ICSE Paper 2009

MATHEMATICS

SECTION A [40 Marks]

(Answer **all** questions from this Section.)

Question 1.

(a)	Mr. Dubey borrows ₹ 1,00,000 from compound interest. He repays ₹ 41,00 at the end of the second year. Find th	10 a	it the end of the first year and < 47	ng of
	the third year.			[3]
(b)	A dice is thrown once. What is the pro	ba	bility that the	
	(i) number is even			503
	(ii) number is greater than 2 ?		desk	[3]
(c)	Find the HCF and LCM of the follow	ing	polynomials : **	54 Y-5145
1000	$3x^3 - 27x^2 + 60x$	ınd	$x^2 - 16$	[4]
Sol	ution :			
(a)	Given : $P = 71,00,000, R = 11\%$			
	Interest for first year	=	$\frac{\text{PRT}}{100} = \frac{1,00,000 \times 11 \times 1}{100} = ₹ 11,000$)
2)	Amount after first year	=	1,00,000 + 11,000 = ₹ 1,11,000	
	Principal for second year			
	•		₹ 70,000	
	Interest for second year		$\frac{70,000 \times 11 \times 1}{100} = ₹7,700$	
			₹ 70,000 + 7,700 = 77,700	
	Amount outstanding for beginning o	f tł	nird year	
	5 555 B		₹ 77,700 – ₹ 47,700	
		=	₹ 30,000.	Ans.
(ቤ)	Dice is thrown once.			
(6)		E	{1, 2, 3, 4, 5, 6}	
	\therefore n (S)	5	6	
	(i) Number is even	. =	{2, 4, 6}	
	\therefore $n(\mathbf{E})$) =	3	
	P (Even number)) =	$\frac{n(E)}{n(S)} = \frac{3}{6} = 1/2$	Ans.
5	(ii) Number is greater than 2			
	n (E			
			$\frac{n(E)}{n(S)} = \frac{4}{6} = \frac{2}{3}$	Ans.

** Solution has not given due to out of present syllabus.

542 | ICSE Last 10 Years Solved Papers

Question 2.

(a) Find x and y, if
$$\begin{bmatrix} 2x & x \\ y & 3y \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 9 \end{bmatrix}$$
 [3]

- (b) What least number must be added to each of the numbers 5, 11, 19 and 37 so that they are in proportion ? [3]
- (c) Given that x + 2 and x + 3 are factors of 2x³ + ax² + 7x b. Determine the values of a and b.
 [4]

Solution :

(a) Given:

$$\begin{bmatrix}
2x & x \\
y & 3y
\end{bmatrix}
\begin{bmatrix}
3 \\
2
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
6x + 2x \\
3y + 6y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$

$$\Rightarrow
\begin{bmatrix}
8x \\
9y
\end{bmatrix} =
\begin{bmatrix}
16 \\
9
\end{bmatrix}$$
Ans.

(b) Let the number x be added to each number.

$$5 + x : 11 + x = 19 + x : 37 + x$$
$$\frac{5 + x}{11 + x} = \frac{19 + x}{37 + x}$$

By componendo and dividendo,

$$\Rightarrow \qquad \frac{5+x+11+x}{5+x-11-x} = \frac{19+x+37+x}{19+x-37-x}$$

$$\Rightarrow \qquad \frac{16+2x}{-6} = \frac{56+2x}{-18}$$

$$\Rightarrow \qquad 3(16+2x) = 56+2x$$

$$\Rightarrow \qquad 48+6x = 56+2x$$

$$\Rightarrow \qquad 4x = 8$$

$$\Rightarrow \qquad x = 2$$
Ans.

(c) Given : (x + 2) and (x + 3) are the factors of $2x^3 + 9x^2 + 7x - b$. $\therefore f(-2)$ and f(-3) will be zero.

$$f(x) = 2x^{3} + ax^{2} + 7x - b$$

$$f(-2) = 2(-2)^{3} + a(-2)^{2} + 7(-2) - b = 0$$

$$-16 + 4a - 14 - b = 0$$

$$4a - b = 30$$

$$f(-3) = 2(-3)^{3} + a(-3)^{2} + 7(-3) - b = 0$$

$$-54 + 9a - 21 - b = 0$$

$$9a - b = 75$$
...(2)

Solving (1) and (2), we get

$$a = 9, b = 6$$
 Ans.

