1. Since $(1,1),(2,2),(3,3) \in R$, therefore R is reflexive $(1,2) \in R$ but $(2,1) \notin R$, therefore R is not symmetric .
It can be easily seen that R is transitive.
Ans. (a)
2. Ans. (b)
3. Since R is reflxive relation on A, therefore $(a, a) \in R$ for all $a \in A$
\Rightarrow the minimum number of ordered pairs in R is n.
Hence, $m \geq n$
Ans. (a)
JITENDRA MISHRAACADEMY (JMA), INDORE findia's No. 1 Institute for All India MCA Entrance Trainin: JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P) Ph. 0731 - 4236844 Visit us : www.jmaindore.com
4. $\left(\frac{3}{2}+i \frac{\sqrt{3}}{2}\right)^{50}=3^{25}(\mathrm{x}+\mathrm{iy})$
$\Rightarrow \quad(\mathrm{i} \sqrt{30})^{50}\left(\frac{1}{2}-\frac{\mathrm{i} \sqrt{3}}{2}\right)^{50}=3^{25}(\mathrm{x}+\mathrm{iy})$
$\Rightarrow-(3)^{25}\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)^{50}=3^{25}(x+i y)$
$\Rightarrow-\left(\frac{1}{2}-\frac{\mathrm{i} \sqrt{3}}{2}\right)^{50}=(x+i y)$
$\Rightarrow-(-\omega)^{50}=x+i y \quad\left[\because \omega=-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right]$
$\Rightarrow-0^{50}=x+i y$
$\Rightarrow-10^{2}=x+i y$
$\Rightarrow \frac{1}{2}+\frac{\mathrm{i} \sqrt{3}}{2}=\mathrm{x}+\mathrm{iy} \quad\left[\because \omega^{2}=-\frac{1}{2}-\frac{\mathrm{i} \sqrt{3}}{2}\right]$
$\Rightarrow x=\frac{1}{2}, y=\frac{\sqrt{3}}{2} \Rightarrow(x, y)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
Ans. (b)

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

5. $\left|z^{2}+2 z \cos \alpha\right| \leq\left|z^{2}\right|+|2 z \cos \alpha|$

$$
\begin{aligned}
& =|z|^{2}+2|z||\cos \alpha| \\
& \leq|z|^{2}+2|z|
\end{aligned}
$$

<1
Ans. (a)
6. Let $\omega=-1+4 z$. Then,
$\omega+1=4 z \Rightarrow|\omega+1|=4|z|=12$
Thus, o lies on a circle with centre at -1 and radius equal to 12 .
Ans. (b)

JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)

JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
7. Since $\log _{x} a, a^{x 2}$ and $\log _{6} x$ are in G.P. Therefore,

$$
\begin{aligned}
& \left(a^{x / 2}\right)^{2}=\log _{x} a, \log _{b} x \\
& \Rightarrow a^{x}=\log _{b} a \Rightarrow x=\log _{a}\left(\log _{b} a\right)
\end{aligned}
$$

Ans. (a)
8. We have, $x=\frac{1}{1-a}, y=\frac{1}{1-b}, z=\frac{1}{1-c}$ Now, a, b, c are in A.P. $\Rightarrow 1-a, 1-b, 1-c$ are in $A . P$

Ans. (c)

$$
\begin{aligned}
& \Rightarrow \frac{1}{1-a}, \frac{1}{1-\mathrm{b}} \cdot \frac{1}{1-\mathrm{c}} \text { are in H.P } \\
& \Rightarrow x, y, z \text { are in } H \mathrm{H} \cdot \mathrm{P} .
\end{aligned}
$$

JNU MCA Entrance 2015 Result of JMA
 10 All India Rank in Top 10
 19 All India Rank in Top 20

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA 42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category

JTTENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com

9. Let d be the common difference of the AP, Then,

$$
\begin{aligned}
& a_{10}=3 \Rightarrow a_{1}+9 d=3 \Rightarrow 2+9 d=3 \Rightarrow d=\frac{1}{9} \\
& \therefore a_{4} \\
&=a_{1}+3 d=2+\frac{1}{3}=\frac{7}{3}
\end{aligned}
$$

Let D be the common difference of $\frac{1}{h_{1}}, \frac{1}{h_{2}}, \ldots, \frac{1}{h_{10}}$. Then,

$$
h_{10}=3 \Rightarrow \frac{1}{h_{10}}=\frac{1}{3} \Rightarrow \frac{1}{h_{1}}+9 D=\frac{1}{3} \Rightarrow \frac{1}{2}+9 D=\frac{1}{3} \Rightarrow 9 D=-\frac{1}{6} \Rightarrow D=-\frac{1}{54}
$$

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training
$\therefore \frac{1}{h_{7}}=\frac{1}{h_{1}}+6 D=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}, \Rightarrow h_{7}=\frac{18}{7}$
$\therefore \quad a_{4} h_{7}=\frac{7}{3} \times \frac{18}{7}=6$
Ans. (d)
Note : This question can also be solved direct by SHORTCUT.
JTENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731 - 4236844 Visit us : www.jmaindore.com
10. $a x^{2}+2 b x+c=0$
$\Rightarrow a x^{2}+2 \sqrt{a c} x+c=0$
$\Rightarrow(\sqrt{a x}+\sqrt{c})^{2}=0 \Rightarrow x=-\frac{\sqrt{c}}{\sqrt{a}}$
This satisfies $d x^{2}+2 e x+f=0$
$\begin{array}{ll}\Rightarrow d\left(\frac{c}{a}\right)+2 e\left(\frac{-\sqrt{c}}{\sqrt{a}}\right)+f=0 & \Rightarrow\left(\frac{d c}{a}+f\right)=2 e \frac{\sqrt{c}}{a} \\ \Rightarrow\left(\frac{d}{a}+\frac{f}{c}\right)=2 e \frac{\sqrt{1}}{a c} & \Rightarrow \frac{d}{a}+\frac{f}{c}=\frac{2 e}{b} \\ \Rightarrow \frac{d}{a} \cdot \frac{e}{b} \cdot \frac{f}{c} \text { are in A.P. }\end{array}$
Ans. (a)
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top 20

 23 All India Rank in Top $25 \quad 42$ Selection Out of toal 54 Seats in JNU Highest No. Of Selections in All Over INDIA All AIR (All India Rank) are in General Category

[^0]11. Product of roots $=31$
$\Rightarrow 2 \mathrm{e}^{2 \mathrm{logk}-1}=31$
$\Rightarrow 2 k^{2}-1=31 \Rightarrow 2 k^{2}=32 \Rightarrow k^{2}=16 \Rightarrow k= \pm 4$
But $\mathrm{k}>0$. Therefore, $\mathrm{k}=4$
Now, Disc $=8 k^{2}-8 e^{2 \log k}+4=8 k^{2}-8 k^{2}+4=4>0$ for all k,
Hence, $\mathrm{k}=4$
Ans. (d)
12. Wehave,
$$
a-\sqrt{b}=\frac{(a-\sqrt{b})(a+\sqrt{b})}{a+\sqrt{b}}=\frac{a^{2}-b}{a+\sqrt{b}}=\frac{1}{a+\sqrt{b}}\left[\because a^{2}-b=1\right]
$$
by putting $(a-\sqrt{b})^{x^{2}-15}=y$, the given equation becomes
\[

$$
\begin{aligned}
& y+\frac{1}{y}=2 a \Rightarrow y^{2}-2 a y+1=0 \\
\Rightarrow & (y-a)^{2}=a^{2}-1 \Rightarrow y-1= \pm \sqrt{a^{2}-1} \\
\Rightarrow & y-a= \pm \sqrt{b} \\
\Rightarrow & y=a \pm \sqrt{b} \Rightarrow(a+\sqrt{b})^{x^{2}-15}=a+\sqrt{b}, a-\sqrt{b} \\
\Rightarrow & x^{2}-15=1 \text { or } x 2-15=-1 \Rightarrow x= \pm 4, x= \pm \sqrt{14}
\end{aligned}
$$
\]

Ans. (b)
Note : This question can also be solved direct by SHORTCUT.
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P) Ph.: 0731-4236844 Visit us : www.jmaindore.com
13. Let α, β be the roots of the given equation.

Then $\alpha+\beta=-\mathrm{b} / \mathrm{a}$ and $\alpha \beta=\mathrm{c} / \mathrm{a}$.
Required equation is

$$
\begin{aligned}
& x^{2}-x\left(\frac{\alpha+\beta}{2}+\frac{2 \alpha \beta}{\alpha+\beta}\right)\left(\frac{\alpha+\beta}{2}\right)\left(\frac{2 \alpha \beta}{\alpha+\beta}\right) \\
\Rightarrow & 2 a x^{2}+\left(b^{2}+4 a c\right) x+2 b c=0
\end{aligned}
$$

14. Let $x=\sqrt{8+2 \sqrt{8+2 \sqrt{8+2 \sqrt{8+2 \sqrt{8}}}}}$. Then,
$x=\sqrt{8+2 x} \Rightarrow x^{2}=8+2 x \Rightarrow x^{2}-2 x-8=0$

$$
\Rightarrow x=4 . \quad[\because 8>0]
$$

Ans. (d)
15. $x^{2}-2 x \cos \theta+1=0 \Rightarrow x=\cos \theta \pm i \sin \theta$
$\Rightarrow x^{2 n}=\cos 2 n \theta \pm i \sin 2 n \theta$ and $x^{n}=\cos n \theta \pm i \sin n \theta$
$\Rightarrow x^{2 n}-2 x n \cos n \theta+1$
$=\cos 2 n \theta \pm i \sin 2 n \theta-2 \cos ^{2} n \theta \pm 2 i \sin n \theta \cos n \theta+1=0$
Ans. (c)

JNU MCA Entrance 2015 Result of JMA

 10 All India Rank in Top 10 19 All India Rank in Top 20

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

16. The Discriminant of the given quadratic is

$$
\begin{aligned}
& D=9 b^{2}-32 a c \\
& =9(-a-c)^{2}-32 a c \quad[\because a+b+c=0] \\
& =9 a^{2}+9 c^{2}-14 a c=c^{2}\left[9(a / c)^{2}-14 a / c+9\right]
\end{aligned}
$$

Since the discriminant of $9(a / c)^{2}-14(a / c)+9$ is negative therefore the sign of the expression $9(\mathrm{a} / \mathrm{c})^{2}-14(\mathrm{a} / \mathrm{c})+9$ is always positive. Hence, the roots of the given equation are real.
Ans. (c)

Note : This question can also be solved direct by SHORTCUT.

