HSE – II - SET I

Answer Key

Zoology

Qn. No.	Scoring Indicators	Split Score	Total Score
1	a. Bacterial Artificial Chromosome	1/2	
	b. Yeast Artificial Chromosome	1/2	1
2	a. Alfred Wallace	1/2	
	b. Plasmodiam	1/2	1
3	Interferons	1	1
4	(a). Spermatogonia and sertoli cells.	1	
	(b). Spermatogonia – develop as sperm Sertoli cells nourishment to developing sperms	5 – 1	2
5	Family planning	1	
	Reproductive and Child Health care programme.	1	2
6	a. Sickle cell anaemia /Autosome linked recessive trait	1	
	b. Val -His-Leu-Thr-Pro-Glu-Glu 1 2 3 4 5 6 7	1	2
7			
	AB		
	Natural selection Charles Darwin		
	Lamarck Inheritance of	$\frac{1}{2} \ge 4 = 2$	
	acquired		2
	characters		
	Gene flow by chance Genetic drift		
	Analogous structures Convergent evolution		
8	Balanced diet, personal hygiene regular exercise, Yoga, Awaren	ness any four relevant	2

9	 about diseases, vaccination (immunisation) proper disposal of wastes, control of vectors, hygienic food and water resources etc. a. DNA Dependent DNA Polymerase and DNA Ligase b. DNA-dependent DNA polymerase catalyse the polymerisation of deoxyribonucleotides The discontinuously synthesised fragments are later joined by the enzyme DNA ligase 	answers 2 score	2
10	Over production-Struggle for existence -Variations- Survival of the fittestSpeciation	one correct series $\frac{1}{2}$ score $\frac{1}{2} \ge 4 = 2$	2
11	Splicing, Capping and tailing Primary transcripts contain both the exons and the introns and are non-functional. it is subjected to a process called splicing where the introns are removed and exons are joined in a defined order. hnRNA undergo two additional processing called as capping and tailing. In capping an unusual nucleotide (methyl guanosine triphosphate) is added to the 5 ' -end of hnRNA. In tailing, adenylate residues (200-300) are added at 3 ' -end in a template independent manner.	any two description 2 score	2
12	 a. In vaccination, a preparation of antigenic proteins of pathogen or inactivated/weakened pathogen (vaccine) are introduced into the body. The vaccines also generate memory B and T-cells that recognise the pathogen quickly on subsequent exposure and overwhelm the invaders with a massive production of antibodies. In immunisation we directly inject the preformed antibodies, or antitoxin (a preparation containing antibodies to the toxin). b. Polio vaccine, Rubella vaccine, MMR vaccine, etc 	2 any relevant answers 1 score	3

13	a. Matthew Meselson and Franklin Stahl	1	
	b. They grew E. coli in a medium containing $15 \text{ NH}_4\text{Cl}$ (15 N is		
	the heavy isotope of nitrogen) as the only nitrogen source for	2	
	many generations. The result was that 15 N was incorporated		
	into newly synthesised DNA (as well as other nitrogen		
	containing compounds). This heavy DNA molecule could be		
	distinguished from the normal DNA by centrifugation in a		
	cesium chloride (CsCl) density gradient. Then they transferred		3
	the cells into a medium with normal 14		
	NH 4 Cl and took samples at various definite time intervals as		
	the cells multiplied, and extracted the DNA that remained as		
	double-stranded helices. The hybrid DNA is the proof of the		
	DNA replication is semi conservative.		
13	In bacteria, the mRNA does not require any processing to become	3	
	active, and also transcription and translation take place in the same		
	compartment (there is no separation of cytosol and nucleus in		
	bacteria), many times the translation can begin much before the		3
	mRNA is fully transcribed. Consequently, the transcription and		
	translation can be coupled in bacteria.		
14	1850-No atmospheric pollution .the tree trunks inhabited by folise	3	
	lichen and which appeared as white. Then dark moth becomes more		
	conspicuous and fed by the predators. So dark moth decreased in		
	number.		
	1920-industry developed –coal used as fuel- tree trunks covered with		
	soot and smoke and become dark .Hence white coloured moth		3
	became more conspicuous and fed by the predators -So white		_
	coloured moth decreased in number.		
	1960 – industry develops more – electricity used as fuel. No soot		
	and smoke on tree trunks. It began to appear as white .Hence once		
	again dark one becomes more conspicuous and fed by predators.		

	So the number of grey moth again decreased		
15	There is a positively charged, basic proteins called histones. A	3	
	protein acquires charge depending upon the abundance of amino		
	acids resides with changed side chain. Histones are rich in the basic		
	acid reduces carry +ve charges in their side chain. Histones		
	organised to form a unit of eight molecules called histone octamer.		2
	The negatively charged DNA is wrapped around the positively		3
	charged histone octamer to form a structure called nucelosome.		
	The packaging of chromatin at higher level requires additional set of		
	proteins that collectively are referred to as non histone		
	chromosomal proteins.		
16	a. Hardy Weinberg principle	1	
	b. The factors affecting the principle are gene migration or	2	
	gene flow, genetic drift, mutation, genetic recombination		3
	and natural selection.		
17		3	
	P 1 P Z Y a In absence of inducer Repressor mRNA Repressor mRNA		3