Rao IIT Academy

Symbol of Excellence and Perfection
JEE | MEDICAL-UG|BOARDS | KVPY| NTSE | OLYMPIADS

XII CBSE - BOARD - MARCH - 2017
 CODE (55/1) SET -1
 PHYSICS - SOLUTIONS

SECTION - A

1. Nichrome, since its resistance is high.
[1 M]
Topic:Current Electricity; Sub-Topic:Resistance_L-1_Target-2017_ XII-CBSE Board Exam_Physics
2. Yes
[1 M]
Topic:Electromagnetic waves; Sub-Topic:Properties_L-1_Target-2017_XII-CBSE Board Exam_Physics
3.

$\mu=\frac{\sin \left(\frac{\delta m+A}{2}\right)}{\sin \frac{A}{2}}$
for red light $\mu=$ least; $\delta_{m} \rightarrow$ will reduce
[1 M]
Topic:Ray optics; Sub-Topic:Refractive through prism_L-3_ _Target-2017_ XII-CBSE Board Exam_Physics
4. Photo electric effect.
[1 M]
Topic:Dual nature of radiation \& matters; Sub-Topic:Properties_L-1_ _Target-2017_XII-CBSE Board Exam \qquad Physics
5. The polarity of plate 'A' will be positive with respect to plate ' B ' in the capacitor. [1 M]
Topic:EMI; Sub-Topic:Lenz's law_L-2_Target-2017_XII-CBSE Board Exam_Physics

SECTION - B

6.

| Interference | Diffraction | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

Topic:Wave optics; Sub-Topic:Difference between interference \& diffraction_L-1_Target-2017_XII-CBSE Board Exam \qquad Physics
(OR)

[1 M]

[1 M]

Topic:Wave optics; Sub-Topic:Polarization_L-2_Target-2017_ XII-CBSE Board Exam \qquad Physics
7. (a) X - rays

Uses - Use to study atomic structure.
(b) Microwaves

Uses : Used in radar application.
Topic:Electromagnetic waves; Sub-Topic:Spectrum _L-1__Target-2017_ XII-CBSE Board Exam \qquad Physics
8. \quad Magnetic force $=$ Electrostatic force
$q v B=q E$
$\Rightarrow \mathrm{v}=\frac{\mathrm{E}}{\mathrm{B}}$
Topic:Moving charges \& Magnetism; Sub-Topic:Velocity selector_L-1_Target-2017_XII-CBSE Board
Exam \qquad Physics
9. $\quad P=\sqrt{2 m E}$
$P=\sqrt{2 \times 9.1 \times 10^{-31} \times 12.5 \times 1.6 \times 10^{-19}}$
$\frac{h}{\lambda}=\sqrt{2 \times 9.1 \times 12.5 \times 1.6 \times 10^{-50}}$
$\lambda=\frac{h}{\sqrt{364 \times 10^{-50}}}=\frac{6.6 \times 10^{-34}}{19.07 \times 10^{-25}}=0.34 \times 10^{-9} \mathrm{~m}$
$3.4 \times 10^{-10} \mathrm{~m}$ ultraviolet.
Topic:Atoms_; Sub-Topic:Debroglie wave length_L-3__Target-2017_XII-CBSE Board Exam_Physics
10. For permanant magnet
a - Magnetically hard
b-Retentivity \& coercivity should be large
For electromagnet
a-Magnetically soft
b-coercivity should be low.
Topic:Magnetism \& matter; Sub-Topic:__Hysteresis loop _ L-3_Target-2017_ XII-CBSE Board Exam_Physics

SECTION - C

11. (a) Heat increased 9 factor, so current increased by 3 factor, so potential increased by 3 factor.
also $H=\frac{V^{2}}{R} t$
$H \propto V^{2}$
H increased by factor 9 , so V increased by factor 3
[2 M]
(b) $I=\frac{12}{6}=2 \mathrm{~A}$

$$
\begin{equation*}
V=E-i r=12-2 \times 2=8 V \tag{1M}
\end{equation*}
$$

Topic:_Current Electricity_; Sub-Topic:_Potential difference _ L-3__Target-2017_ XII-CBSE Board Exam_Physics