17. Each letter can be posted in any one of the 2 letter

So, required number of ways $=2 \times 2 \times 2 \times 2 \times 2=2^{5}$
Ans. (d)
JITENDRA MISHRAACADEMY(JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
18. We have: $\sum_{r=1}^{n} r^{2} \cdot C_{r}=n(n-1) 2^{n-2}+n \cdot 2^{n-1}$
and $\sum_{r=1}^{n}(-1)^{-1} r^{2}{ }^{n} C_{r}=0$
Adding these two, we get
$2\left[1^{2} C_{1}+3^{2} \mathrm{C}_{3}+5^{2} \mathrm{C}_{5}+\ldots.\right]=n(n-1) 2^{n-2}+n \cdot 2^{n-1}$
$\Rightarrow 1^{2} \mathrm{C}_{1}+3^{2} \mathrm{C}_{3}+5^{2} \mathrm{C}_{5}+\ldots=\mathrm{n}(\mathrm{n}-1)$
Ans. (d)
Note : This question can also be solved direct by SHORTCUT.
<uniquarlammone succesis?

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top 20

> 23 All India Rank in Top 25
> Highest No. Of Selections in All Over INDIA
> 42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category

```
19. \((1+\mathrm{x})^{m}(1-\mathrm{x})^{n}=\left({ }^{m} \mathrm{C}_{0}+{ }^{m} \mathrm{C}_{1} \mathrm{x}+{ }^{m} \mathrm{C}_{2} \mathrm{X}_{2}+\ldots . .+{ }^{m} \mathrm{C}_{m} \mathrm{x}^{m}\right)\) \(\times\left({ }^{n} \mathrm{C}_{0}-{ }^{n} \mathrm{C}_{1} \mathrm{x}+{ }^{n} \mathrm{C}_{2} \mathrm{x}^{2} \ldots+(-1)^{n}{ }^{n} \mathrm{C}_{n} \mathrm{n}^{n}\right)\) \(={ }^{m} \mathrm{C}_{0} \cdot{ }^{n} \mathrm{C}_{0}-\left({ }^{m} \mathrm{C}_{0}{ }^{n} \mathrm{C}_{1}-{ }^{n} \mathrm{C}_{0}{ }^{m} \mathrm{C}_{1}\right) \mathrm{x}+\left({ }^{m} \mathrm{C}_{0}{ }^{n} \mathrm{C}_{2}+{ }^{n} \mathrm{C}_{0}{ }^{m} \mathrm{C}_{2}-{ }^{m} \mathrm{C}_{1}{ }^{n} \mathrm{C}_{1}\right) \mathrm{x}^{2}+\)
```

It is given that the coefficients of x and x^{2} in the expression of $(1+x)^{m}(1-x)^{n}$ are 3 and -6 repestively. Therefore,

$$
-\left({ }^{m} C_{0} \cdot{ }^{n} C_{1}-{ }^{n} C_{0} \cdot{ }^{m} C_{1}\right)=3
$$

and ${ }^{m} \mathrm{C}_{0}{ }^{n} \mathrm{C}_{2}+{ }^{n} \mathrm{C}_{0}{ }^{m} \mathrm{C}_{2}-{ }^{m} \mathrm{C}_{1}{ }^{n} \mathrm{C}_{1}=-6$
$\Rightarrow m-n=3$ and $n(n-1)+m(m-1)-2 m n=-12$
$\Rightarrow m-n=3$ and $(m-n)^{2}-(m+n)=-12$
$\Rightarrow m-n=3$ and $m+n=21 \Rightarrow m=12, n=9$
Ans, (c)
Note : This question can also be solved direct by SHORTCUT.

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training
20. $f(g(x))=(\sin \sqrt{x})^{2} \Rightarrow g(x)=\sqrt{x}$ and $f(x)=(\sin x)^{2}$

Ans. (a)
21. We have,
$\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots$ to n terms
$=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+\left(1-\frac{1}{16}\right)+\ldots \ldots$. to n terms
$=n-\left(\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{1}{2^{n}}\right)=n-\frac{1}{2} \frac{\left(1-1 / 2^{n}\right)}{(1-1 / 2)}$
$=n-1+2^{-n}$.
Ans. (c)

Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA
 10All India Rank in Top 10 All India Rank in Top

23 All India Rank in Top 25

Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU
All AIR (All India Rank) are in General Category

JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
22. Let α be a common roots of $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$

Then, $\alpha^{2}+p \alpha+q=0$ and $\alpha^{2}+p^{\prime} \alpha+q^{\prime}=0$
$\Rightarrow \alpha=-\left(\frac{q-q^{\prime}}{p-p^{\prime}}\right)$
Ans. (c)
23. Each object can be put either in box B_{1} (say) or in box B_{2} (say). So, there are two choices for each of the n objects.
Therefore the number of choices for n distinct objects is $2 \times 2 \times \ldots \times 2=2^{n}$.
The of these choices correspond to either the first or the second box being empty.
Thus, there are $2^{n}-2$ ways in which neither box is empty.
Ans. (c)
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
24. The general term in the expansion of $\left(1+x^{2}-x^{3}\right)^{8}$ is

$$
\frac{8!}{r!s!t!}(1)\left(x^{2}\right)^{s}\left(-x^{3}\right)^{t}
$$

$=\frac{8!}{r!\mathrm{s}!t!}(-1)^{r} x^{2 s+3 t}$, where $\mathrm{r}+\mathrm{s}+\mathrm{t}=8$,
For the coefficient of x^{6}, we must have $2 x+3 t=6$.
Now, $\mathrm{r}+\mathrm{s}+\mathrm{t}=8$ and $2 \mathrm{~s}+3 \mathrm{t}=6$

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training
$\Rightarrow r=\frac{10+t}{2}, s=\frac{6-3 t}{2}$, where $0 \leq t \leq 8$.
Fot $t_{1}=0, r=5, s=3$ For $t=2, r=6, s=0$
$\therefore \quad$ Coefficient of $x^{6}=\frac{8!}{5!3!0!}(-1)^{0}+\frac{8!}{6!0!2!}(-1)^{2}$

$$
=\frac{8!}{5!3!}+\frac{8!}{6!2!}=56+28=84
$$

Ans. (b)

Note : This question can also be solved direct by SHORTCUT.

JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
IMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.; 0731-4236844 Visit us : www.jmaindore.com
25. Ans. (c)
26. Four any square matix X, we have

$$
X(\operatorname{adj} X)=|x| I_{n}
$$

Taking $X=\operatorname{adj} A$, we get
$(\operatorname{adj} A)(\operatorname{adj}(\operatorname{adj} A))=|\operatorname{adj} A| I_{n}$
$\Rightarrow \quad \operatorname{adj} A(\operatorname{adj}(\operatorname{adj} A))=|A| n-\left.1\right|^{n}$
$\Rightarrow(A \operatorname{adj} A)(\operatorname{adj}(\operatorname{adj} A))=|A|^{n-1} A$
$\Rightarrow\left(|A| I_{n}\right)(\operatorname{adj}(\operatorname{adj} A))=|A|^{n-1} A$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$
Ans. (c)

Note: This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA

 10 All India Rank in Top 10 19 All India Rank in Top 20
23 All India Rank in Top $25 \quad 42$ Selection Out of total 54 Seats in JNU
Highest No. Of Selections in All Over INDIA All AIR (All India Rank) are in General Category
JITENDRAMISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: $0731-4236844$ Visit us : www.jmaindore.com
27. $X=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right] \Rightarrow X^{2}=\left[\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right]$, Clearly for $n=2$, then matrices in (a), (b), (c) do not tally with $\left[\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right]$ Ans. (d)
28. Ans. (c)
29. Ans. (c)

JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731 - 4236844 Visit us : www.jmaindore.com

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training
30. We have $A B=B$ and $B A=A$. Therefore,

$$
\begin{aligned}
& A^{2}+B^{2}=A A+B B=A(B A)+B(A B)=(A B) A+(B A) B \\
& =B A+A B=A+B . \quad[\because A B=B \text { and } B A=A]
\end{aligned}
$$

Ans. (c)
31. The two circle are

$$
x^{2}+y^{2}-2 a x+c^{2}=0 \text { and } x^{2}+y^{2}-2 b y+c^{2}=0
$$

Centres: $\mathrm{C}_{1}(\mathrm{a}, 0), \quad \mathrm{C}_{2}(0, b)$
radii : $r_{1}=\sqrt{a^{2}-c^{2}}, \quad r_{2}=\sqrt{b^{2}-c^{2}}$
Since the two circle touch each other externally, therefore

$$
C_{1} C_{2}=r_{1}+r_{2}
$$

$\Rightarrow \sqrt{a^{2}+b^{2}}=\sqrt{a^{2}-c^{2}}+\sqrt{b^{2}-c^{2}}$
$\Rightarrow a^{2}+b^{2}=a^{2}-c^{2}+b^{2}-c^{2}+2 \sqrt{a^{2}-c^{2}} \sqrt{b^{2}-c^{2}}$
$\Rightarrow c^{4}=a^{2} b^{2}-c^{2}\left(a^{2}+b^{2}\right)+c^{4}$
$\Rightarrow a^{2} b^{2}=c^{2}\left(a^{2}+b^{2}\right)$
$\Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$
Ans. (c)
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top All India Rank in Top