Question 3.

(a) Solve the inequation and represent the solution set on the number line.

$$-3 + x \le \frac{8x}{3} + 2 \le \frac{14}{3} + 2x, \text{ where } x \in I$$
 [3]

(b) Find the value of p for which the lines

2x + 3y - 7 = 0 and 4y - px - 12 = 0 are perpendicular to each other. [3]

(c) In the given figure O is the centre of the circle, ∠ BAD = 75° and chord BC = chord CD. Find : (i) ∠ BOC (ii) ∠ OBD (iii) ∠ BCD. [4]

Solution :

(a)

$$\begin{array}{c}
-3+x \leq \frac{8x}{3}+2 \leq \frac{14}{3}+2x, x \in I \\
-3+x \leq \frac{8x}{3}+2 \\
\frac{8x}{3}-x \leq \frac{8x}{3}+2 \\
\frac{8x}{3}-\frac{x}{1} \geq -3-2 \\
\frac{8x-3x}{3} \geq -5 \\
5x \geq -15 \\
x \geq -3 \\
\end{array}$$
(b) Given equation is

$$2x+3y-7 = 0 \\
\Rightarrow \qquad 3y = -2x + 7 \\
\Rightarrow \qquad y = -\frac{2}{3}x + \frac{7}{3} \\
Slope of the line (m_1) = -\frac{2}{3} \\
Another equation is \qquad 4y - px - 12 = 0 \\
\Rightarrow \qquad 4y = px + 12 \\
\Rightarrow \qquad y = \frac{p}{4}x + 3 \\
Slope of the line (m_2) = \frac{p}{4}$$

and and a second

544 | ICSE Last 10 Years Solved Papers

As per the question, lines are perpendicular.

Question 4.

(a) Find the mean, median and mode of the following distribution :

(b) Without using trigonometric tables evaluate the following :

$$\frac{\sec 17^{\circ}}{\csc 73^{\circ}} + \frac{\tan 68^{\circ}}{\cot 22^{\circ}} + \cos^2 44^{\circ} + \cos^2 46^{\circ}$$
[3]

(c) AC and BD are two perpendicular diameters of a circle with centre O. If AC = 16 cm, calculate the area and perimeter of the shaded part. (Take $\pi = 3.14$) [4] Solution :

(a) Mean
$$= \frac{\Sigma x}{n} = \frac{8+10+7+6+10+11+6+13+10}{9}$$

 $= \frac{81}{9} = 9$

O C

п

Ans,

Ans.

For the median, we arrange the data in ascending order

6, 6, 7, 8, 10, 10, 10, 11, 13
Median =
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 term = $\left(\frac{9+1}{2}\right)^{\text{th}}$ term
= 5th term = 10

In the given data, 10 occurs maximum number of times, therefore

$$Mode = 10$$

(b) Given: $\frac{\sec 17^{\circ}}{\csc 73^{\circ}} + \frac{\tan 68^{\circ}}{\cot 22^{\circ}} + \cos^2 44^{\circ} + \cos^2 46^{\circ}$

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2009 | 545

 $= \frac{\sec (90^{\circ} - 73^{\circ})}{\csc 73^{\circ}} + \frac{\tan (90^{\circ} - 22^{\circ})}{\cot 22^{\circ}} + \cos^{2} (90^{\circ} - 46^{\circ}) + \cos^{2} 46^{\circ}$ $= \frac{\csc 73^{\circ}}{\csc 73^{\circ}} + \frac{\cot 22^{\circ}}{\cot 22^{\circ}} + \sin^{2} 46^{\circ} + \cos^{2} 46^{\circ}$ = 1 + 1 + 1 = 3Ans.

(c) Given : AC = 16 cm = diameter of the circle, $\pi = 3.14$.

Area of shaded portion = 2 quadrant

 $=\frac{1}{2}\times\pi r^2$

SECTION B [40 Marks]

Answer any four Questions in this Section.

