WORs of size 2 is			
	Sample	Sample	Sample	7		
	No.		mean			
	1	13, 11	12			
	2	13, 15	14		1	
	3	13, 17	15	4		3
	4	13, 18	15.5	-		
	6	11, 15 11, 17	13	+		
	7	11, 17	14.5	1		
	8	15, 17	16	1		
	9	15, 18	16.5]		
	10	17, 18	17.5 148			
	Mean of samp	½ ½				
	Mean of samp population me	/2				
12	Let X denotes	the weight of	a particular kind	of apple sold at a fruit market.		
		100	ed with $\mu = 100$			

	$\therefore Z = \frac{X - \mu}{\sigma} = \frac{X - 100}{20} \text{ follows N(0, 1)}.$									
	σ 20									
	a) $P(70 < X < 110) = P\left(\frac{70 - 100}{20} < \frac{X - \mu}{\sigma} < \frac{110 - 100}{20}\right)$									3
	= P(-1.5 < Z < 0.5) = 0.6247									
	b) $P(X > 110) = P(Z > 0.5) = 0.3085$									
	b) $P(X >$									
	∴ No. o	f apples w	eigh g	greater t	han 110	gm = 100	$00 \times 0.3085 =$	308	1/2	
13										
	Commodity $egin{array}{ c c c c c c c c c c c c c c c c c c c$									
	Α	1 ½								
	В	6 2	210	7	240	1260	1470		1 /2	
	С	10 1	L10	13	150	1100	1430			3
	Total					3560	4400			
			_							
	Lasnyre's index	number – 4	$\sum p_1$	$\frac{q_0}{\sqrt{100}}$	E				1	
	Laspyre's index i	idilibei – ,	$\sum_{i} p_{0}$	q_0	u.					
		=-	3560	$\times 100 =$	123.6				1/2	
14 a	(ii) Level of sign	ificance							1	1
14 b	Let X be the thic	kness of w	asher	rs produc	ced by t	he machin	ie and let μ	oe the		
	average thickness	ss. We hav	e to t	est H_0 :	$\mu = 0.0$	05 against	$H_1: \mu \neq 0.0$	5 .	1/2	
	Given $n = 10, \overline{x}$					J	1 /			
	The test statistic	is $t = \frac{\lambda}{s}$	$-\mu$	- , follow	$t_{(n-1)}$				1/2	
		3/	$\sqrt{n-1}$	Ī					/2	
	0.053	-0.05		-						2
	Here, $t = \frac{0.00}{0.00}$	1/2	_							
	Here, $t = \frac{0.053 - 0.05}{0.003 \sqrt{9}} = 3$									
	For $\alpha = 0.01$ ar	nd degrees	of fre	eedom 9	, the cr	itical regio	on is $ t \ge 3.25$	5		
	1								1/2	
	Here t = 3 < 3.2			ot H_0 . If	ie maci	iine is wor	king in prope	order.		
15	$\bar{R} = \frac{5+6++}{10}$	$\frac{6}{-}$ = 5.8, n	ı = 5						1	
	10								1	
	The control limit	is for R – C	nart a	are:					1/2	3
	$CL = \overline{R} = 5.8$									
	$LCL = D_3 \overline{R} = 0$								1/2	
	$UCL = D_4 \overline{R} = 2$	2.115×5.8	3 = 12	2.267					1/2	
	All observed val	ues are wit	thin t	he contro	ol limits	. So the pr	ocess is in co	ntrol.	1/2	
16 a	(iii) Seasonal va	riations							1	1
16 b										
	Month No. of 3 yearly 3 yearly homes moving total moving									
	June	6				averag	-			
	July									
	August	9		22	1341-5-111-1	7.33 8			2	2
	September	8		26		8.67				
	October	9		27		9				
	November	10		31		10.33				
	December 12									