23 all India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU

JITENDRA MISHRA ACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
32. The coordinates of centres C_{1} and C_{2} of two circles are $(1,0)$ and $(2,3)$ respectively. Let r_{1} and r_{2} be the radii of two circles. Then $r_{1}=2$, and $r_{2}=\sqrt{21}$. Clearly $r_{1}-r_{2}<c_{1} c_{2}<r_{1}+r_{2}$.
Hence the two circle intersect each other.
Ans. (b)
33. Equation of normal to the parabola $y^{2}=8 x$ at $\left(x_{1}, y_{1}\right)$
$y-y_{1}=-\left(\frac{d x}{d y}\right)\left(x-x_{1}\right)$
it is given that $-\left(\frac{d x}{d y}\right)=1$
$y^{2}=8 x$ then $\frac{d y}{d x}=\frac{4}{y}$
$y_{1}=-4$
then $x_{1}=2$
then equation of normal will be $y+4=x-2$
$x-y=6$
Ans. (b) JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

34. Ans. (a)

JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. I Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com

35. The maximum area corresponds to when P is at either of the minor axis and hence area for such a position of
P is $\frac{1}{2}(2 a)(b)=a b$
Ans. (a)
36. Given $2 \mathrm{a}=6,2 \mathrm{~b}=4$. Therefore,

$$
e=\sqrt{1-\frac{b^{2}}{a^{2}}} \Rightarrow e=\sqrt{\frac{5}{3}}
$$

So, Distance between foci $=2 \mathrm{ae}=6 \sqrt{\frac{5}{3}}=2 \sqrt{5}$
and, Length of the string $=2 a+2 a e=6+2 \sqrt{5}$
Ans. (d)
37. Eccentricity of rectangular hyperbola is $e_{1}^{2}+e_{2}^{2}=2+2=4$
Ans. (b)

JNU MCA Entrance 2015 Result of JMA 10 19 All India Rank in Top 10 All India Rank in Top 20

23 All India Rank in Top 25

Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category

JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731 - 4236844 Visit us : www.jmaindore.com
38. Let the equation of asymptotes be

$$
\begin{equation*}
2 x^{2}+5 x y+2 y^{2}+4 x+5 y=0 \tag{i}
\end{equation*}
$$

This equation represents a pair of straight line. Therefore,

$$
a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0
$$

Here, $a=2, b=2, h=5 / 2, g=2, f=5 / 2$ and $c=\lambda$
$\therefore 4 \lambda+25-\frac{25}{2}-8-\frac{25}{4} \lambda=0 \Rightarrow-\frac{9 \lambda}{4}+\frac{9}{2}=0 \Rightarrow \lambda=2$
Putting the value of λ in (i), we get

$$
2 x^{2}+5 x y+2 y^{2}+4 x+5 y+2=0
$$

This is the equation of the asymptotes.
Ans. (a)
39. Clearly, $f: R \rightarrow R$ is a one-one onto function. So, it is invertible.

$$
\text { Let } f(x)=y \text {. Then, } 3 x-5=y \Rightarrow x=\frac{y+5}{3} \Rightarrow f^{-1}(y)=\frac{y+5}{3}
$$

Hence, $f^{\prime}(x)=\frac{x+5}{3}$
Ans. (b) JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

40. Since $f(x)$ is continuous at $x=0$, therefore

$$
\lim _{x \rightarrow 0} f(x)=f(0)=0 \Rightarrow \lim _{x \rightarrow 0} x^{n} \sin \left(\frac{1}{x}\right)=0 \Rightarrow n>0
$$

$f(x)$ is differentiable at $x=0$ if
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ exists finitely
$\Rightarrow \lim _{x \rightarrow 0} \frac{x^{n} \sin \frac{1}{x}-0}{x}$ exists finitely
$\Rightarrow \lim _{x \rightarrow 0} x^{n-1} \sin \left(\frac{1}{x}\right)$ exists finitely.
$\Rightarrow \mathrm{n}-1>0$
$\Rightarrow n>1$.
If $n \leq 1$, then $\lim _{x \rightarrow 0} x^{n-1} \sin \left(\frac{1}{x}\right)$ does not exist and hence $f(x)$ is not differentiable at $x=0$
Hence, $f(x)$ is continuous but not differentiable at $x=0$ for $0<n \leq 1$ i.e. $n \in(0,1]$.
Ans. (a)
Note: This question can also be solved direct by SHORTCUT.
IITENDRA MISHRAACADEMY (JMA), INDORE (India's No, 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONK, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
41. Since $g(x)$ is the inverse $f(x)$, therefore

Moat Entrane
$f(x)=y \Leftrightarrow g(y)=x$
$g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}, \forall x$
$\Rightarrow g^{\prime}(f(x))=1+x^{3}, \forall x$
$\left.\Rightarrow g^{\prime}(y)=1+\{g(y))\right\}^{3}$
$\left.\Rightarrow g^{\prime}(y)=1+\{g(x))\right\}^{3}$
Ans. (c)
[Using $f(x)=y x=\Leftrightarrow x=g(y)$]
[replacing y by x]

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10
 19 All India Rank in Top 20

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU
All AIR (All India Rank) are in General Category JITENDRA MISHRA ACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
42. $f(x)=\cot ^{-1}\left(\frac{x^{x}-x^{-x}}{2}\right)$
$\Rightarrow f^{\prime}(x)=\frac{1}{1+\left(\frac{x^{x}-x^{-x}}{2}\right)^{2}} \frac{d}{d x}\left(\frac{x^{x}-x^{-x}}{2}\right)$
$\Rightarrow f^{\prime}(x)=\frac{-2}{4+\left(x^{x}-x^{-x}\right)^{2}}, \frac{d}{d x}\left(x^{x}-x^{-x}\right)$
$\Rightarrow f^{\prime}(x)=\frac{-2}{4+\left(x^{x}-x^{-x}\right)^{2}}, \frac{d}{d x}\left(e^{x \operatorname{cog} x}-e^{-x \log x}\right)$
$\Rightarrow f^{\prime}(x)=\frac{-2}{\left(x^{x}-x^{-x}\right)^{2}} \times\left(x^{x}(1+\log x)-x^{-x}(1+\log x)\right)$
$\Rightarrow f^{\prime}(x)=\frac{-2(1+\log x)}{\left(x^{x}-x^{-x}\right)^{2}} \cdot\left(x^{x}+x^{-x}\right)=\frac{-2(1+\log x)}{x+x^{-x}}$
$\Rightarrow f^{\prime}(1)=\frac{-2}{(1+1)}=-1$
Ans. (a)
Note : This question can also be solved direct by SHORTCUT.
43. $f(x)=\log _{x}\{\ln (x)\}=\frac{\ln (\ln (x))}{\ln (x)}$
$\therefore f(x)=\frac{\ln (x) \cdot \frac{1}{\ln (x)} \cdot \frac{1}{x}-\ln \{\ln (x)\} \frac{1}{x}}{(\ln (x))^{2}}=$
$\Rightarrow f^{\prime}(e)=\frac{1-\ln \{\ln (e)\}}{x\{\ln (e)\}^{2}}=\frac{1-\ln (1)}{e}=\frac{1}{e}$
Ans. (d)
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA
 10 All India Rank in Top 10
 19 All India Rank in Top 20

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category
44. We have $F(x)=\frac{1}{x^{2}} \int_{4}^{x}\left(4 t^{2}-2 F^{\prime}(t)\right) d t$. Therefore,

$$
x^{2} F(x)=\int_{4}^{x}\left(4 t^{2}-2 F^{\prime}(t) d t\right.
$$

Differentiating both sides with respect to x, we get $2 x F(x)+x^{2} F^{\prime}(x)=4 x^{2}-2 F^{\prime}(x)$
Putting $x=4$, we get $8 \mathrm{~F}(4)+16 \mathrm{~F}^{\prime}(4)=64-2 \mathrm{~F}^{\prime}(4) \Rightarrow 18 \mathrm{~F}^{\prime}(4)=64$
$\Rightarrow F^{\prime}(4)=\frac{32}{9}$
Ans. (a)
Note : This question can also be solved direct by SHORTCUT.