Question 5.

(a) A shopkeeper bought a TV at a discount of 30% of the listed price of ₹ 24,000. The shopkeeper offers a discount of 10% of the listed price to his customer. If the VAT (Value Added Tax) is 10%.

Find : (i) the amount paid by the customer.

- (ii) the VAT to be paid by the shopkeeper. [3]
- (b) Solve the following quadratic equation and give the answer correct to two significant figures.

$$4x^2 - 7x + 2 = 0$$
 [3]

A

σ

D

R

- (c) Use graph paper to answer this question.
 - (i) Plot the points A (4, 6) and B (1, 2)
 - (ii) A' is the image of A when reflected in X-axis.
 - (iii) B' is the image of B when B is reflected in the line AA'.

ς.

(iv) Give the geometrical name for the figure ABAB'.

Solution :

(a) (i)

$$Discount = 30\% \text{ on } 24,000$$

$$= \frac{30}{100} \times 24,000 = ₹7,200$$

Cost price of shopkeeper = 24,000 - 7,200

$$Tax @ 10\% = \frac{10 \times 16800}{100} = ₹ 1680$$

Amount paid by shopkeeper = 16,800 + 1,680 = ₹ 18,480

[4]

546 | ICSE Last 10 Years Solved Papers

Question 6.

Mathematics, 2009 | 547

[3]

[3]

[4]

E

 (Int, \angle)

(Vert.)

Ans.

Proved

- (a) In the given figure, ABC and CEF are two triangles where BA is parallel to CE
 - (i) . Prove that $\triangle ADF \sim \triangle CEF$.
 - (ii) Find AD if CE = 6 cm.
 - (iii) If DF is parallel to BC find area of $\triangle ADF$: area of $\triangle ABC$.

(b) Prove the following identity :

$$\frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A} = 2 \operatorname{cosec} A$$

(c) The following table gives the wages of w

Wages in ?	Terre		s of wor				
	45-50	50-55	55-60	60-65	65-70	70-75	77.00
No. of workers	5	8	Contraction Section			10-10	75-80
Calculate the man	Charles and the second	<u> </u>	_ 30	25	14	12	6

the mean by the short cut method. Solution :

(a) In \triangle ABC and \triangle CEF,

ž

1

BA # CE (given) $\frac{AF}{AC} = \frac{5}{8}$ (given) and AF \Rightarrow $\frac{AF}{AF + FC} = \frac{5}{5+3}$ n $\frac{\text{AF}}{\text{FC}} = \frac{5}{3}$ => (i) $\angle \text{DAF} = \angle \text{FCE}^{\perp}$ $\angle AFD = \angle CFE$ ••• \triangle ADF ~ \triangle CEF (AA similarity) $\frac{AD}{CE} = \frac{AF}{FC} \implies \frac{AD}{6} = \frac{5}{3}$ (ii)

$$AD = \frac{5}{3} \times 6 = 10 \text{ cm}$$

(iii) Given : DF || BC

 $\triangle ADF \sim \triangle ABC$ $\frac{\text{AF}}{\text{AC}} = \frac{\text{AD}}{\text{AB}} = \frac{5}{8}$ $\frac{\text{Area of } \Delta \text{ ADF}}{\text{Area of } \Delta \text{ ABC}} = \frac{\text{AD}^2}{\text{AB}^2} = \frac{(5)^2}{(8)^2} = \frac{25}{64}$ Ans. www.10yearsquestionpaper.com

548 | ICSE Last 10 Years Solved Papers

(b

$$L.H.S. = \frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A}$$

= $\frac{\sin^2 A + 1 + \cos^2 A + 2 \cos A}{\sin A (1 + \cos A)}$
= $\frac{2 + 2 \cos A}{\sin A (1 + \cos A)} = \frac{2 (1 + \cos A)}{\sin A (1 + \cos A)}$
= 2 cosec A = R.H.S.