1950	
1	
L	P
	/

17 a	$y = x^3 + 7x^2 + 10x + 6$		
	$\frac{dy}{dx} = 3x^2 + 14x + 10$		
		1	2
	$\frac{d^2y}{dx^2} = 6x + 14$	1	
17 b	$\int_{0}^{k} x^{2} dx = 9 \qquad \Rightarrow \left[\frac{x^{3}}{3} \right]_{0}^{k} = 9$	1	
	2 20		2
	ie, $\frac{k^3}{3} - 0 = 9 \implies k = 3$	1	
18 a	Let X be the number of candidates selected out of n = 1000 candidates		
	appeared. The probability of selection , $p=0.2\%=0.002$ is very small, we		
	can use the Poisson distribution with $\lambda = np = 1000 \times 0.002 = 2$		
	We have the pmf,		
	$f(x) = \frac{e^{-x}\lambda^x}{x!}, x = 0, 1, 2,$	1/2	
	· ·	1/2	
	$ie, f(x) = \frac{e^{-2}2^x}{x!}, x = 0, 1, 2,$	1/	2
	P(3 persons selected) = $P(X = 3)$	1/2	
	$=\frac{e^{-2}2^3}{21}=\frac{0.1353\times 8}{6}=0.1804$	1/2	
	3! 6 (Attempt with Binomial Distribution also consider)		
18 b	Let X be the number of workers suffering from the occupational decease. Then X follows Binomial distribution with $n = 6$, $p = 0.2$ and $q = 0.8$. The pmf is:		
	$f(x) = {}^{n}C_{x}p^{x}q^{n-x}, x = 0,1,,n$	1/2	
	ie, $f(x) = {}^{6}C_{x}(0.2)^{x}(0.8)^{6-x}, x = 0,1,,6$	1/	2
	P(4 will suffer from the decease) = P(X=4)	1/2 1/2	
	$= {}^{6}C_{4} \times (0.2)^{4} \times (0.8)^{2} = 15 \times 0.0016 \times 0.64 = 0.01536$	1/2	
19 a	(iv) 12	1	1
19 b	Any 3 of the relations given below. Each carries 1 score.		
	 The square of a Standard Normal variable is a Chi – square variable 		
	with 1 degrees of freedom.		
	 The sum of squares of n independent Standard Normal variables is Chi – square variable with n degrees of freedom. 		
	3. If X is a Standard Normal variable and Y is a Chi – square variable with		
	degrees of freedom, n. Then $t = \frac{X}{\sqrt{Y/n}}$ is a t variable with degrees of		
	$\sqrt{\frac{Y}{n}}$	3 X 1	3
	freedom n.		
	4. If X_1 is a Chi – square variable with degrees of freedom n_1 and X_2 is		
	another independent Chi – square variable with degrees of freedom X .		
	n_2 . Then $F = \frac{X_1}{N_1}$ is a F variable with degrees of freedom (n_1, n_2) .		
	X_2/n		
	5. The square of a t variable with degrees of freedom n is a F variable		
	with degrees of freedom (1, n).		

20 a	(iii) $ heta$	1	1
20 b	$t_1 = \frac{x_1 + x_2 + x_3 + x_4}{4}$ is unbiased.		
	$V(t_1) = V\left(\frac{x_1 + x_2 + x_3 + x_4}{4}\right) = \frac{\sigma^2 + \sigma^2 + \sigma^2 + \sigma^2}{16} = \frac{\sigma^2}{4} = 0.25\sigma^2$	1	
	$t_2 = \frac{2x_1 + x_2 + x_3 + x_4}{5}$ is unbiased.		3
	$V(t_2) = V\left(\frac{2x_1 + x_2 + x_3 + x_4}{5}\right) = \frac{4\sigma^2 + \sigma^2 + \sigma^2 + \sigma^2}{25} = \frac{7\sigma^2}{25} = 0.28\sigma^2$	1	
	Here, $V(t_1) < V(t_2)$. So t_1 is efficient than t_2 .	1	
21	Let x denotes the rank of number of years of smoking and y denotes the rank of lung damage grade.		
	x y $d = x - y$ d^2		
	10 10 0 0		
	9 7 2 4		
	8 6 2 4		
	7 9 -2 4	2	
	6 5 1 1	_	
	5 8 -3 9		4
	4 4 0 0		55.1
	$\begin{vmatrix} 3 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \end{vmatrix}$		
	$\begin{array}{ c cccccccccccccccccccccccccccccccccc$		
	$\left \sum_{\alpha} \alpha - 24 \right $		
	Rank correlation coefficient, $\rho = 1 - \frac{6\sum d^2}{n^3 - n}$ 6×24 144	1	
	$=1-\frac{6\times24}{10^3-10}=1-\frac{144}{990}=0.8545$	1	
	(or attempt using Karl Pearsons formula, give 2 scores)		
22 a	Correlation coefficient.	1	1
22.1	The true requestion lines are:		
22 b	The two regression lines are: $3x + 2y = 26 $		
	(i) Let (1) denotes the regression line of Y on X and (2) denotes the regression		
	line of X on Y.		
	Equation (1) becomes, $2y = -3x + 26$ or $y = \frac{-3}{2}x + 13 \implies b_{yx} = \frac{-3}{2}$	1/2	
	Equation (2) becomes, $6x = -y + 31$ or $x = \frac{-1}{6}y + \frac{31}{6} \implies b_{xy} = \frac{-1}{6}$	1/2	4
	Now, $b_{yx} \times b_{xy} = \frac{-3}{2} \times \frac{-1}{6} = \frac{1}{4} < 1$. Hence our assumption is correct		
	$\therefore r = \pm \sqrt{b_{yx} \times b_{xy}} = \pm \sqrt{\frac{1}{4}} = \frac{-1}{2} = -0.5$	1	
	(ii) Let \overline{x} and \overline{y} be the averages. The equations (1) and (2) become:		
	$3\overline{x} + 2\overline{y} = 26 (3)$	1	
	$6\overline{x} + \overline{y} = 31 (4)$		
	$(3) - 2 \times (4) \Rightarrow -9\overline{x} = -36 \Rightarrow \overline{x} = 4$, average price = 4	1/2	
	$(4) - 2 \times (3) \Rightarrow -3\overline{y} = -21 \Rightarrow \overline{y} = 7$, average demand =7	1/2	