12 (a) Production and Direction of Amplitude Modulated Wave

Here modulatign signal $A_{m} \sin \omega_{c} t$ is added to carrier signal $A_{c} \sin \omega_{c} t$ to produce the signal $\mathrm{x}(\mathrm{t})$.
$x(t)=A_{c} \sin \omega_{c} t+A_{m} \sin \omega_{m} t$
After, passing through square low devices
$y(t)=B x(t)+C x^{2}(t)$
$y(t)=B A_{m} \sin \omega_{m} t+B A_{c} \sin \omega_{c} t+C A_{m}^{2} \sin ^{2} \omega_{m} t+C A_{c}^{2} \sin \omega_{c} t+C .2 A_{m} A_{c} \sin \omega_{m} t \cdot \sin \omega_{c} t$

$$
\begin{aligned}
& y(t)=B A_{m} \sin \omega_{m} t+B A_{c} \sin \omega_{c} t+\frac{C}{2}\left(A_{m}^{2}+A_{c}^{2}\right)+ \\
& C A_{m} \cdot A_{c} \cos \left(\omega_{c}-\omega_{m}\right) t-C A_{m} A_{c} \cos \left(\omega_{c}+\omega_{m}\right) t
\end{aligned}
$$

Where, $\frac{C}{2}\left(A_{m}^{2}+A_{c}^{2}\right)$ is a D.C. term.
The bandpass filter rejects D.C. term and allows sinusoidal functions.
(b) $W_{c}+W_{m}=660 \ldots$ (i)

$$
\begin{equation*}
W_{c}-W_{m}=640 . \tag{ii}
\end{equation*}
$$

On solving (i) and (ii)

$$
\begin{align*}
& W_{c}=650 \mathrm{KHz} \\
& W_{m}=10 \mathrm{KHz} \tag{1M}
\end{align*}
$$

Topic:Communication system; Sub-Topic:Amplitude modulation_L-2__Target-2017_XII-CBSE Board Exam_Physics
13. (a) Reverse Bias
(b)

[1 M]

During positive half cycle of the $A . C$. input point A is + ve w.r.t. point C, (and point B is - ve w.r.t. point C), therefore the diode D_{1} is forward biased and D_{2} is reverse biased.

The current flows through diode $\mathrm{D}_{1}, \mathrm{R}_{\mathrm{L}}$ and upper half winding (AC).
During every negative half cycle ofA.C. input, point B is + ve w.r.t point C (and point A is - ve w.r.t. point C), therefore diode D_{2} is forward biased and diode D_{1} is reverse biased.

Current flows through R_{L}, from point M to point N (unidirectional).
Topic:_Semiconductors Electronics materials devices and simple circuit_; Sub-Topic:_Diode applicaiton_ _ L-3_ _Target-2017_ XII-CBSE Board Exam__Physics
14. According to photon picture of light, in photoelectric effect, electron absorbs a quantum of energy $(h v)$ of radiation. Ifthis quantum of energy absorbed exceeds the minimum energy needed for the electron to escape from the metal surface, the electron is emitted with some kinetic energy, the maximum value of whichcan be given by
[1 M]
$K_{\text {max }}=h v-\phi_{0}$
This is know as Einstein's photoelectric equation. ϕ_{0} is the work function of metal, which is the minimum energy needed by a surface electron to come out.
[1 M]
The two features of photoelectric effect which cannot be explained by wave theory, are
(i) Instantaneous emission
(ii) Existance of threshold frequency

Topic:Dual natrure of radition \& matter; Sub-Topic:Einstein's photoelectric equation_L-1_Target-2017_ XII-CBSE Board Exam_Physics
15. (a) Given:
wavelength in air, $\lambda_{a}=589 \mathrm{~nm}=5.89 \times 10^{-7} \mathrm{~m}$
refractive index of water, $\mu_{w}=1.33$
\because speed of light in vacuum, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
\therefore frequency, $v=\frac{c}{\lambda_{a}}$
$(\because$ speed in air $\approx c)=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{5.89 \times 10^{-7} \mathrm{~m}}=5.093 \times 10^{14} \mathrm{~Hz}$
Now, speed of light in water, $v=\frac{c}{u_{w}}$
$=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.33} \approx 2.2605 \times 10^{8} \mathrm{~m} / \mathrm{s}$
\therefore wavelength in water, $\lambda_{w}=\frac{\mathrm{v}}{v}$
(\because frequency remains the same in all media)
$=\frac{c / \mu_{w}}{c / \lambda_{a}}=\frac{\lambda_{a}}{\mu_{w}}=\frac{5.89 \times 10^{-7} \mathrm{~m}}{1.33}$
$\approx 4.43 \times 10^{-7} \mathrm{~m}$
Thus, for the refracted light,
wavelength $\lambda_{w} \approx 4.43 \times 10^{-7} \mathrm{~m}$
frequency $v \approx 5.09 \times 10^{14} \mathrm{~Hz}$ and
speed $\quad v \approx 2.26 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
Topic:_Ray optics_; Sub-Topic:_Refraction_L-1_Target-2017_ XII-CBSE Board Exam_ Physics
(b) Given: $\mu=1.55, f=20 \mathrm{~cm}$

$$
\left|R_{1}\right|=\left|R_{2}\right|=R \quad(\text { let })
$$

\because for double convex lens as $R_{1}>0$ and $R_{2}<0$
So, $R_{1}=R$ and $R_{2}=-R$
Using Lens Maker's Equation

$$
\begin{align*}
& \frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right), \text { we get } \tag{0.5M}\\
& \frac{1}{20}=(1.55-1) \cdot\left(\frac{1}{R}+\frac{1}{R}\right)
\end{align*}
$$