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

45. We have $x^{p} y^{q}=(x+y)^{p+q}$
$\Rightarrow p \log x+q \log y=(p+q) \log (x+y)$
Diff. w.r.t. x, we get $\frac{p}{x}+\frac{q}{y} \frac{d y}{d x}=\frac{p+q}{x+y}\left(1+\frac{d y}{d x}\right)$
$\Rightarrow \frac{d y}{d x}\left(\frac{q}{y}-\frac{p+q}{x+y}\right)=\frac{p+q}{x+y}-\frac{p}{x} \Rightarrow \frac{d y}{d x}=\frac{y}{x}$
Ans. (a)
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
46. We have, $y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)$

$$
=\cos ^{-1}\left(\frac{x-1}{x+1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right)=\frac{\pi}{2}
$$

$\therefore \quad \frac{d y}{d x}=0$
Ans. (c)
47. $\int_{-1}^{1}(x-|x|) d x=\int_{-1}^{0}(x-|x|) d x+\int_{0}^{1}(x-|x|) d x$

$$
=\int_{-1}^{0}(x+1) d x+\int_{0}^{1}(x-0) d x
$$

MCA Entrance

$$
=\left[\frac{(x+1)^{2}}{2}\right]_{-1}^{0}+\left[\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{2}+\frac{1}{2}=1
$$

Ans. (a)
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category

JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)

 JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com48. Putting $\log x=t$ i.e. $x=e^{t}$ in I_{1}, we get

$$
\mathrm{I}_{1}=\int_{1}^{2} \frac{e^{\mathrm{t}}}{\mathrm{t}} \mathrm{dt}=\int_{1}^{2} \frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}} \mathrm{dx}=\mathrm{I}_{2}
$$

Ans. (a)

JITENDRA MISHRA ACADEMY

49. $\int_{0}^{\pi / 2} \log |\tan x+\cot x| d x=\int_{0}^{\pi / 2} \log \left|\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}\right| d x$
$=\int_{0}^{\pi / 2} \log \left(\frac{1}{\sin x \cos x}\right) d x$
$=-\int_{0}^{\pi / 2} \log \sin x d x-\int_{0}^{\pi / 2} \log \cos x d x$
$=-(-\pi / 2 \log 2)-(-\pi / 2 \log 2)=\pi \log 2$
Ans. (a)
Note: This question can also be solved direct by SHORTCUT.
JITENDRAMISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
50. We have $f\left(\frac{1}{x}\right)+x^{2} f(x)=0$
$\Rightarrow f(x)=-\frac{1}{x^{2}} f\left(\frac{1}{x}\right)$

Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA
 10All India Rank in Top 10 All India Rank in Top 20

23 All India Rank in Top 25
 42 Selection Out of total 54 Seats in JNU

Highest No. Of Selections in All Over INDIA All AIR (All India Rank) are in General Category JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. I Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
51. The equation of any tangent to $x^{2}=4 y$ is

$$
x=m y+\frac{1}{m} ; \text { where } m \text { is an arbitrary constant. }
$$

Differentiating this w.r. to x, we get

$$
1=m \frac{d y}{d x} \Rightarrow m=\frac{1}{\frac{d y}{d x}}
$$

Putting the value of m in $x=m y+\frac{1}{m}$; we get

$$
x=\frac{y}{\frac{d y}{d x}}+\frac{d y}{d x} \Rightarrow\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0
$$

which is differential equation of order 1 and degree 2.
Ans. (a)
Note : This question can also be solved direct by SHORTCUT.
52. Clearly, $y=2 x-4$ satisfies the given differential equation.

Ans. (c)
53. We have, $y^{2}=2 c(x+\sqrt{c})$
$\Rightarrow 2 \mathrm{yy}_{1}=2 \mathrm{x} \Rightarrow \mathrm{yy}_{1}=\mathrm{c}$
Eliminating c from (i) and (ii), we get

$$
\begin{align*}
y^{2}=2 y y_{1}\left(x+\sqrt{y y_{1}}\right) & \Rightarrow y-2 x y_{1}=2 \sqrt{y y} y_{1}^{3 / 2} \tag{ii}\\
& \Rightarrow\left(y-2 x y_{1}\right)^{2}=y y_{1}^{3}
\end{align*}
$$

Clearly, it is a differential equation of order one and degree 3.
Ans. (d)

JNU MCA Entrance 2015 Result of JMA 10 19 All India Rank in Top All India Rank in Top

 23 All India Rank in Top 2542 selection Out of total 54 Seats in JNU Highest No. Of Selections in All Over INDIA All AIR (All India Rank) are in General Category

[^1]54. We have $\vec{\alpha}=x(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathrm{b}})+\mathrm{y}(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})+z(\overline{\mathbf{c}} \times \overrightarrow{\mathrm{a}})$

Taking dot products with $\vec{a} \vec{b} \vec{c}$, we get

$$
\begin{aligned}
\bar{\alpha} \cdot \vec{a} & =y[\vec{a} \vec{b} \vec{c}] \Rightarrow \vec{y}=8(\vec{\alpha} \cdot \vec{a}) \\
\vec{\alpha} \cdot \vec{b} & =z((\vec{c} \times \vec{a}) \cdot \vec{b}) \\
\Rightarrow \quad \vec{\alpha} \cdot \vec{b} & =z[\vec{a} \vec{b} \vec{c}] \Rightarrow \hat{z}=8(\vec{\alpha} \cdot \vec{b})
\end{aligned}
$$

and $\vec{\alpha} \cdot \overrightarrow{\mathbf{c}}=x((\vec{a} \times \vec{b}) \cdot \vec{c}))$
$\Rightarrow \vec{\alpha} \cdot \vec{c}=x[\vec{a} \vec{b} \vec{c}] \Rightarrow x=8(\alpha, \vec{c})$
$\therefore \quad x+y+z=8 \alpha(\vec{a}+\vec{b}+\vec{c})$
Ans. (a)
Note: This question can also be solved direct by SHORTCUT.
55. Let $x \hat{i}+y \hat{j}+z \hat{k}$ be the unit vector along \vec{c}. Since, $-\hat{i}+\hat{j}-\hat{k}$ bisect the angle between \vec{c} and $3 \hat{i}+\hat{j}$. Therefore,

$$
\begin{aligned}
& \lambda(\hat{i}+\hat{j}-\hat{k})=(x \hat{i}+y \hat{j}+z \hat{k})+\frac{3 \hat{i}+4 \hat{j}}{5} \\
\Rightarrow & x+\frac{3}{5}=-\lambda, y+\frac{4}{5}=\lambda \text { and } z=-\lambda
\end{aligned}
$$

$$
\text { Now, } x^{2}+y^{2}+z^{2}=1 \quad[x \hat{i}+y \hat{j}+z \hat{k} \text { is a unit vector }]
$$

$$
\left(-\lambda-\frac{3}{5}\right)^{2}+\left(\lambda-\frac{4}{5}\right)^{2}+\lambda^{2}=1 \Rightarrow \lambda=0 \text { or } \lambda=\frac{2}{15}
$$

But $\lambda \neq 0$. Because $\lambda=0$ implies that the given vectors are parallel
$\therefore \lambda=\frac{2}{15} \Rightarrow x=-\frac{11}{15}, y=\frac{-10}{15}$ and $z=\frac{-2}{15}$
Hence, $x \hat{i}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}=-\frac{1}{15}(11 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
Ans. (d)

Note : This question can also be solved direct by SHORTCUT.

JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731 - 4236844 Visit us : www.jmaindore.com
56. We have, $(\vec{a}+3 \vec{b}) \perp(7 \vec{a}-5 \vec{b})=(\vec{a}+3 \vec{b}) \cdot(7 \vec{a}-5 \vec{b})=0$ rance

$$
\begin{aligned}
& =7|\overrightarrow{\mathrm{a}}|^{2}+16(\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{~b}})-15|\overrightarrow{\mathrm{~b}}|^{2}=0 \\
& =7+16 \cos \theta-15=0 \\
& \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}
\end{aligned}
$$

Ans. (c)

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10
 19 All India Rank in Top 20

23 All India Rank in Top $25 \quad 42$ Selection Out of total 54 Seats in JNU Highest No. Of Selections in All Over INDIA All AIR (All India Rank) are in General Category

57. Since each ball can be placed in any one of the 3 boxes, therefore there are 3 ways in which a ball can e placed in any one of the three boxes. Thus there are 3^{12} ways in which 12 balls can be placed in 3 boxes. The num berofways in which 3 balls outof 12 can be putin the firstbox is ${ }^{12} \mathrm{C}_{3}$. The remaining 9 balls can be placed in 2 boxes in 2^{9} ways.
So, required probability $=\frac{{ }^{12} \mathrm{C}_{3}}{3^{12}} \cdot 2^{9}=\frac{110}{9}\left(\frac{2}{3}\right)^{10}$
Ans. (a)

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training
58. Since $P(A / \bar{B})+P(\bar{A} / \bar{B})=1$. Therefore,

$$
P(\bar{A} / \bar{B})=1-P(A / \bar{B})
$$

Correct answer is : $1-P(A / \bar{B})$ which is not given in any of the four option.
Ans. (wrong)
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
59. Ans. (a)
60. As $\angle A=45^{\circ}, \angle B=75^{\circ}$, we have

$$
\angle C=180^{\circ}-\left(45^{\circ}-75^{\circ}\right)=60^{\circ}
$$

$\therefore \quad a+c \sqrt{2}=k(\sin A+\sqrt{2} \sin C)$
$=k\left(\sin 45^{\circ}+\sqrt{2} \sin 60^{\circ}\right)=k\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right)$
Now, $b=k \sin B \Rightarrow b=k \sin 75^{\circ}=k \frac{(\sqrt{3}+1}{2 \sqrt{2}}$
$\Rightarrow \quad 2 b=k \frac{(\sqrt{3}+1)}{\sqrt{2}}$
From (i) and (ii), $a+c \sqrt{2}=2 b$
Ans. (c)
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top 20

23 All India Rank in Top 25 Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category
61. Ans. (b)
62. Let $\mathrm{A}=6+\sqrt{12}, \mathrm{~b}=\sqrt{48}, \mathrm{c}=\sqrt{24}$.

