COMMON QUARTERLY EXAMINATION - SEPTEMBER 2018

Standard 12

Reg. No. 12 A C 31

PART - III - MATHEMATICS								
Time All	owed: 2.30 Hours		Maximum Marks: 90					
Instructions: 1. Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately. 2. Use Blue or Black ink to write and underlined and pencil to draw diagrams.								
\$15% of White Book Charles and SECTION HIT IN THE BY THE REAL BY THE BY								
Note:	and write th	most suitable ans	the correspond	20×1=20 yen four alternatives ing answer.				
1 1)	If I is the unit ma	atrix of order n, whe	re k ≠ 0 is a consta	ant, then $aaj(ki) =$				
	a) k ⁿ (adj I)	b) k (adj I)	c) k² (adj I)	d) k ⁿ⁻¹ (adj I)				
2)		nd order non-singula	ar matrix is	d) 4				
3)	a) 1 b) 2 c) 3 d) 4 Cramer's rule is applicable only (with three unknowns) when							
3)	a) $\Delta \neq 0$	ppilicable only (****	b) $\Delta = 0$					
	c) $\Delta = 0$, $\Delta_x \neq 0$		d) $\Delta = \Delta_{x} = \Delta_{y} =$	$\Delta_{z} = 0$				
4)	4) If \vec{a} and \vec{b} include an angle 120° and their magnitude are 2 and $\sqrt{3}$ then \vec{a} , \vec{b}							
	is equal to	, b	1 114. 1 1100					
	a) √3	b) -√3	c) 2	d) $-\frac{\sqrt{3}}{2}$				
5)	If $\vec{a}=3\vec{i}-2\vec{j}-6\vec{k}$ and $\vec{b}=4\vec{i}-\vec{j}+8\vec{k}$, then the angle between $2\vec{a}$ and $3\vec{b}$ is							
				d) $\cos^{-1}\left(-\frac{34}{63}\right)$				
· 6)				, 1, -1) and the line of				
-	intersection of th	e planes r̄.(ī+3j̄-	\vec{k}) = 0 and \vec{r} . $(\vec{j} +$	$2\vec{k}$) = 0 is				
7)	a) $x+4y-z=0$ The unit normal v	b) x+9y+11z = 0 ectors to the plane	c) $2x+y-z+5 = 0$ 2x-y+2z = 5 are	d) $2x-y+z=0$				
	a) 2ī - j + 2k	b) $\frac{1}{3}(2\vec{i}+\vec{j}+2\vec{k})$	c) $-\frac{1}{3}(2\vec{i}-\vec{j}+2\vec{k})$	d) $\pm \frac{1}{3} (2\bar{i} - \bar{j} + 2\bar{k})$				
*ECTION - II *ECTION - II *ECTION - II **Re ie **Proceduration of the interval of the in								
8)	X 1 + e " = X TOE LUE	Number 30 ts.com	mother Question	sup nevos yes esam.				
	1 + e ¹⁰ 119m 1n50	וווויוניסה אין אחרוניון	c) $\sin\theta - i \cos\theta$	d) $\sin\theta + i \cos\theta$				
O)	a) $\cos\theta + i \sin\theta$	b) $\cos\theta - i \sin\theta$ of the equation ax	χ^2 -by+c = 0 then					
9)	a) -i-2	b) i-2	c) 2+i	d) 2i+1				
10)	The arguments of	finth roots of a com	plex number differ	by				
	2π	π	3π	4π				
	a) $\frac{2n}{n}$	b) $\frac{n}{n}$	c) <u>n</u>	a) n				
a) $\frac{2\pi}{n}$ b) $\frac{\pi}{n}$ c) $\frac{3\pi}{n}$ d) $\frac{4\pi}{n}$ 11) The directrix of the parabola $y^2 = x+4$ is a) $x = \frac{15}{4}$ b) $x = -\frac{15}{4}$ c) $x = -\frac{17}{4}$ d) $x = \frac{17}{4}$								
	a) $X = \frac{15}{4}$	b) $x = -\frac{15}{4}$	c) $x = -\frac{17}{4}$	d) $X = \frac{17}{4}$				

12)	The vertices of the	e ellipse $\frac{x^2}{4} + \frac{y^2}{9} =$	1 are				
13)	•		c) (±3, 0) from one of the focus	d) (0, ±2) of the hyperbola to			
	a) centre c) vertex		b) corresponding directrix d) latus rectum				
14)	The angle between the asymptotes of the hyperbola $24x^2-8y^2=27$ is						
	a) $\frac{\pi}{3}$	b) $\frac{\pi}{3}$ or $\frac{2\pi}{3}$	c) $\frac{2\pi}{3}$	$d)-\frac{2\pi}{3}$			
15)	If a normal makes an angle θ with positive x-axis then the slope of the curve at						
	the point where the a) –cotθ	ne normal is drawn		d) cotθ			
		b) tanθ	c) -ίanθ	d) coto			
16)	Evaluate: $\lim_{x \to \infty} \frac{x^2}{e^x}$						
·	a) 2	b) 0	c) ∞	d) 1			
17)	L 'Hopital's rule cannot be applied to $\frac{x+1}{x+3}$ as $x\to 0$ because $f(x)=x+1$ and						
	g(x) = x+3 are a) not continuous b) not differentiable c) not in the indeterminate form as x→0 d) in the determinate form as x→0						
18)	d) in the determinate form as $x\rightarrow 0$ An asymptotes to the curve $y^2(a+2x) = x^2(3a-x)$ is						
		b) $x = -\frac{a}{2}$	2	d) $x = 0$			
	a) x ≤ 1	•	nly for c) x < 1	d) x > 1			
20)	The value of ₹65	is					
Υ	a) 4.201	b) 4.021	c) 4.12	d) 4			
		SECTION	N-II	ile.			
nswer	any seven quest	tions. Question Nu	umber 30 is compul:	Fory: 7×2=14			
21)	Solve the given system of linear equations by determinant method:						
	x-y = 2; $3y = 3x$	(–7 °	The second	Web.			
· 22)	If $A = \begin{bmatrix} -2\\4\\5 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 & -6 \end{bmatrix}$ verify that $(AB)^T = B^T A^T$.						
23)	Show that the torque about the point A(3, -1 , 3) of a force, $4\vec{i} + 2\vec{j} + \vec{k}$ through						
	the point B(5, 2, 4) is $\bar{i} + 2\bar{j} - 8\bar{k}$.						