Class interval	Class Marks	$\frac{c A = R.H.S.}{d_i = x_i - A}$	r- <u>-</u>	Prove
45-50	$\frac{x_i}{47.5}$		Frequency fi	fidi
50-55 55-60 60-65 6570 70-75 75-80	52·5 57·5 62·5 (A) 67·5 72·5 77·5	- 15 -10 -5 0 5 10 15	5 8 30 25 14 12 6	* 75 - 80 - 150 0 70 120
re, $A = 62.5$			$\Sigma f_i = 100$	$\frac{90}{\Sigma f_i d_i = -25}$

Mean = A +
$$\frac{\Sigma f_i d_i}{\Sigma f_i}$$
 = 62.5 + $\left(\frac{-25}{100}\right)$
= 62.5 - 0.25 = 62.25

Question 7.

- (a) Amit Kumar invests ₹ 36,000 in buying ₹ 100 shares at ₹ 20 premium. The (i)
 - The number of shares he buys
 - (ii) His yearly dividend
 - (iii) The percentage return on his investment.
- Give your answer correct to the nearest whole number. (b) What sum of money will amount to ₹ 9,261 in 3 years at 5% per annum
- (c) Mr. Mishra has a Savings Bank Account in Allahabad Bank. His pass book

Date	Particulars	Withdrawals	5-120Ma - 121	
		(in ₹)	Deposits (in T)	Bàlance
Jan. 4, 2007	By Cash			(in 🎝
Jan. 11, 2007	By Cheque		1000.00	1000.00
Feb. 3, 2007	By Cash	- 1	3000.00	4000.00
Feb. 7, 2007	To Cheque	-	2500.00	6500.00
M. To see	S. S	2000.00		4500.00
May 1 05	By Cash		5000.00	2010/02/02/02/02/02/02/02/02/02/02/02/02/02
March 25, 2007	By Cash		and a strategy of the second se	9500.00
June 7, 2007	By Cash		2000.00	11,500.00
Access and access 1	To Cheque		3500.00	15000.00
ate of interest nai	10 Cheque	1000.00	<u> </u>	14000.00

te of interest paid by the bank is 4.5% per annum. Mr. Mishra closes his account on 30th October, 2007. Find the interest he receives. \$

[4]

Ans.

1

Mathematics, 2009 | 549

「「「日間には一個間

Solution :

(a) MV of 1 share =
$$\forall (100 + 20) = \forall 120$$

Given : Dividend = 15%, Investment = 36,000
(i) Number of shares buys = $\frac{\text{Investment}}{\text{MV}}$
 $= \frac{36,000}{120} = 300$ Ane.
(ii) Dividend on 1 share = $\forall \frac{15}{100} \times 100 = \forall 15$
Dividend on 300 shares = 15×300
 $= \forall 4,500$ Ans.
(iii) Rate of interest = $\frac{4,500}{36,000} \times 100$
 $= 12.5\%$ Ans.
(b) Given $A = \forall 9,261, T = 3$ year, $R = 5\%$
 $A = P\left(1 + \frac{R}{100}\right)^{T}$
 $\Rightarrow 9,261 = P\left(1 + \frac{5}{100}\right)^{3}$
 $\Rightarrow 9,261 = P\left(\frac{21}{20}^{3}\right)$
 $\Rightarrow 9,261 = P\left(\frac{21}{20}^{3}\right)$
 $\Rightarrow 9,261 = P\left(\frac{21}{20}^{3}\right)$
 $\Rightarrow 9,261 = P\left(\frac{21}{20}\right)^{2}$
 $\Rightarrow 9,261 = P\left(\frac{21}{20} \times 20 \times 20 \times 20\right)$
 $I \times 21 \times 21 \times 21$
 $= \forall 8,000$ Ans.
(c) Qualifying amounts for interest for various months :
January $\forall 1,000$ $P = \forall 92,000$ Ans.
 $Ars. Therese the theorem the theorem the theorem theorem$

6

550 | ICSE Last 10 Years Solved Papers

Question 8.

(b)

www.l0yearsquestionpaper.com (a) Given that $\frac{a^3 + 3ab^2}{b^3 + 3a^2b} = \frac{63}{62}$.

Using Componendo and Dividendo find a : b.

In the above figure AB = 7 cm and BC = 9 cm.