Clearly c is the smallest side. Therefore the smallest angle C is given by

$$
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{\sqrt{3}}{2} \Rightarrow C=\frac{\pi}{6}
$$

Ans. (c)

[^2]63. $\int\left[f(x) g^{\prime \prime}(x)-f^{\prime \prime}(x) g(x)\right] d x$
\[

$$
\begin{aligned}
& \int f(x) g^{\prime \prime}(x) d x-\int f^{\prime \prime}(x) g(x) d x \\
& =\left(f(x) g^{\prime}(x)-\int f^{\prime}(x) g^{\prime}(x) d x\right)-\left(g(x) f^{\prime}(x)-\int g^{\prime}(x) f^{\prime}(x) d x\right) \\
& =f(x) g^{\prime}(x)-f^{\prime}(x) g(x)
\end{aligned}
$$
\]

Ans. (c)
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOLSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
64. $\int e^{3 \log x}\left(x^{4}+1\right)^{-1} d x=\int e^{\log x^{3}} \frac{1}{x^{4}+1} d x$
$=\int \frac{x^{3}}{x^{4}+1} d x=\frac{1}{4} \log \left(x^{4}+1\right)+C$
Ans. (b)
65. Let $\mathrm{I}=\int \frac{\mathrm{x}+2}{\left(x^{2}+3 x+3\right) \sqrt{x+1}} \mathrm{dx}$ Putting $x+1=t^{2}, d x=2 t$, we get

$$
I=2 \int \frac{t^{2}+1}{t^{4}+t^{2}+1} d t=2 \int \frac{1+(1 / t)^{2}}{\left(t-\frac{1}{t}\right)^{2}+3} d t
$$

$=\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{\mathrm{t}-\frac{1}{\mathrm{t}}}{\sqrt{3}}\right)+\mathrm{C}=\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}(x+1)}\right)+\mathrm{C}$
Ans. (b)

JNU MCA Entrance 2015 Result of JMA

 10 All India Rank in Top 1019 All India Rank in Top 20

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category
66. $\lim _{x \rightarrow a} \frac{a^{x}-x^{n}}{x^{x}-a^{a}}=-1$
$\Rightarrow \lim _{x \rightarrow a} \frac{a^{x} \log a-a x^{n-1}}{x^{x}(1+\log x)}=-1$ [Using L-Hospital's Rule]
$\Rightarrow \frac{a^{a} \log _{e} a-a \cdot a^{a-1}}{a^{a}\left(1+\log _{8} a\right)}=-1 \Rightarrow \frac{\log _{e} a-1}{\log _{6} a+1}=-1$
Then is satisfied only when $\mathrm{a}=1$.
Ans. (a)

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

67. $\lim _{x \rightarrow 0}(\cos x)^{\cos x}=\lim _{x \rightarrow 0}(1+\cos x-1)^{\cot x}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(1-2 \sin ^{2}\left(\frac{x}{2}\right)\right)^{\text {cot } x} \\
& =\mathrm{e}^{\frac{\ln }{m-2}-2 \sin ^{2}(x / 2) \cdot \cot x} \\
& =e^{\lim _{x \rightarrow 0}-\frac{\sin ^{2}(x / 2) \cdot \cos x}{2 \sin (x / 2) \cos x / 2}} \\
& =\mathrm{e}^{\lim _{x \rightarrow-\mathrm{tan}(\mathrm{tan} / 2) \cos \mathrm{c}}}=\mathrm{e}^{0}=1
\end{aligned}
$$

Ans. (b)
68. Given Question is incomplete it should have been

If $(1+x)^{n}=\left(C_{0}+C_{1} x+C_{2} x^{2}+\ldots .+C_{n} x^{n}\right)$ then $C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\ldots C_{n}^{2}$ is equal to
We have,

$$
\begin{equation*}
(1+x)^{n}=\left(C_{0}+C_{1} x+C_{2} x^{2}+\ldots .+C_{n} x^{n}\right) \tag{i}
\end{equation*}
$$

Also,
$(1+x)^{n}=\left(C_{0} x^{n}+C_{1} x^{n-1}+\ldots .+C_{n-1} x+C_{n}\right)$
Multiplying (ii) and (iii), we get
$\left(C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\ldots+C_{n} x^{n}\right)$
$\times\left(C_{0} x^{n}+C_{1} x^{n-1}+C_{2} x^{n-2}+C_{n} x^{n-2}+\right.$

Equating coefficient of x^{2} on both sides of (iii), we get
$\mathrm{C}_{0}^{2}+\mathrm{C}_{1}^{2}+\mathrm{C}_{2}^{2}+\ldots \mathrm{C}_{\mathrm{n}}^{2}={ }^{2 n} \mathrm{C}_{\mathrm{n}}$
$=C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\ldots C_{0}^{2}=\frac{(2 n)!}{n!n!}$
Ans. (Given question is incomplete) MCA Entrance
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top
 20

 23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA
42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category
69. In $\triangle P Q R$, the radisu of the circumcircle is given by $\frac{P Q}{2 \sin R}=\frac{Q R}{2 \sin P}=\frac{P R}{2 \sin Q}$. But it the given the radius is
$\therefore \quad P Q=P R=\frac{P Q}{2 \sin R}=\frac{Q R}{2 \sin P}=\frac{P Q}{2 \sin Q}$
$\Rightarrow \sin R=\sin Q=\frac{1}{2} \Rightarrow \angle R=\angle Q=\frac{\pi}{6}$
$\Rightarrow \angle \mathrm{P}=\pi-\angle \mathrm{R}-\angle \mathrm{Q}=\frac{2 \pi}{3}$
Ans. (d)
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731 - 4236844 Visit us : www.jmaindore.com

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

70. We know that the equation second degree curve in

$$
\begin{equation*}
a x^{2}+b y^{2}+2 x y+2 g x+2 f y+c=0 \tag{i}
\end{equation*}
$$

for pair of straight line $\Delta=0$
when $\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
$a-1, b=1, c=-1, f=0, g=a, h=0$
Put in equation (i)

$$
\begin{aligned}
& -1+2 \times 0 \times a \times 0-1 \times 0+1 \times a^{2}-1 \times 0=0 \\
& -1+a^{2}=0, \Delta \neq 0
\end{aligned}
$$

where a is variable
All the four option given are incorrect.
Ans. (wrong)
Note : This question can also be solved direct by SHORTCUT.
71. We know thatn $\cos ^{-1} x+\sin ^{-1} x=\frac{\pi}{2}$

Hence, $\tan ^{-1}(1)+\frac{\pi}{2} \Rightarrow \frac{\pi}{4}+\frac{\pi}{2}=\frac{3 \pi}{4}$
$\left\{\right.$ where $\left.\tan ^{-1}(1)=\frac{\pi}{4}\right\}$
Ans. (a)
JITENDRA MISHRA ACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph, 0 0731-4236844 Visit us : www.jmaindore.com
72. We know that period of function | \sin

Hence, $\pi x=\pi$
$\Rightarrow x=1$
Ans. (c)
73. Given that,

$$
\begin{aligned}
& 2^{y}+2^{x}=2 \\
& 2^{y}=2-2^{x}
\end{aligned}
$$

taking log on both side

$$
y \log 2=\log \left(2-2^{x}\right)
$$

for $\log \left(2-2^{x}\right)$ the neccessary
condition that $2-2^{x}>0$
$2^{x}<2$
Hence, $x<1$
So, domain is $(-\infty, 1)$
Ans. (b)

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 All India Rank in Top 20

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

All AIR (All India Rank) are in General Category
74. Given $1!+2!+3!+4!+\ldots \ldots$

Expand the given equation

$$
1+2+6+24+120+720+\ldots \ldots . \quad\{\text { After } 4!\text { the digit at unit place is } 0\}
$$

Add upto 4!
Hence digit at unit place 3
Ans. (a) JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

75. Given equation is $3 \sin ^{2} x-7 \sin x+2=0$

By factoring
$3 \sin ^{2} x-6 \sin x-\sin x+2=0$
$3 \sin x(\sin x-2)-1(\sin x-2)=0$
$\sin x=\frac{1}{3}$ and $\sin x \neq 2$
(because $\sin x=[-1,1]$)
Graph at $\sin \mathrm{x}$

From the above graph it is clear that in every $(0, \pi),(2 \pi, 3 \pi),(4 \pi, 5 \pi)$ there are two solution, hence total no. of solution is 6 from $[0,5 \pi]$
Hence there are 6 value of x which satisfy the given equation.
Ans. (b)
Note : This question can also be solved direct by SHORTCUT.
76. Given that

$$
1-\cos \theta=\sin \theta / 2 . \sin \theta
$$

We know that $\cos \theta=1-2 \sin ^{2} \theta / 2$ put in eqf(1)

$$
1-\left(1-2 \sin ^{2} \theta / 2\right)=\sin \theta / 2 \sin \theta
$$

$$
2 \sin ^{2} \theta / 2=\sin \theta / 2 \sin \theta
$$

$$
\sin \theta / 2=0
$$

$$
\sin \theta / 2=k \pi \quad \text { where } k \in I
$$

Ans. (b)

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top 20

23 All India Rank in Top 25
 42 Selection Out of total 54 Seats in JNU

Highest No. Of Selections in All Over INDIA
All AIR (All India Rank) are in General Category
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
77. Given that $\frac{d y}{d x}=e^{-2 y}$

$$
\mathrm{e}^{2 y} \mathrm{dy}=\mathrm{dx}
$$

on integrating both side

$$
\begin{aligned}
& \int \mathrm{e}^{2 y} d y=\int \mathrm{d} x \\
& \frac{\mathrm{e}^{2 y}}{2}=x+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { put } x=5, y=0 \\
& \frac{1}{2}-5=c=c=\frac{-9}{2} \\
& \frac{e^{6}}{2}=x-\frac{9}{2} \\
& x=\frac{e^{6}+9}{2}
\end{aligned}
$$

Ans. (c)
Note : This question can also be solved direct by SHORTCUT.
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute forAll India MCA Entrance Training)
JMA HOUSE -7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
78. We have

$$
\begin{aligned}
& \quad F(x)=\int x \log \left(1+\frac{1}{x}\right) d x \\
& \\
& \int x \log \left(\frac{x+1}{x}\right) d x \\
& \text { Integrate by part } I=\log \left(\frac{x+1}{x}\right) \cdot I=x \\
& = \\
& =\operatorname{l} \int 11 d x-\int\left[\left.\frac{d}{d x} \right\rvert\, \int 11 d x\right] d x \\
& = \\
& \log \left(\frac{x+1}{x}\right) \frac{x^{2}}{x}-\int \frac{x^{2}}{2} \cdot \frac{x}{x+1}\left(\frac{x+1}{x}\right) \frac{x^{2}}{x}+\frac{1}{2} \int \frac{x}{x+1} d x \\
& = \\
& \log \left(\frac{x+1}{x}\right) \cdot \frac{x^{2}}{x} \log (x)+\frac{1}{2} x-\frac{1}{2} \log (x+1)+c \\
& = \\
& \left(\frac{x^{2}-1}{2}\right) \log (x+1)-\frac{x^{2}}{2} \log x+\frac{x}{2}+c
\end{aligned}
$$

$$
\text { Compare with } f(x) \log (x+1)+g(x) x^{2}+L x+C
$$

$$
f(x)=\frac{x^{2}-1}{2}, g(x)=-\frac{\log x}{2}, L=\frac{1}{2}
$$

hence, none of these is correct options.
Ans (d)
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top 20

