Higher Secondary Education
 Half Yearly Examination 2017-18
 PHYSICS

\begin{tabular}{|c|c|c|c|c|}
\hline 10 \& (a) \& \begin{tabular}{l}
The rate of change of magnetic flux is equal to the emf induced.
\[
e=\frac{d \Phi_{B}}{d t}
\] \\
As the loop moves into the field the flux through it increases. By Lenz's law the induced current should flow in a such a direction that the flux decreases. For this the Side PS should experience a force opposite to the direction of notion. By left hand rule this is possible when current flows from P to S . So current in the loop should be along the path PSRQ/Anti clockwise.
\end{tabular} \& 2 \& 3 \\
\hline 11 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
inductor \\
by inserting an iron rod into \(P\) \\
any other correct response like change the number of turns, change the area, length etc (1 score) \\
Maximum energy is wasted across the resistor as heat.
\end{tabular} \& 1
1

1 \& 3

\hline 12 \& | (a) |
| :--- |
| (b) |
| (c) | \& | Statement of Snell's law. |
| :--- |
| No. because the light travels from rarer to a denser medium. | \& 1

1

1 \& 3

\hline 13 \& (a) \& Hypermetropia /farsightedness

$$
\begin{aligned}
& u=-25 \mathrm{~cm} \quad v=-75 \mathrm{~cm} \\
& p=\frac{1}{f}=\frac{1}{v}-\frac{1}{u}=-\frac{1}{0.75}+\frac{1}{0.25}=2.66 \mathrm{D} \\
& \quad f=37.5 \mathrm{~cm}(1 \text { score })
\end{aligned}
$$ \& 1

2 \& 3

\hline 14 \& | (a) |
| :--- |
| (b) | \& \[

$$
\begin{aligned}
& 90^{\circ} \\
& n=\tan p=\tan 52^{\circ}=1.28
\end{aligned}
$$
\] \& 1

2 \& 3

\hline \multicolumn{5}{|c|}{Answer any four questions from Qn No 15 to 19}

\hline 15 \& (a) \& | 8 ohm and 32 ohm |
| :--- |
| Let i is the current through the branch PAQ $\begin{aligned} & i(2+24 \\| 12)=(8-i) \times 40 \\ & i(2+8)=(8-i) \times 40 \\ & i=(8-i) \times 4 \\ & i=6.4 A \end{aligned}$ |
| (iv) zero (Hint: Balanced Wheatstone’s bridge) | \& 1

1
1
1 \& 4

\hline 16 \& (a) \& $\rho=R I n$ \& 1 \& Δ

\hline
\end{tabular}

		$\frac{\sin i}{\sin r}=\frac{n_{2}}{n_{1}}$		
Answer any three questions from Qn No 20 to 23				
20	(a) (b) (c)	Young's Double slit experiment. Correct derivation of $\beta=\frac{\lambda D}{d}$ Single slit diffraction pattern.	1 3 1	5
21	(a) (b) (c)	Since the circuit is in resonance $Z=R=10 \Omega$ $f=\frac{1}{2 \pi \sqrt{L C}} \quad C=\frac{1}{4 \pi^{2} f^{2} L}=50 \mu F$ (i) 110 V (ii) zero	1 2 2	5
22	(a) (b) (c)	correct derivation of $\frac{1}{f}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ $\frac{1}{12}=(n-1)\left(\frac{1}{10}+\frac{1}{15}\right) \quad n=1.5$ ii) diverging	2 2	5
23	(a) (b) (c)	Definition of electric dipole moment Correct derivation of the equation $\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{2 p r}{\left(r^{2}-a^{2}\right)^{2}} \hat{p}$ 120^{0}	1 2 1	5