Rao IIT Academy

$\Rightarrow \frac{1}{20}=0.55 \times \frac{2}{R}$
$\Rightarrow R=0.55 \times 2 \times 20 \mathrm{~cm}=22 \mathrm{~cm}$
\therefore The radius of curvature is 22 cm .
[0.5 M]
Topic:Ray optics; Sub-Topic:lens maker's equation_L-2_Target-2017_XII-CBSE Board Exam_Physics
16. If we consider two coaxial coils s_{1} and s_{2}, when a current I_{2} is set up through S_{2}, it in turn sets up a magnetic flux through S_{1}. Let us denote it by ϕ_{1}. The corresponding flux linkage with solenoid S_{1} is
$N_{1} \phi_{1}=M_{12} I_{2}$
[0.5 M]
M_{12} is called the mutual inductance of solenoid S_{1} with respect to solenoid S_{2}.
The magnetic field due to the current I_{2} in S_{2} is $\mu_{0} n_{2} I_{2}$. the resulting flux linkage with coil S_{1} is,

[0.5 M]
$N_{1} \phi_{1}=\left(n_{1} l\right)\left(\pi r_{1}^{2}\right)\left(\mu_{0} n_{2} I_{2}\right)$
$=\mu_{0} n_{1} n_{2} \pi r_{1}^{2} l I_{2}$
where $n_{l} l$ is the total number of turns in solenoid S_{1}. Thus, from equation (1) and equation (2).
$M_{12}=\mu_{0} n_{1} n_{2} \pi r_{1}^{2} l$
We now consider the reverse case. A current I_{1} is passed through the solenoid S_{1} and the flux linkage with coil S_{2} is,
$N_{2} \phi_{2}=M_{21} I_{1}$
M_{21} is called the mutual inductance of solenoid S_{2} with respect to solenoid S_{1}.
The flux due to the current I_{1} in S_{1} can be assumed to be confined solely inside S_{1} since the solenoids are very long. Thus, flux linkage with solenoid S_{2} is
$N_{2} \phi_{2}=\left(n_{2} l\right)\left(\pi r_{1}^{2}\right)\left(\mu_{0} n_{1} I_{1}\right)$
where $n_{2} l$ is the total number of turns of S_{2}. From equation (4).
$M_{21}=\mu_{0} n_{1} n_{2} \pi r_{1}^{2} l$
Using Equation(3) and Equation (5), we get
$M_{12}=M_{21}=M(s a y)$
$\therefore M=\mu_{r} \mu_{0} n_{1} n_{2} \pi r_{1}^{2} l$
Topic:_EMI; Sub-Topic:_Mutual induction_L-1_Target-2017_XII-CBSE Board Exam__Physics (OR)

The flux linkage through a coil of N turns is proportional to the current through the coil and is expressed as
$N \cdot \phi_{B} \propto I$
or $N \cdot \phi_{B}=L I$
where the constant of proportionality L is called self inductance of the coil.
Energy stored in an inductor:
For the current I at an instant in a circuit containing an inductor, the rate of work done is
$\frac{d W}{d t}=|\varepsilon| \cdot I$, where ε is self induced emf.
If we ignore the resistive losses and consider only the inductive effect, then using
$\varepsilon=-L \frac{d I}{d t}$, we get
$\frac{d W}{d t}=L I \cdot \frac{d I}{d t}$
or, $d W=L I \cdot d I$
\therefore Total amount of work done in establishing the current I is
$W=\int d W=\int_{0}^{I} L I d I=\frac{1}{2} L I^{2}$
Thus, the energy required to build up the current I is
$W=\frac{1}{2} L I^{2}$
This energy is stored as magnetic potential energy in the Inductor.
Thus, energy stored, $U=\frac{1}{2} L I^{2}$
Topic:_EMI; Sub-Topic:_Self induction_L-1_Target-2017_ XII-CBSE Board Exam_Physics
17. (a) The metre bridge works on the principle of balanced condition of wheatstone bridge. $[\mathbf{1} \mathbf{M}]$
(B) According to the problem; $\frac{R}{S}=\frac{l_{1}}{100-l_{1}} \ldots \ldots$ (i)
[0.5 M]
Now, when X is connected in parallel with S , the effective resistance of this pair becomes $\frac{S . X}{S+X}$
\therefore we get $\frac{R}{\left(\frac{S . X}{S+X}\right)}=\frac{l_{2}}{100-l_{2}} \ldots .$. (ii)
\therefore Dividing eg. (i) by (ii) we, get
$\frac{X}{S+X}=\frac{l_{1}}{l_{2}}\left(\frac{100-l_{2}}{100-l_{1}}\right)$
or $l_{2}\left(100-l_{1}\right) X=l_{1}\left(100-l_{2}\right)(S+X)$
or $\left\{l_{2}\left(100-l_{1}\right)-l_{1}\left(100-l_{2}\right)\right\} X=l_{1}\left(100-l_{2}\right) S$
or $\left(l_{2}-l_{1}\right) \times(100 X)=l_{1}\left(100-l_{2}\right) S$
or $X=\frac{l_{1}\left(100-l_{2}\right)}{100\left(l_{2}-l_{1}\right)} \mathrm{S}$
where l_{1} and l_{2} are in centemetres
Topic:Current electricity; Sub-Topic:Meter bredge_L-2_Target-2017_XII-CBSE Board Exam \qquad