- 24) Find the angle between the line $\frac{x-2}{3} = \frac{y+1}{-1} = \frac{z-3}{-2}$ and the plane 3x+4y+z+5=0.
- 25) If $\omega^3 = 1$, then prove that $\frac{1}{1+2\omega} \frac{1}{1+\omega} + \frac{1}{2+\omega} = 0$.
- 26) Simplify: $\frac{(\cos 2\theta + i \sin 2\theta)^{3} (\cos 3\theta i \sin 3\theta)^{3}}{(\cos 6\theta + i \sin 6\theta)^{-4} (\cos \theta + i \sin \theta)^{8}}$
- 27) Find the equation of the ellipse if the foci are $(\pm 3, 9)$ and the vertices are $(\pm 5, 0)$.
- 28) Verify Rolle's theorem for the function f(x) = |x-1|, $0 \le x \le 2$.
- 29) What is the maximum value of the function $\sin x + \cos x$?
- 30) Find the differential dy, if $y = \sqrt{1-x}$, x = 0, dx = 0.02.

SECTION - III Answer any seven questions. Question Number 40 is compulsory:

7×3=21

- 31) Show that the adjoint of A = $\begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ is $3A^{T}$.
- 32) Find the rank of the matrix $\begin{bmatrix} 4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1 \end{bmatrix}$.
- 33) State and prove Sine formula by Vector method.
- 34) If \bar{a} is a unit vector and $(\bar{x} \bar{a}) \cdot (\bar{x} \bar{b}) = 35$, then find $|\bar{x}|$.
- 35) Solve the equation $x^4-8x^3+24x^2-32x+20 = 0$ if 3+i is a root.
- 36) Find the eccentricity, vertices and foci of the hyperbola $100y^2-44x^2 = 275$.
- 37) Find the angle between the asymptotes to the hyperbola
- $3x^2-5xy-2y^2+17x+y+14=0$
- 38) Show that $y = e^x$ and $y = e^{-x}$ cut orthogonally.
- 39) Using chain rule find $\frac{dw}{dt}$ for w = xy+z, where x = cost, y = sint, z = t.
- 40) If $u = \log (\tan x + \tan y + \tan z)$, prove that $\sum \sin 2x \frac{du}{dx} = 2$.

SECTION - IV

Answer all the questions:

7×5=33

41) a) Solve the following non-homogeneous system of linear equations by determinant method:

$$\frac{1}{x} + \frac{2}{y} - \frac{1}{z} = 1$$
, $\frac{2}{x} + \frac{4}{y} + \frac{1}{z} = 5$, $\frac{3}{x} - \frac{2}{y} - \frac{2}{z} = 0$
(OR)

b) P represent a variable complex number z if $arg\left(\frac{z-2}{z-6i}\right) = \frac{\pi}{2}$.

(a) If
$$\vec{a} = \vec{i} + \vec{j} + \vec{k}$$
, $\vec{b} = 2\vec{i} + \vec{k}$, $\vec{c} = 2\vec{i} + \vec{j} + \vec{k}$, $\vec{d} = \vec{i} + \vec{j} + 2\vec{k}$ then verify that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \ \vec{b} \ \vec{d}] \vec{c} - [\vec{a} \ \vec{b} \ \vec{c}] \vec{d}$

- b) Find all the values of $\left(\frac{1}{2} i\frac{\sqrt{3}}{2}\right)^{\frac{3}{4}}$ and hence prove that the product of the
- values is 1. 43) a) If α and β are the roots of $x^2-2x+2=0$ and $\cot\theta=y+1$, then show that $\frac{(y+\alpha)^n-(y+\beta)^n}{\alpha-\beta}=\frac{\sin n\theta}{\sin^n\theta}.$
- b) Find the axis, vertex, focus, equation of directrix, latus rectum and length of the latus rectum of the parabola $x^2-6x-12y-3=0$ and hence sketch its graph.
 - 44) a) Derive the equation of the plane in the intercept form.
 - (OR)
 b) Two sides of a triangle are 4m and 5m in length and the angle between them is increasing at a rate of 0.06 rad/sec. Find the rate at which the area of the triangle is increasing when the angle between the sides of fixed length is $\frac{\pi}{3}$.
 - 45) a) The orbit of the planet mercury around the sun is in elliptical shape with sun at a focus. The semi-major axis is of length 36 million miles and the eccentricity of the orbit is 0.206. Find (i) how close the mercury gets to sun (ii) the greatest possible distance between mercury and sun.

b) If $u = \sin xy$, verify $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.

46) a) Trace the curve $y = x^3$.

(OR)

- b) Find the points of inflection and determine the intervals of convexity and concavity of the Gaussian curve $y = e^{-x^2}$.
- 47) a) Use differentials to find an approximate value of $y = \sqrt[3]{1.02} + \sqrt[4]{1.02}$.
- b) Investigate for what values of λ , μ the simultaneous equations x+y+z=6, x+2y+3z=10, $x+2y+\lambda z=\mu$ have (i) no solution (ii) a unique solution and (iii) an infinite number of solutions.