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU
All AIR (All India Rank) are in General Category

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training
79. We have $f(x)=|\sin 2 x-\cos 2 x|$

We know that the maximum and minimum value of function $a \sin x+b \cos x$ is

$$
\sqrt{a^{2}+b^{2}} \text { and }-\sqrt{a^{2}+b^{2}} \text { respectively }
$$

Hence, $a=1, b=1$
the max. value of function is $\sqrt{2}$
and Minimum value is $-\sqrt{2}$
hence, the range will be $[-\sqrt{2}, \sqrt{2}]$ but it is not given in the option so approximately range is $[-1,1]$
Ans. (d)
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
80. $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
$\Rightarrow a b c-a^{3}-b^{3}+a b c+a b c-c^{3}$
$=-(a+b+c)\left(a+b k+c k^{2}\right)\left(a+b k^{2}+c k\right)$
$\Rightarrow \quad+\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=(a+b+c)\left(a+b k+c k^{2}\right)\left(a+b k^{2}+c k\right)$
$\Rightarrow(a+b+c)\left(a+b \omega+c \omega^{2}\right)\left(a+\omega^{2} b+c \omega\right)$
$=(a+b+c)\left(a+b k+c k^{2}\right)\left(a+b k^{2}+c k\right)$
Hence $k=0$
$\left\{\right.$ where ω is cube root of unity $\left.1+\omega+\omega^{2}=0\right\}$
Ans. (a)
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top All India Rank in Top

23 All India Rank in Top 25
 Highest No. Of Selections in All Over INDIA
 42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category
 JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com

81. $I=\int_{\pi / 4}^{3 \pi / 4} \frac{1}{1+\cos x} d x \Rightarrow \int_{\pi / 4}^{3 \pi / 4} \frac{(1-\cos x)}{(1-\cos x)(1+\cos x)} d x$
$\Rightarrow \int_{\pi / 4}^{3 x / 4} \frac{1-\cos x}{\sin ^{2} x} d x \Rightarrow \int_{\pi / 4}^{3 \pi / 4}\left(\operatorname{cosec}^{2} x-\cot x \cdot \operatorname{cosec} x\right) d x$
$\Rightarrow[-\cot x+\operatorname{cosec} x]_{\pi / 4}^{3 \pi / 4}$
$\Rightarrow 2$
Ans. (a)
Note : This question can also be solved direct by SHORTCUT.
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
82. All expect Maths are branches of Maths

Ans. (a)
83. All expect Diagonal are terms associated with circle.

Ans. (c)
84. INFLUENZA is caused by VIRUS and TYPHOID is caused by BACTERIA.
Ans. (d)
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Pli: 0731-4236844 Visit us : www.jmaindore.com
85. Angle traced by hour hand in 12 hour $=360^{\circ}$

Angle traced by it 5 hrs .10 min . i.e. $\frac{31}{6}$ hours

$$
=\left(\frac{360}{12} \times \frac{31}{6}\right)^{\circ}=155^{\circ}
$$

Angle traced by minute hand in $60 \mathrm{~min}=360^{\circ}$
Angle traced by it in $10 \mathrm{~min}=\frac{360}{60} \times 10=60$ ISHR
\therefore Required angle $=\left(155^{\circ}-60^{\circ}\right)=95^{\circ}$
Ans. (b)
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top 20

(AIR-1, AIR-2,AIR-3,AIR - 4 , AIR - 5 , AIR - 6 , AIR - 7 , AIR - 8 , AIR - 9 , AIR - 10 , AIR - 11 , AIR - 12 , AIR - 13 , AIR - 15 , AIR - 16 , AIR - 17 , AIR - 18 , AIR - 19 , AIR - $20 . . .$. And Many More...)
23 All India Rank in Top 25 42 Selection Out of total 54 Seats in JNU

Highest No. Of Selections in All Over INDIA
86. Let the number of girls in the class be x
then, the number of boys in class $=3 x$
\therefore Total no. of students $=x+3 x=4 x$
It means total no. of students must be a multiple of 4
$\therefore \quad 42$ cannot be total no. of students as it is not multiple of 4 .
Ans. (c)
Note : This question can also be solved direct by SHORTCUT.

JITENDRA MISHRA ACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
87. First worker's one day's work $=\frac{1}{10}$

Second worker's one day's work $=\frac{1}{15}$ JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

Both worker's one day's work $=\frac{1}{10}+\frac{1}{15}=\frac{5}{30}=\frac{1}{6}$
Therefore both the workers will finish the work in 6 days.
Ans. (a)
Note : This question can also be solved direct by SHORTCUT.
88. Clearly, the given sequence follows the pattern
$+6,+12,+24,+48, \ldots$.
Thus, $7+6=13,13+12=25, \ldots$.
So missing term $=49+48=97$
Ans. (b)
JTENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
89. MPUTER

MPUTERS
UT
UTER
IER
RS
there are 6 such pairs
Ans. (d)
90. Note: This question solved direct by SHORTCUT. Ans. (c)

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10
 19All India Rank in Top 20

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category
91. 55 min spaces are covered in 60 min

60 min spaces are covered in $\left(\frac{60}{55} \times 60\right) \mathrm{min}$

$$
=65 \frac{5}{11} \mathrm{~min}
$$

Loss in $64 \min =\left(65 \frac{5}{11}-64\right)=\frac{16}{11} \min$
Loss in 24 hrs. $=\left(\frac{16}{11} \times \frac{1}{64} \times 24 \times 60\right) \mathrm{min}$

$$
=32 \frac{8}{11} \mathrm{~min}
$$

Ans. (c)
Note : This question can also be solved direct by SHORTCUT.

```
92. x=2\sqrt{}{3}\mathrm{ (given)}
    xy=1 (given)
    then }\textrm{y}=2-\sqrt{}{3
    \sqrt{}{x}}=\frac{1+\sqrt{}{3}}{\sqrt{}{2}
    \sqrt{}{y}}=\frac{1-\sqrt{}{3}}{\sqrt{}{2}
```

 Substituting the value of \(\sqrt{x}, \sqrt{y}, x\) and \(y\) in the expression, \(\frac{x}{\sqrt{2}+\sqrt{x}}+\frac{y}{\sqrt{2}-\sqrt{y}}\)
 \(\Rightarrow \frac{(\sqrt{2}-\sqrt{y}) x+(\sqrt{2}+\sqrt{x}) y}{2+\sqrt{2} \sqrt{x}-\sqrt{2} \sqrt{y}-\sqrt{x y}}\)
 \(\Rightarrow \frac{\left[\frac{2-(1-\sqrt{3})}{\sqrt{2}}\right](2+\sqrt{3})+\left[\frac{2+1+\sqrt{3}}{\sqrt{2}}\right](2-\sqrt{3})}{2+1+\sqrt{3}-(1-\sqrt{3})-1}\)

Ans. (d)

Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA

10 All India Rank in Top 10 19 All India Rank in Top 20

23 All India Rank in Top 25
 Highest No. Of Selections in All Over INDIA
 42 Selection Out of total 54 Seats in JNU
 JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
 JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com

93. Let the train will meet after time t hours.
then, distance travelled by train before meet is equal to $90 t$
now, $90 \mathrm{t}=80\left(\mathrm{t}+\frac{30}{60}\right)$
$90 \mathrm{t}=80 \mathrm{t}+40$
$10 \mathrm{t}=40$
$\mathrm{t}=4 \mathrm{hrs}$.
Hence distance travelled $=90 \times 4=360 \mathrm{~km}$.
Ans. (c)
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731 - 4236844 Visit us : www.jmaindore.com

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

94. Let the number of coins of each type be x.
the sum of money $=$ Rs. 35 (given)
Hence, sum of money $=(x \times 1)+(x \times 0.5)+(x \times 0.25)$

$$
\begin{aligned}
& 35=x \times(1+0.5+0.25) \\
& 35=x \times 1.75 \\
& x=\frac{35}{1.75}=20
\end{aligned}
$$

Ans. (a)
95. The fourth day after 6th January is Saturday (Given)

So, the day on 6th January will be Tuesday
Number of days between 1st december and 6th January are 36 days.
Number of odd days = 1 day
So, the day on 1st December will be 1 day before Tuesday i.e. Monday Correct Ans. Monday which is not given any of the four option.
Ans. (wrong)
JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
96. First is the product of the second.