[1 M]
(a) Transmitter : A transmitter processes the incoming message signal so as to make it suitable for transmission through a channel and subsequent reception.
(b) Channel : The function of channel is to provide a physical medium for the transmitted signal to move from transmitter to receiver. Thus, a channel connects the transmitter to a receiver.
(c) Receiver: A receiver extracts the desired message signals from the recived signals at the channel output.
Topic:Communication system; Sub-Topic:Basic communication system_L-1_Target-2017_XII-CBSE Board Exam_Physics
19. (a) Emitter : It supplies a large number of majority carriers for the current flow through the transistor. Base : The thin base allows most of the majority charge carriers coming from emitter to appear in the base-collector junction.
Collector : This segment collects major portion of the majority carriers supplied by the emitter.
[1 M]
(b) Output waveform will be as follows:

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

Truth table of AND gate [1 M]

Topic:Semi conductor electronics; Sub-Topic:Logic gates_L-1_Target-2017_ XII-CBSE Board Exam_Physics
20. (a)

Topic:Ray optics_; Sub-Topic:Telescope_L-1_Target-2017_XII-CBSE Board Exam_Physics
(b) For a telescope, lens L_{1} is chosen as objective, as its aperture and focal length are largest.[1 M] The lens L_{3} is chosen as eyepiece as its focal length is smallest.
[1 M]
Topic:Ray optics_; Sub-Topic:Telescope_L-2_Target-2017_ XII-CBSE Board Exam__Physics
21. (a) According to Biot-Savart's law, the magnitude of the magnetic field $d \vec{B}$ due to a small element of length 'dl' of a current carrying wire at a point P , is proportional to the current I , the element length dl and is inversly proportional to the square of the distance r . It is also proportional to $\sin \theta$ where θ is angle between $\overrightarrow{\mathrm{dl}}$ and $\overrightarrow{\mathrm{r}}$

Its direction is perpendicular to the plane containing $\overrightarrow{\mathrm{dl}}$ and $\overrightarrow{\mathrm{r}}$.
In vector form
$\overrightarrow{d B} \propto \frac{I \overrightarrow{d l} \times \vec{r}}{r^{3}}$
or, $\overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \cdot \frac{I \overrightarrow{d l} \times \vec{r}}{r^{3}}$
($\overrightarrow{\mathrm{dl}}$ is directed along the length of the wire in the direction of current and $\overrightarrow{\mathrm{r}}$ is the vector joining the centre of current element to the point P)
[1 M]
Topic:Moving charges and magnetism; Sub-Topic:Biot-Savart law_L-1_Target-2017_XII-CBSE Board Exam_Physics
(b) Field due to current in coil P, is
$\overrightarrow{B_{2}}=\frac{\mu_{0} I_{1}}{2 R} \cdot \hat{k}$
(Assuming current to be anticlockwise as seen form + ve z -axis)
and that due to current in coil Q is
$\overrightarrow{B_{2}}=\frac{\mu_{0} I_{2}}{2 R} \hat{i}$
(Assuming current to be anticlockwise as seen from positive $x-$ axis .)
\therefore net field $\vec{B}=\overrightarrow{B_{1}}+\overrightarrow{B_{2}}$
$\therefore \vec{B}=\left(\frac{\mu_{0} I_{1}}{2 R}\right) \hat{k}+\left(\frac{\mu_{0} I_{2}}{2 R}\right) \hat{i}$
$\because I_{1}=1 \mathrm{~A}$ and $I_{2}=\sqrt{3} \mathrm{~A}$
$=\left(\frac{\mu_{0}}{2 R}\right) \hat{k}+\left(\frac{\sqrt{3} \mu_{0}}{2 R}\right) \hat{i}$
\{all units are in S.I. $\}$
$\therefore|\vec{B}|=\sqrt{\left(\frac{\mu_{0}}{2 R}\right)^{2}+\left(\frac{\sqrt{3} \mu_{0}}{2 R}\right)^{2}}$
$=\frac{\mu_{0}}{2 R} \sqrt{1+3}$
$=\frac{\mu_{0}}{2 R} \times 2$
$\therefore|\vec{B}|=\frac{\mu_{0}}{R}$
The field is directed in XZ plane. Let θ be the angle of \vec{B} with positive x-axis.
than $\tan \theta=\left(\frac{\mu_{0}}{2 R}\right) /\left(\sqrt{3} \frac{\mu_{0}}{2 R}\right)$
or, $\tan \theta=\frac{1}{\sqrt{3}}$
$\Rightarrow \theta=30^{\circ}$
Thus \vec{B} is directed in XZ -plane making an angle of 30° with x -axis.
[0.5 M]
Topic:Moving charges and magnetism; Sub-Topic:Application of Biot-Savart law_L-2_Target-2017_ XII-CBSE Board Exam_Physics
22. Let C be the capacitance of each capacitor.

