

www.amoebaclasses.in

www.amoebaclasses.in QUARTERLY EXAMINATION-2017-2018 MATHEMATICS Class - IX Std

MM. 90

4

SECTION A (40 Marks)

Note : Do all sums.

Time: 2.5hrs

MOEBA CLASSES

Q-1 (a). Express 5.2 in the form of $\frac{P}{q}$ where P and q are both integers and $q \neq 0$.

(b). Rationalise the following $\frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}$

(c). Find the amount and compound interest on Rs. 16000 for $1\frac{1}{2}$ years at 10% per annum, the interest being compounded half yearly.

Q-2. (a). Factorise $a^2 + b^2 - 2$ (ab+bc - ac)

(b). If x + y = 8 and $xy = 3\frac{3}{4}$, find the value of 3 ($x^2 + y^2$).

(c). AB is line segment and I is its perpendicular bisector, If P is a point on I, show that P is equidistant from A and B.

Q-3 (a). In the adjoining figure ABCD is a trapezium in which AB // DC and E is mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F. Show that F is mid point of BC.

(b). In \triangle ABC, right angled at B, AB = 24 cm and BC = 7 cm. Determine Sin C, Cos C. (c). If $\tan \Box = \frac{1}{\sqrt{5}}$ find the value of $\frac{Cosec^2 \theta - Sec^2 \epsilon}{Cosec^2 \theta + Sec^2 \epsilon}$

Q-4. (a). Using suitable identity evaluate $(10.3)^2$.

(b). If $a^2 + 4a + x = (a+2)^2$ find the value of X.

(c), If O is any point in the interior of a rectangle ABCD prove that $OA^2 + OC^2 = OB^2 + OD^2$ Hence find the length of OD, if the length of OA, OB and OC are 3 cm, 4 cm and 5 cm respectively.

Rproue that the A form by joining the M. P.J.

P.T.O

3

3

4

Q.5 (a) By factor theorem, show that (x+3) and (2x -1) are the factor of 2x²+5x+3.
(b) Show that (2x +1) is a factor of 4x3 +12x2+11x +3 Hence factorise 4x²+12x²+11x+3
(c) If (x+3) & (x_4) are factors of x²-ax²-bx+24, find the value of a & b with these value of a & b factorise the given expression.

SECTION B (40 Marks)

Note : Do any four sums.

Q-5. (a). Given A is an acute angle and 13 Sin A = 5, evaluate

5SinA-2 CosA

tan A

(b). In \triangle ABC, \angle ABD = 65°, \angle DAC = 22° and AD = BD. Calculate \angle ACD and state giving \bigcirc reasons which is greater BD or DC.

(c). What sum will amount to Rs. 2782.50 in 2 years at compound interest if the rates are 5% and 6% for the successive years.

Q-6. (a): If $\sqrt{3} = 1.732$ find the value of $\sqrt{27} - 3\sqrt{75} + 5\sqrt{48}$

(b). The present population of a village is 5408. If it has increased at the rate of 4% every year what was its population two years ago.

(c). If the sum of two numbers is 7 and the sum of their cubes is 133. Find the sum of their cubes 133, find the sum of their squares.

P.T.O

3

3

3

Q-7. (a). Simplify $\left(a + \frac{1}{a}\right)^2 - \left(a - \frac{1}{a}\right)^2$

(b). In what time will Rs. 2400 amount to Rs. 2646 at 10% per annum compounded half yearly.

(c). In the adjoining figure, AD and BC are equal perpendicular to a line segment AB. Show that CD bisects. AB.

Q-8. (a). If \Box is an acute angle and Sin \Box = Cos \Box Find the value of $2 \tan^2 \Box$ +Sin² \Box - 1

(b). Factorise : $a^4 - b^4 + 2b^2 - 1$

(c). E and F are mid point of non – parallel sides AD and BC of a trapezium ABCD Prove that EF //AB and $EF = \frac{1}{2}(AB + CD)$.

Q-9 (a). Simplify : $(4 + \sqrt{5})(\sqrt{3} - \sqrt{7})$

(b). If a - b = 7 and $a^2 + b^2 = 85$, then find the Value of $a^3 - b^3$.

(c). In the adjoining figure ABCD is a parallelogram. E and F are mid point of sides AB and CD respectively PQ is any line that meets AD, EF and BC in points P, O and Q respectively. Prove that PO = OQ 4