Ans. (a)

JNU MCA Entrance 2015 Result of JMA

 10 All India Rank in Top 1019 All India Rank in Top 20

23 All India Rank in Top 2542 Selection Out of total 54 Seats in JNU
 Highest No. Of Selections in All Over INDIA All AIR (All India Rank) are in General Category

[^3]98. $\left|\begin{array}{ccc}\cos \theta & \sin \theta & \cos \theta \\ -\sin \theta & \cos \theta & \sin \theta \\ -\cos \theta & -\sin \theta & \cos \theta\end{array}\right|=0$
$R_{1} \rightarrow R_{1}+R_{3}$
$\left|\begin{array}{ccc}0 & 0 & 2 \cos \theta \\ -\sin \theta & \cos \theta & \sin \theta \\ -\cos \theta & -\sin \theta & \cos \theta\end{array}\right|=0$

$$
\begin{aligned}
& 2 \cos \theta\left[\sin ^{2} \theta+\cos ^{2} \theta\right]=0 \\
& 2 \cos \theta=0 \\
& \cos \theta=0 \\
& \theta=2 n \pi \pm \frac{\pi}{2}
\end{aligned}
$$

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training
99. Circumference of the wheel $=4 \frac{2}{7} \mathrm{~m}=\frac{30}{7} \mathrm{~m}$ (given)

It makes 7 revolutions in 4 second (given)
Distance travelled by wheel in 4 second $=\frac{30}{7} \times 7=30 \mathrm{~m}$
Distance travelled in 1 second $=\frac{30}{4}=\frac{15}{2} \mathrm{~m}$
Distance travelled in 1 hr . (in km)

$$
=\frac{15}{2} \times \frac{60 \times 60}{1000}=27 \mathrm{~km}
$$

Ans. (a)
Note: This question can also be solved direct by SHORTCUT.

$$
\begin{aligned}
& \text { 100. }(1+2 \sqrt{x})^{40}={ }^{40} C_{0}+{ }^{40} C_{1}(2 \sqrt{x})+{ }^{40} C_{2}(2 \sqrt{x})^{2}+\ldots .+{ }^{40} C_{40}(2 \sqrt{x})^{40} \\
& (1+2 \sqrt{x})^{40}=\left({ }^{40} \mathrm{C}_{0}+{ }^{40} \mathrm{C}_{2} \times 2 \mathrm{x}+{ }^{40} \mathrm{C}_{4} \times 2^{2} \mathrm{x}^{2}+\ldots .+{ }^{40} \mathrm{C}_{20} \times 2^{10} \mathrm{x}^{10}\right) \\
& \text { Putting } \sqrt{x}=1 \text { and }-1 \text { respectively, we get } \\
& 3^{40}\left\{{ }^{40} \mathrm{C}_{0}+{ }^{40} \mathrm{C}_{2} \times 2+{ }^{40} \mathrm{C}_{4} \times 2^{2}+\ldots 9 \mathrm{C}_{20} \times 2^{10}\right\}+\left\{{ }^{40} \mathrm{C}_{1} \times 2+{ }^{40} \mathrm{C}_{3} \times 2^{3}+\ldots+{ }^{40} \mathrm{C}_{19} 2^{19}\right\} \\
& \text { and, } \\
& \left.1=\left\{{ }^{40} \mathrm{C}_{0}+{ }^{40} \mathrm{C}_{2} \times 2+{ }^{40} \mathrm{C}_{4} \times 2^{2}+\ldots{ }^{40} \mathrm{C}_{20} \times 2^{10}\right\}-{ }^{40} \mathrm{C}_{1} \times 2+{ }^{40} \mathrm{C}_{3} \times 2^{3}+\ldots+{ }^{40} \mathrm{C}_{19} 2^{19}\right\} \\
& \therefore \quad 3^{40}+1=2\left\{\left\{^{40} \mathrm{C}_{0}+{ }^{40} \mathrm{C}_{2} \times 2+{ }^{40} \mathrm{C}_{4} \times 2^{2}+\ldots+{ }^{40} \mathrm{C}_{20} \times 2 \mathrm{C}^{20} 9\right.\right. \\
& \Rightarrow{ }^{40} \mathrm{C}_{0}+{ }^{40} \mathrm{C}_{2} \times 2+{ }^{40} \mathrm{C}_{4} \times 2^{2}+\ldots .+{ }^{40} \mathrm{C}_{20} \times 2^{10}=\frac{3^{40}+1}{2}
\end{aligned}
$$

Ans. (d)
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top

23 All India Rank in Top 25
 42 Selection Out of total 54 Seats in JNU
 Highest No. Of Selections in All Over INDIA
 All AIR (All India Rank) are in General Category
 JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
 JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
 101. Putting $x^{n}+1=t$ and $n x^{n-1} d x=d t$, we get

$$
\begin{aligned}
& I=\int \frac{1}{x\left(x^{n}+1\right)} d x=\frac{1}{n} \int \frac{1}{t(t-1)} d t=\frac{1}{n} \int\left(\frac{1}{t-1}-\frac{1}{t}\right) d t \\
& \Rightarrow \quad I=\frac{1}{n} \log \left(\frac{t-1}{t}\right)+C=\frac{1}{n} \log \left(\frac{x^{n}}{x^{n}+1}\right)+C
\end{aligned}
$$

Ans. (a)

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

102. From Defination: Equivalence Relation : A relation R on a set A is said to be an equivalence relatio on

A iff
(i) it is reflexive i.e. $(a, a) \in R$ for all $a \in A$
(ii) it is symmetric ie. $(a, b) \in R \Rightarrow$ ($b, a) \in R$ for $a l l a, b \in A$
(iii) it is transitive i.e. $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R$ for all $a, b, c \in A$

Ans. (d)
JTENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731 - 4236844 Visit us : www.jmaindore.com
103. Here, function $f(x)=\left\{\begin{array}{cl}\left.\left.x e^{\left(\frac{1}{|x|}\right.} \frac{1}{x}\right\}\right) & x \neq 0 \\ 0, & x=0\end{array}\right\}$

For continuity of function, Check for Left Hand Limit

$$
\begin{aligned}
& \lim _{h \rightarrow 0}-h e^{\left(\frac{1}{h} \frac{1}{h}\right)} \\
& \lim _{h \rightarrow 0^{-}}-h e^{0}=0
\end{aligned}
$$

For Right Hand Limit

$$
\lim _{h \rightarrow 0^{+}}(0+h) e^{-\left(\frac{1}{(0+h \mid} \cdot \frac{1}{(0+h)}\right)}
$$

$$
\lim _{n \rightarrow 0^{+}} h e^{-2}=0
$$

$$
{ }_{n \rightarrow 0^{-}}
$$

L.H.L. $=$ R.H.L. $=0$

For $\lim _{h \rightarrow 0^{+}} \frac{f(0-h)-f(h)}{(0-h)}$

$\lim _{x \rightarrow 0^{-}} \frac{(0-h) e^{-\left(\frac{1}{10-h}+\frac{1}{h}\right)}-h e^{\left(\frac{1}{h}+\frac{1}{h}\right)}}{0-h}$

$$
\lim _{x \rightarrow 0^{-}} \frac{-h e^{\circ}}{-h}=1
$$

For R.H.L.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{f(0+h)-f(h)}{0+h} \Rightarrow \frac{(0+h) e^{-\left(\frac{1}{h}+\frac{1}{h}\right)}-h e^{-\left(\frac{1}{h}+\frac{1}{n}\right)}}{0+h} \\
& \frac{h e^{\frac{2}{7}}}{h}=e^{\frac{2}{0}}=0
\end{aligned}
$$

L. H. L \neq R.H.L.

Hence given function is not differentiable at $x=0$
Ans. (a)
Note : This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top 20

(AIR - 1, AIR - 2 , AIR - 3, AIR - 4, AIR - 5 , AIR - 6 , AIR - 7 , AIR - 8 , AIR - 9 , AIR - 10 , AIR - 11, AIR - 12 , AIR - 13, AIR - 15 , AIR - 16, AIR - 17 , AIR - 18 , AIR - 19 , AIR - $20 \ldots .$. And Many More...)

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category

JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

104. In the case of each book we may take $0,1,23, \ldots .$. , p copies;
that is, we may deal with each book in $p+1$ ways and therefore with all the books in $(p+1)^{n}$ ways. But, this includes the case where all the books are rejcted and no selection is made.
$\therefore \quad$ Number of ways in which selection can be made
$=(p+1)^{n}-1$
Ans. (c)
JITENDRA MISHRA ACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us ; www.jmaindore.com
105. $A A^{T}=91$
$\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]\left[\begin{array}{ccc}1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b\end{array}\right]=91$
$\Rightarrow\left[\begin{array}{ccc}9 & 0 & a+4+2 b \\ 0 & 9 & 2 a+2-2 b \\ a+4+2 b & 2 a+2-2 b & a^{2}+4+b^{2}\end{array}\right] \Rightarrow\left[\begin{array}{ccc}9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9\end{array}\right]$
Equation $a+4+2 b=0 \Rightarrow a+2 b=-4$

$$
\begin{equation*}
2 a+2-2 b=0 \Rightarrow 2 a-2 b=-2 \tag{1}
\end{equation*}
$$

\& $\quad a^{2}+4+b^{2}=0 \Rightarrow a^{2}+b^{2}=5$
Solving $a=-2, b=-1, a+b=-3$
Ans. (a)
106. Check by option

(a) $\left(2-\frac{1}{\sqrt{2}}\right)(1-i)$ put in $|z-2+2 i|=1$

$$
\left|2-\frac{1}{\sqrt{2}}-2 i+\frac{i}{\sqrt{2}}-2+2 i\right|=\left|-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right|=1
$$

Ans. (a)

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 All India Rank in Top 20

23 All India Rank in Top 25
 Highest No. Of Selections in All Over INDIA

[^4]
JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training
$P(A)=$ divisible of $5=\frac{24}{120}$
$P(B)=$ divisible of $15=\frac{8}{120}$
$P(A \cap B)=$ divisible by 5 and $15=\frac{8}{120}$
put all above values in the above formula
$P(A \cup B)=\frac{24}{120}+\frac{8}{120}-\frac{8}{120}$
$P(A \cup B)=\frac{1}{5}$
Ans. (a)
Note : This question can also be solved direct by SHORTCUTA