With switch S closed, the two capacitors are in parallel.
\therefore equivalent capacitance is 2 C .
\therefore Energy stored $=\frac{1}{2}(2 C) V^{2}$
or $U_{1}=C V^{2}$

Now, when switch is opened and then free space of capacitors are filled with dielctric, the capacitance of each capacitor will be KC. For capacitor B, the charge will remain same as before and for A, the potential difference will remain same.
Charge on each capacitor in the previous case will be CV
\therefore Energy stored in capacitor A in current case is $U_{A}=\frac{1}{2}(K C) V^{2}=\frac{1}{2} K C V^{2}$ and that in capacitor B, is
$U_{B}=\frac{Q^{2}}{2 K C}=\frac{(C V)^{2}}{2 K C}=\frac{1}{2 K} C V^{2}$
\therefore Totalenergy stored,
$U_{2}=U_{A}+U_{B}$
or, $U_{2}=\frac{1}{2} K C V^{2}+\frac{1}{2 K} C V^{2}$

or, $U_{2}=\frac{1}{2}\left(K+\frac{1}{K}\right) C V^{2}$
or, $U_{2}=\left(\frac{K^{2}+1}{2 K}\right) C V^{2} \ldots .(i i)$
$\therefore \frac{U_{1}}{U_{2}}-\frac{C V^{2}}{\left(\frac{K^{2}+1}{2 K}\right) C V^{2}}$
\{ Using eq. (i) and (ii) \}
or, $\frac{U_{1}}{U_{2}}=\frac{2 K}{K^{2}+1}$
Topic:Electrostatic potential \& capacitance ; Sub-Topic:Energy stored in capacitors_L-2_Target-2017_ XII-CBSE Board Exam Physics

SECTION - D

23. (a) It was a nuclear reactor. The cause of disaster was human error which bypassed the safety procedure.
(b) Energy released due to uncontrolled chain reaction which led to production of exessive heat due to which water converted into pressurised steam and blast occurred.
[1.5 M]
(c) Asha had in depth knowledge of nuclear reaction. She was aware about the accident her mom was very compossanate and caring lady.
Topic:Nuclei; Sub-Topic:Nuclear reactor_L-1_Target-2017_XII-CBSE Board Exam__Physics

SECTION - E

24. (a) Electric field at an axial point of an electric dipole.

As shown in figure, consider an electric dipole consisting of charges +q and -q , seperated by distance 2 a and placed in vacuum. Let P be a point on the axial line at distance r from the centre O of the dipole on eh side of the charge +q .

Electric Field at an axial point of dipole
Electric filed at an axial point of dipole

$$
\vec{E}_{-q}=\frac{-q}{4 \pi \varepsilon_{0}(r+a)^{2}} \hat{p} \quad \quad \text { (towards left) }
$$

where \hat{p} is a unit vector along the dipole axis from -q to +q .
Electric field due to charge $+q$ at point P is

$$
\vec{E}_{+q}=\frac{q}{4 \pi \varepsilon_{0}(r-a)^{2}} \hat{p} \quad \quad \text { (towards right) }
$$

Hence the resultant electric field at point P is

$$
\begin{aligned}
& \vec{E}_{\text {axial }}=\vec{E}_{+q}+\vec{E}_{-q} \\
& =\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{(r-a)^{2}}-\frac{1}{(r+a)^{2}}\right] \hat{p} \\
& =\frac{q}{4 \pi \varepsilon_{0}} \cdot \frac{4 a r}{\left(r^{2}-a^{2}\right)^{2}} \hat{p} \\
& \text { or } \quad \vec{E}_{\text {axial }}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 a r}{\left(r^{2}-a^{2}\right)^{2}} \hat{p}
\end{aligned}
$$

