Higher Secondary Education Half Yearly Examination 2017-18 PHYSICS

HSE II Maximum Score 60

Qn No		Scoring In	dicators	Score	Total
		Answer any seven q	uestions from Qn No 1 to 8		
1	(a) (b)	$C = \frac{C_1 C_2}{C_1 + C_2}$ (i) When a charge is given to the syst capacitors.	tem it gets equally shared by the	1	2
,	$F = Bilsin\theta$ $F = 0.15 \times 8 \times sin30^{\circ} = 0.6 \text{ N/m}$			1 1	2
3		Figure (2) Any two properties of paramagnetic	material.	1 1	2
4	4	Magnetic flux tesla Lenz's Law Con	a metre ² aservation of energy etromagnetic analogue of	½x4	2
:	$v = v_m sin\omega t$ $v = v_{rms} \times \sqrt{2} sin2\pi f t = 311.1 sin 314t volt$			1 1	2
6		Negative X direction. $E = Bc = 2 \times 10^{-7} \times 3 \times 10^{8} = 60Vm^{-1}$ $\overrightarrow{E_z} = 60sin(0.5 \times 10^{3}x + 1.5 \times 10^{11}t) \hat{k} Vm^{-1}$			2
7	(a) (b)	velocity Gamma rays, X rays, Micro waves, Radio waves		1	2
8	` ′	0.15 A $i = \epsilon_0 \frac{d\phi_E}{dt}$			2
		Answer any five qu	estions from Qn No 9 to 14		
9	S_{g}			2 1	3
	(b)	zero			

	(a)	The rate of change of magnetic flux is equal to the emf induced. $e = \frac{d\Phi_B}{dt}$	1	
10	(b)	As the loop moves into the field the flux through it increases. By Lenz's law the induced current should flow in a such a direction that the flux decreases. For this the Side PS should experience a force opposite to the direction of notion. By left hand rule this is possible when current flows from P to S. So current in the loop should be along the path PSRQ/Anti clockwise.	2	3
	(a)	inductor	1	
11	(b)	by inserting an iron rod into P any other correct response like change the number of turns, change the area, length etc (1 score)	1	3
	(c)	Maximum energy is wasted across the resistor as heat.	1	
	(a)	Statement of Snell's law.	1	
	(b)	No. because the light travels from rarer to a denser medium.	1	
12	(c)	medium 1 i medium 2 r	1	3
	(a)	Hypermetropia /farsightedness	1	
	(b)	u = -25 cm v = -75 cm		
13	(0)	$p = \frac{1}{f} = \frac{1}{v} - \frac{1}{u} = -\frac{1}{0.75} + \frac{1}{0.25} = 2.66D$ $f = 37.5 \ cm \ (1 \ score)$	2	3
	(a)	90^{0}	1	
14	(b)	$n = \tan p = \tan 52^0 = 1.28$	2	3
	ı	Answer any four questions from Qn No 15 to 19		
	(a)	8 ohm and 32 ohm	1	
15	(b)	Let i is the current through the branch PAQ $i(2 + 24 \parallel 12) = (8 - i) \times 40$ $i(2 + 8) = (8 - i) \times 40$ $i = (8 - i) \times 4$ i = 6.4 A	1 1	4
		(iv) zero (Hint: Balanced Wheatstone's bridge)		
16	(a)	$ \rho = Rln $	1	4

	(b)	$e = Blv = 0.3 \times 10^{-4} \times 10 \times 5 = 1.5 mV$	3 2	
17	(a) (b)	$d = (i_1 - r_1) + (i_2 - r_2)$ $d = (i_1 + i_2) + (r_1 + r_2)$		4
		$d = (i_1 + i_2) + A$ $d + A = i_1 + i_2$	2	
	(a)	$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{15} - \frac{1}{20} = 60 \text{ cm}$	2	
18	(b)	$p = \frac{1}{f} = \frac{1}{0.6} = 1.67 D$	1	4
	(c)	iv) 1.8	1	
	(a)	Statement of Huygen's Principle.	1	
19	(b)	Incident wavefront A' Medium 1 P Medium 2 Refracted wavefront	1	4
		$\sin i = \frac{v_1 \tau}{AC} \qquad \sin r = \frac{v_2 \tau}{AC}$	1	
		$\frac{\sin i}{\sin r} = \frac{v_1}{v_2}$	1	

	$\frac{\sin i}{\sin r} = \frac{n_2}{n_1}$		
	Answer any three questions from Qn No 20 to 23		
(a)	Young's Double slit experiment.	1	
	Correct derivation of $\beta = \frac{\lambda D}{d}$	3	5
(c)	Single slit diffraction pattern.	1	
(a)	Since the circuit is in resonance $Z = R = 10 \Omega$	1	
21 (b)	$f = \frac{1}{2\pi\sqrt{LC}} \qquad C = \frac{1}{4\pi^2 f^2 L} = 50\mu F$	2	5
21 (0)	$2\pi\sqrt{LC}$ $4\pi^2J^2L$	2	3
(c)	(i) 110 V (ii) zero		
(a)	correct derivation of $\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	2	
22 (b)	$\frac{1}{12} = (n-1)\left(\frac{1}{10} + \frac{1}{15}\right)$ $n = 1.5$	2	5
(c)	ii) diverging	1	
(a)	Definition of electric dipole moment	1	
23 (b)	Correct derivation of the equation $\vec{E} = \frac{1}{4\pi\epsilon_0} \times \frac{2pr}{(r^2 - a^2)^2} \hat{p}$	2	5
(c)	120^{0}	1	