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top 20

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category
108. for (a) $f(x)=\frac{1}{1-x}$
inverse of $f(x) y=\frac{1}{1-x}$
$y-x y=1$
$x=\frac{1-y}{y}$
Replace $x=y$
It is clear that inverse of $f(x)$ does not exist for $x=0$
(b) $f(x)=x^{2}$ for $x \in R$
inverse of $f(x) y=x^{2}$
$x=\sqrt{y}$
Replace $x=y$
It is clear that inverse of $f(x)$ does not exist for negative value of x
(c) $f(x)=x^{2}$ for all $x \geq 0$
inverse of $f(x) y=x^{2}$
$x=\sqrt{y}$
Replace $x=y$
inverse of given function exist for all positive value of x Hence Ans. is (c)
Ans. (c)
109. $\sec 4 \theta-\sec 2 \theta=2$

$$
\begin{aligned}
& \frac{1}{\cos 4 \theta}-\frac{1}{\cos 2 \theta}=2 \\
& \begin{array}{r}
\frac{1}{2 \cos ^{2} 2 \theta-1}-\frac{1}{\cos 2 \theta}=2 \\
\cos 2 \theta-2 \cos ^{2} 2 \theta+1= \\
-2 \cos 2 \theta+2 \cos 2 \theta\left(2 \cos ^{2} 2 \theta-1\right) \\
-2 \cos 2 \theta(\cos 2 \theta-1)-(\cos 2 \theta-1)=2 \cos 2 \theta\left(2 \cos ^{2} 2 \theta-1\right) \\
\cos \theta=0
\end{array} \\
& \qquad \theta=2 n \pi \pm \frac{\pi}{2}
\end{aligned}
$$

Ans.(c)

Note : This question can also be solved direct by SHORTCUT.

110. If $f(x)=x^{3}+3 x^{2}-9 x+c=(x-\alpha)^{2}(x-\beta)$, then $(x-\alpha)$ is a factor of order 2 . So, $x-\alpha$ is a factor of order one of $f^{\prime}(x)$ i.e. $3 x^{2}+6 x-9=3\left(x^{2}+2 x-3\right)=3(x+3)(x-1)$
$\therefore f^{\prime}(x)=0 \Rightarrow x=1$ or $x=-3$
This show that either $\alpha=1$ or $\alpha=-3$
If $\alpha=1$, then as α is a root of $x^{3}+3 x^{2}-9 x+c=0$. Therefore,

$$
1+3-9+c=0 \Rightarrow c=5
$$

If $\alpha=-3$, then as α is a root of $x^{3}+3 x^{2}-9 x+c=0$ Therefore, $-27+27+27+c=0 \Rightarrow c=-27$
Ans. (c)

JNU MCA Entrance 2015 Result of JMA

 10 All India Rank in Top 10

23 All India Rank in Top 25
 Highest No. Of Selections in All Over INDIA
 42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category

[^5]111. Brother of woman's mother is maternal uncle of woman hence, son of maternal uncle is cousin of the woman. hence, answer is (b)
Ans. (b)
112. Daughter of Nilesh's wife is daughter of Nilesh also.

And Husband of his daughter is man, whom he is pointing Hence, Nilesh is father-in-law of the man.
Ans. (b)

JTENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CIIANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com JITENDRA MISHRA ACADEMY

India's No. 1 Institute for All India MCA Entrance Training

113. Out of 9 socks, 2 can be drawn in ${ }^{9} \mathrm{C}_{2}$ ways
$\therefore \quad$ Total number of elementary event $={ }^{9} \mathrm{C}_{2}$
Two socks drawn from the drawer will match if either both are brown or both are blue.
$\therefore \quad$ Favourable number of elementary events $={ }^{5} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{2}$
Hence, required probability $=\frac{{ }^{5} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{2}}{{ }^{9} \mathrm{C}_{2}}=\frac{4}{9}$
Ans. (a)
114. Given $y_{2}\left(x^{2}+1\right)=2 x y_{1}$
$\Rightarrow \frac{y_{2}}{y_{1}}=\frac{2 x}{x^{2}+1}$
Integrating both sides, we get
$\log y_{1}=\log \left(x^{2}+1\right)+\log c \Rightarrow y_{1}=c\left(x^{2}+1\right)$
Given, $y_{+}=3$ at $x=0 \Rightarrow c=3$
$\therefore \quad y_{1}=3\left(x^{2}+1\right)$
Again, integrating we get $=y=\frac{3 x^{3}}{3}+3 x+c_{1}$
This passes through $(0,1) \therefore c_{1}=1$
Equation of the curve is $=x^{3}+3 x+1$
Correct ans. is $x^{3}+3 x+1$ which is not given in any of the four option
Ans. (Wrong)

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 All India Rank in Top

23 All India Rank in Top 25
 Highest No. Of Selections in All Over INDIA
 42 Selection Out of total 54 Seats in JNU
 All AIR (All India Rank) are in General Category
 JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
 JMA HOLSE - 7, CHANDRALOK COLONY, LNDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com

115. We have, $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$

Let e be the eccentricity of this ellipse, Then,

$$
\mathrm{e}^{2}=1-\frac{5}{9} \Rightarrow e=\frac{2}{3}
$$

The coordinates of the end-points of latusrecta are

$$
\mathrm{L}(2,5 / 3), \mathrm{M}(-2,5 / 3), \mathrm{M}^{\prime}(-2,-5 / 3) \text { and } \mathrm{L}^{\prime}(2,-5 / 3)
$$

The equation of tangents at these points are

$$
\begin{align*}
& 2 x+3 y-9=0 \tag{i}\\
& -2 x+3 y-9=0 \tag{ii}\\
& 2 x+3 y+9=0 \tag{iii}\\
& -2 x+3 y+9=0 \tag{iv}
\end{align*}
$$

Clearly, these tangents form a parallelogram whose are is given by
$\Rightarrow A=27$ sq. units
Ans. (d)
116. Consider the following events.

$$
\begin{aligned}
& E=\text { Student A solves the problem } \\
& F=\text { Student } B \text { solves the problem } \\
& G=\text { Student } C \text { solves the problem } \\
& H=\text { Student } D \text { solves the problem }
\end{aligned}
$$

Clearly, E, F, G, H are independent events such that

$$
\begin{aligned}
& P(E)=\frac{1}{2}, P(F)=\frac{2}{3}, P(G)=\frac{3}{4}, P(H)=\frac{2}{7} \\
& \text { Required probability is } P(E \cup F \cup G \cup H) \\
& \Rightarrow \text { Required probability }=1-P(\bar{E}) P(\bar{F}) P(\bar{G}) P(\bar{H}) \\
& \Rightarrow \text { Required probability }=1-\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4} \times \frac{5}{2}-1-\frac{5}{168} \\
&= \frac{163}{168} \\
& \text { Ans. (c) }
\end{aligned}
$$

117. Equation of circle through origin and chord of contact is

$$
x^{2}+y^{2}+2 g x+2 f y+c+\lambda(g x+f y+c)=0
$$

$\Rightarrow \lambda=-1$
[By $x=0, y=0$]
Therefore, equation is $x^{2}+y^{2}+g x+f y=0$
Hence, circumcentre is $\left(-\frac{g}{2},-\frac{f}{2}\right)$
Ans. (d)
Note: This question can also be solved direct by SHORTCUT.

JNU MCA Entrance 2015 Result of JMA 10 All India Rank in Top 10 19 All India Rank in Top

23 All India Rank in Top 25
Highest No. Of Selections in All Over INDIA

42 Selection Out of total 54 Seats in JNU All AIR (All India Rank) are in General Category

JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CILANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
118. Let $\mathrm{E}_{1}, \mathrm{E}_{2}$ and A be the event defined as follows reports that is a six

We have $P\left(E_{1}\right)=\frac{1}{6}, P\left(E_{2}\right)=\frac{5}{6}$
Now, $\mathrm{P}\left(\mathrm{A} / E_{1}\right)=$ Probability that the man reports that there is a six on the die given that six has occured on the die
$=$ Probability that man speak truth $=3 / 4$ and $P\left(A / E_{2}\right)$
$=$ Probability that the man reports that there six on the die given that six has not occured on the die
$=$ Probability that the man does not speak truth
$=1-\frac{3}{4}=\frac{1}{4}$
By Baye's Rule, we have
$P\left(E_{1} / A\right)=\frac{P\left(E_{1}\right) P\left(A / E_{1}\right)}{P\left(E_{1}\right) P\left(A / E_{1}\right)+P\left(E_{2}\right) P\left(A / E_{2}\right)}=\frac{\frac{1}{6} \times \frac{3}{4}}{\frac{1}{6} \times \frac{3}{4}+\frac{5}{6} \times \frac{1}{4}}=\frac{3}{8}$
Ans. (c)

Note : This question can also be solved direct by SHORTCUT.

[^0]: JTENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com

[^1]: JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
 JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com

[^2]: JITENDRA MISHRA ACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com

[^3]: 97. Clearly the man initially faces in the direction SOUTH

 On moving 135° anticlockwise he faces in the direction NORTH - EAST
 Finally moving 180° clockwise he faces in the direction SOUTH-WEST.
 Ans. (d)
 IITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute forAll India MCA Entrance Training)
 JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com

[^4]: JITENDRA MISHRAACADEMY (JMA), INDORE (India's No. 1 Institute for All India MCA Entrance Training)
 JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com
 107. Set of natural number $\{1,2, \ldots \ldots, 120\}$
 divisible of 5 are $\{5,10,15, \ldots ., 120\}$
 total divisible of $5=24$
 divisible of 15 are $\{15,30,45, \ldots . .120\}$
 total divisible of 15 are 8
 $(A \cup B)=P(A)+P(B)-P(A \cap B)$

[^5]: JITENDRA MISHRAACADEMY (JMA), INDORE (India's No, 1 Institute for All India MCA Entrance Training) JMA HOUSE - 7, CHANDRALOK COLONY, INDORE (M.P.) Ph.: 0731-4236844 Visit us : www.jmaindore.com