Here $\mathrm{p}=\mathrm{q} \times 2 \mathrm{a}=$ dipole moment
For $\mathrm{r} \gg \mathrm{a}, \mathrm{a}^{2}$ can be neglected compared to r^{2}.
$\vec{E}_{\text {axial }}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 p}{r^{3}} \hat{p} \quad$ (towards right)

Topic:Electrostatic charges; Sub-Topic:Dipole_L-1_Target-2017_XII-CBSE Board Exam_Physics
(b)

Topic:Electrostatic charges; Sub-Topic:Dipole_L-1_Target-2017_ XII-CBSE Board Exam_Physics
(c) Expression for Torque for a Dipole Placed in a UniformElectric Field:

Consider a dipole AB placed in a uniform electric field of intensity E .
\therefore The force on A is $+\mathrm{q} \overrightarrow{\mathrm{E}}$ and on B is $-\mathrm{q} \overrightarrow{\mathrm{E}}$. These two forces are separated by distance $2 a \sin \theta$. This constitute a couple,
According to definition of torque of a couple,
$\tau=\mathrm{qE} \times 2 a \sin \theta$
$\therefore \tau=p E \sin \theta \quad$ In vector form $\vec{\tau}=\vec{p} \times \vec{E}$
Case - I: For stable equilibrium θ should $\mathrm{be}=0^{0}$ in that case τ is zero
Case - II: For unstable equilibrium θ should be $=180^{\circ}$ in that case τ is -pE
Topic:Electrostatic charges; Sub-Topic:Torque acting on dipole_L-1_Target-2017_ XII-CBSE Board Exam_Physics
(a) Electric field due to uniformly charged infinite plane sheet

Apply Gayss's theorem to calculate electric field due to an infinite plane sheet of charge.
Electric field due to a uniformly charged infinite plane sheet. A shown in figure, consider a thin, infinite plane sheet of charge with uniform surface charge density σ. We wish to calculate its electric field at a point P at distance r from it.
[1 M]

[0.5 M]

By symmetry, electric field E points outwards normal tot he sheet. Also, it must have same magnetude and opposite direction at two points P and P^{\prime} equidistant from the sheet and on oppo site sides. We choose cylindrical gaussian surface of cross-sectional area A and length $2 r$ with its axis perpendicular to the sheet.
As the lines of force are parallel to the curved surface of the cylinder, the flux through the curved surface is zero. the flux through the plane-end faces of the cylinder is
$\phi_{E}=E A+E A=2 E A$
Charge enclosed by the gaussian surface,
$q=\sigma A$
According to gauss's theorem,
$\phi_{E}=\frac{q}{\varepsilon_{0}}$
$\therefore 2 \mathrm{EA}=\frac{\sigma A}{\varepsilon_{0}}$ or $\mathrm{E}=\frac{\sigma}{2 \varepsilon_{0}}$
[1.5 M]
Topic:Electrostatic charges; Sub-Topic:Application of Gauss's theorem_L-2_Target-2017_XII-CBSE Board Exam_Physics
(b) Let P be a point at distance r from the sheet.

The required work done to bring point charge ' q ' from infinity to P, is
$W=q \cdot\left(V_{P}-V_{\infty}\right)$
Now, $V_{P}-V_{\infty}=-\int_{\infty}^{r} \vec{E} \cdot \overrightarrow{d r}=-\int_{\infty}^{r} E d r=-\int_{\infty}^{r}\left(\frac{\sigma}{2 \varepsilon_{0}}\right) \cdot d r$
$\left\{\begin{array}{l}\because \text { Field in front of an infinitely large plane sheet } \\ \text { of charge is uniform and is given by } \frac{\sigma}{2 \varepsilon_{0}}\end{array}\right\}$

$$
\begin{aligned}
& -\frac{\sigma}{2 \varepsilon_{0}} \int_{\infty}^{r} d r=-\frac{\sigma}{2 \varepsilon_{0}} \cdot[r]_{\infty}^{r} \\
& -\frac{\sigma}{2 \varepsilon_{0}}(r-\infty)=\infty \\
& \text { or }, V_{P}-V_{\infty}=\infty
\end{aligned}
$$

$$
\therefore \text { from eq. (i), } \mathrm{W}=\infty
$$

Topic:Electrostatic potential \& capacitance; Sub-Topic:Electric potential_L-3_Target-2017_XII-CBSE Board Exam_Physics
25. (a) Device is capacitor
(b) $\quad B \rightarrow$ Voltage (Because it is sine wave)
$C \rightarrow$ Current (Because current leads voltage by $\pi / 2$)
$A \rightarrow$ Power (Average power over one cycle is zero)
(c) $\quad X_{C}=\frac{1}{\omega C}$
$X_{C}=\frac{1}{2 \pi f C}$