23 a	(iv) Equality of more than two means								1
23 b	$H_{\scriptscriptstyle 0}$: The yields are equal and $H_{\scriptscriptstyle 1}$: The yields are not equal.								
	H_0 . The yields are equal and H_1 . The yields are not equal.								
	= =	Α	1	3	С				
		20	1	8	25				
	1	21		0	28			1/2	
		23		.7	22			1	
					$T_3 = 75$				
	Grand Total				1				
	Correction factor, $CF = \frac{G^2}{n} = \frac{194^2}{9} = 4181.78$								
	l		"	,		L	- CF	1/2	
	Total Sum o	or Squares,			ares of all o ++22² –				
				VI. (ALEXAND		4181./8	= 94.22	1/2	
	Between Su	m of Squar	es, SSB =]	$\sum_{i} \frac{T_{i}^{2}}{-}$	-CF				
									4
			= -	$\frac{64^2}{4} + \frac{5}{4}$	$\frac{55^2}{3} + \frac{75^2}{3} -$	-4181.78	= 66.89	1/2	
				3	3 3				
	Source	df	ANOVA SS		MSS	F	E		
							F _{0.5}	1 1/2	
	Between Within	2	66.8 27.3	30	33.445 4.555	7.34	5.14		
	Total	8	94.2		4.555				
		1							
	Here $F > F$	$7_{0.5}$. So we	reject $H_{\scriptscriptstyle 0}$. That i	s the yields	are not eq	jual for the three	1/2	
	varieties of								
24	The hypoth		1.1.						
	37						ndependent.	1	
	- 25						ot independent.		
	We are give expected from			able. T	he continge	ency table a	along with the		
			tion 2						
	Question 1	Yes	No	Tota	al				
	ļ - -	23.400.41	5340757					1 ½	
	Yes	56 (58)	31 (29)	87					
	No	18 (16)	6 (8)	24					5
	Total	74	37	111	L				3
	L								
	The test statistics is $\chi^2 = \sum \frac{(O-E)^2}{E}$ follows Chi – square distribution with								
								1	
	degrees of freedom $(R-1)(C-1) = (2-1)(2-1) = 1$.								
	The value of test statistic is:							1	
	$\chi^2 = \frac{(56-58)^2}{58} + \frac{(31-29)^2}{29} + \frac{(18-16)^2}{16} + \frac{(6-8)^2}{8} = 0.96$								
	29 16 + 8 - 0.70								
	The critical region with df=1 is, $\chi^2 > 3.84$.								
	Here $\chi^2=0.96<3.84$. So we accept H_0 . Hence the drinking habit and the								
	favour in lo								

Scheme finalisation. Participants.