(d)

$$
C=\frac{q}{v}
$$

$$
q=C v_{0} \sin \omega t
$$

$$
\begin{aligned}
i= & \frac{d q}{d t}=\frac{d}{d t}\left(C v_{0} \sin \omega t\right) \\
& =\omega C v_{0} \sin \omega t
\end{aligned}
$$

$$
\begin{gathered}
=\frac{v_{0}}{\frac{1}{\omega C}} \cos \omega t \\
i=\frac{v_{0}}{X_{C}} \sin \left(\omega t+\frac{\pi}{2}\right) \\
i=i_{0} \sin \left(\omega t+\frac{\pi}{2}\right)
\end{gathered}
$$

In pure capacitive circuit current leads voltage by $\frac{\pi}{2}$
Topic:AC; Sub-Topic:AC applied to capacitor_L-2_Target-2017_XII-CBSE Board Exam__Physics
(OR)
(a) An ac generator converts mechanical energy into electrical energy. It consists of a coil mounted on a rotar shaft. The axis of rotation of coil is perpendicular to magnetic field and the coil (armature) is mechanically rotated in magnetic field. Rotation causes magnetic flux hence an emf is induced in coil. Let ω be angular velocity and θ be the angle between magnetic field and area vector, then $\theta=\omega t$, hence flux is,

$$
\begin{aligned}
\Phi_{B} & =B A \cos \theta \\
& =-N A B \frac{d}{d t}(\cos \omega t)
\end{aligned}
$$

Thus instantaneous emf is,
$\varepsilon=N B A \omega \sin \omega t$
If $N A B \omega=\varepsilon_{0}$ then

$$
\varepsilon=\varepsilon_{0} \sin \omega t
$$

Sine function varies between ± 1 and emf for $\theta=0^{\circ}$ to $\theta=270^{\circ}$
The direction of current changes periodically hence called alternating current.

[1.5 M]

Topic:EMI; Sub-Topic:AC Generator_L-2_Target-2017_XII-CBSE Board Exam_Physics
(b) $e=B l v \sin \theta$

Given: $B=0.3510^{-4} \mathrm{wb} / \mathrm{m}^{2}$

$$
\begin{equation*}
v=5 \mathrm{~m} / \mathrm{s} . \tag{0.5M}
\end{equation*}
$$

$$
l=10 \mathrm{~m}
$$

$$
\theta=90^{\circ}
$$

$$
\begin{align*}
e=B l v \sin \theta & \\
& =0.3 \times 10^{-4} \times 10 \times 5 \times \sin 90^{\circ} \tag{1.5M}
\end{align*}
$$

Topic:EMI; Sub-Topic:Faraday's law of emi_L-2_Target-2017_ XII-CBSE Board Exam_Physics
26. (a)

Wave front:- Wave front is locus of all the points where reaches at same time in same phase.
[0.5 M]

Suppose that a plane wavefront of light is incident at a plane refracting surface MN separating two media Let $A_{1} B_{1}$ and $A B$ be the successive postitions of the incident wavefront $A_{1} A$ and $B_{1} B$ the corresponding rays. When the wavefornt reaches the point A , it becomes a secondary source and emits secondary waves in the second medium. Let V_{1} and V_{2} be the speed of light in the medium one (say a rarer medium of R.I. m_{1}) and the medium two (a denser medium of R.I. m_{2}) respectively. Ift is the time taken by the incident ray to cover the distance BC , then $\mathrm{BC}=\mathrm{V}_{1}$. During this time, the secondary waves originating at A cover a distance V_{2} t in the denser medium. Therefore, the secondary spherical wavelet has radius $V_{2} t$ in the denser medium two (a denser medium) respectively. Ift is the time taken by the incident ray to cover the distance BC , then BC $=V_{1} \mathrm{t}$. During this time, the secondary waves originating at A cover a distance $\mathrm{V}_{2} \mathrm{t}$ in the denser medium. Therefore, the secondary spherical wavelet has a radius $\mathrm{V}_{2} \mathrm{t}$. With A as the centre, draw a hemisphere of radius $V_{2} t$ in the denser medium. It represents the secondary wavelet According to Huygens's principle locus of tangent to all secondary wavelets represent new wave front. Draw a tangent CD to the secondary wavelet. As the points $\mathrm{C} \& \mathrm{D}$ are in the same phase of wave motion, CD represents the refracted wavefront in denser medium. It moves parallel to itself taking successive posititions $\mathrm{C}_{1} \mathrm{D}_{1}, \mathrm{C}_{2} \mathrm{D}_{2}$, etc. AD_{2} and CC_{2} represents the corresponding refracted rays. Draw PAQ normal to MN.

Now, $\angle \mathrm{A}_{1} \mathrm{AP}=\mathrm{i}=$ angle of incidence $\& \angle \mathrm{QAD}=\mathrm{r}=$ angle of refraction
Also, from the figure, $\angle \mathrm{BAC} \& \mathrm{i}$ and $\angle \mathrm{ACD}=\mathrm{r}$
From the traingles $\triangle \mathrm{BAC} \& \Delta \mathrm{ACD}$
$\sin \mathrm{i}=\frac{\mathrm{BC}}{\mathrm{AC}} \& \sin \mathrm{r}=\frac{\mathrm{AD}}{\mathrm{AC}}, \quad$ Let $\mu=\frac{\mu_{2}}{\mu_{1}} \therefore$ Re fractive index $\mu=\frac{\sin \mathrm{i}}{\sin r}=\frac{\mathrm{BC} / \mathrm{AC}}{\mathrm{AD} / \mathrm{AC}}=\frac{\mathrm{BC}}{\mathrm{AD}}$
\therefore Refractive index $\mu=\frac{V_{1} t}{V_{2} t}$
$\therefore \mu=\frac{V_{1}}{V_{2}}$
\therefore Re fractive index of medium 2 w.r.t. $1=\frac{\text { speed of light in medium } 1}{\text { speed of light in medium } 2}$
$=$ constant for given pair of media \& given frequency.
From equation (1) and (2)
$\frac{\sin i}{\sin r}=\frac{\mu_{2}}{\mu_{1}}$
Thus Snell's law can be proved using Huygens' principle.
Topic: Wave optics; Sub-Topic:Refraction of plane wave fromt_L-1_Target-2017_ XII-CBSE Board
Exam__Physics
(b) According to Brewster's Law

$$
\begin{aligned}
& \tan i_{p}=\mu \\
& i_{p}=\tan ^{-1}(\mu) \\
& i_{p}=\tan ^{-1}(1.5) \\
& i_{p}=56.30^{\circ}
\end{aligned}
$$

Topic:Wave optics; Sub-Topic:Polarisation_L-1_Target-2017_XII-CBSE Board Exam \qquad Physics
(OR)
(a)

Consider two lenses placed close to each other. The focal lengths of lens 1 and 2 is f_{1} and f_{2} respectively. For Lens 1

$$
\begin{equation*}
\frac{1}{v^{\prime}}-\frac{1}{u}=\frac{1}{f_{1}} \tag{i}
\end{equation*}
$$

For Lens 2
$\frac{1}{v}-\frac{1}{v^{\prime}}=\frac{1}{f_{2}}$
Adding (i) and (ii)
$\frac{1}{v^{\prime}}-\frac{1}{u}+\frac{1}{v}-\frac{1}{v^{\prime}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
Since, $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
then, $\frac{1}{f_{T}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
$P=P_{1}+P_{2}+P_{3}+\ldots \ldots$. total power
$f_{T} \rightarrow$ Total new focal length of the combination.

Power of Lens

Power of lens is defined as the total tangent of the angle by which it converges or diverges a beamof light falling at unit distance from the optical centre.
$\tan \delta=\frac{h}{f}$
If, $h=1$, then
$\tan \delta=\frac{1}{f} \quad$ (or) $P=\frac{1}{f}$

SI unit of power is Dioptre.
Topic:Ray optics; Sub-Topic:Combination of lens_
L-1 _Target-2017_XII-CBSE Board Exam Physics
(b) For equilateral prism $A=60^{\circ}$
for minimum angle of deviation
$i+e=A+\delta_{m}$
$2 i=A+\delta_{m}$
$\frac{2 \times 3 A}{4}=A+\delta_{m}$
$\delta_{m}=\frac{3 A}{2}-A$
$\delta_{m}=\frac{A}{2}$

$$
\begin{aligned}
& \mu=\frac{\sin \left(\frac{A+\frac{A}{2}}{2}\right)}{\sin \left(\frac{A}{2}\right)} \\
& \mu=\frac{\sin \frac{3 A}{4}}{\sin \frac{A}{2}}=\frac{\sin 45^{\circ}}{\sin 30^{\circ}}=\frac{0.7071}{0.5} \\
& \mu=1.414 \\
& \mathrm{~V}=\frac{\mathrm{c}}{\mu} \\
& =\frac{3 \times 10^{8}}{1.414}=2.1216 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Topic:Ray optics; Sub-Topic:Prism_L-2_Target-2017_XII-CBSE Board Exam_Physics