Prove $\triangle ACD \sim \triangle DCB$. (i)

Find the length of CD. (ii)

[3]

[3]

5 cm

6 cm

[4]

÷

- (c) The given figure represents a hemisphere surmounted by a conical block of wood. The diameter of their bases is 6 cm each and the slant height of the cone is 5 cm. Calculate :
 - the height of the cone. (i)

(ii) the volume of the solid.

Solution :

www.10yearsquestionpaper.com

(ii)
AC × BC = CD²
CD² = 16 × 9 = 144
CD = 12 cm.
(i)
Ans.
(i)
Ans.
(i)
CD² = DB² - OB²
= 25 - 9 = 16
OD = 4 cm
Ans.
(ii)
Volume of hemisphere =
$$\frac{2}{3}\pi r^3$$

= $\frac{2}{3} \times \frac{22}{7} \times (3)^3$
= $56 \cdot 57 \text{ cm}^3$.
Volume of cone = $\frac{1}{3}\pi r^2h = \frac{1}{3} \times \frac{22}{7} \times 9 \times 4 = 37 \cdot 71 \text{ cm}^3$
Volume of the solid = $37 \cdot 71 + 56 \cdot 57$
= $94 \cdot 28 \text{ cm}^3$.
Ans.

(a) Attempt this question on graph paper.

Marks obtained by 200 students in examination are given below :

Marks	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
No. of Students	5	10	14	21	25	34	36	97	16	10
					20	04	30	27	16	1

Draw an Ogive for the given distribution taking 2 cm = 10 marks on one axisand 2 cm = 20 students on the other axis.

From the graph find :

- (i) the Median
- (ii) the Upper Quartile
- (iii) Number of students scoring above 65 marks.

2.,

- (iv) If 10 students qualify for merit scholarship, find the minimum marks required to qualify. [6]
- (b) From two points A and B on the same side of a building, the angles of elevation of the top of the building are 30° and 60° respectively. If the height of the building is 10m, find the distance between A and B correct to two decimal places. [4]

Solution :

Marks	No. of students	cf
0-10	5	5
10-20	10	15
20-30	14	29
30-40	21	50
40-50	25	75
50-60	34	109
60-70	36	145
70-80	27	172
80-90	16	188
90-100	12	200

www.10yearsquestionpaper.com Mathematics, 2009 | 553

In \triangle DAC, $\tan 30^\circ = \frac{10}{x+y} = \frac{1}{\sqrt{3}}$ $\Rightarrow \qquad x+y = 10\sqrt{3}$ $\Rightarrow \qquad y = 10\sqrt{3} - \frac{10}{\sqrt{3}}$ $= \frac{30-10}{\sqrt{3}} = \frac{20}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ $= \frac{20}{3}\sqrt{3}$ = 11.55 m Ans.

Question 10.

5

- (a) Mrs. Goswami deposits ₹ 1000 every month in a recurring deposit account for 3 years at 8% interest per annum. Find the matured value.
 [3]
- (b) Find the equation of a line with x intercept = 5 and passing through the point (4, -7). [3]
- (c) In a school the weekly pocket money of 50 students is as follows :

Weekly pocket money in ₹	40-50	50-60	60-70	70-80	80-90	90-100
No. of students	2	8	12	14	8	6

Draw a histogram and a frequency polygon on the same graph. Find the mode from the graph. [4]

Solution :

=

 \Rightarrow

(a) Total Principal (P) for 1 month

$$P = x \times \frac{n (n + 1)}{2} = 1000 \times \frac{36 \times 37}{2}$$

= ₹ 6,66,000
Interest for 1 month = $\frac{PRT}{100} = \frac{6,66,000 \times 8 \times 1}{100 \times 12}$

Total amount deposited by Mr. Goswami = 36×1000 = ₹ 36,000

Maturity value = ₹ 36,000 + 4,440

= ₹40,440

(b) Equation of the line passing through (5, 0) and (4, -7):

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

$$y - 0 = \frac{-7 - 0}{4 - 5} (x - 5)$$

$$y = \frac{-7}{-1} (x - 5)$$

$$y = 7 (x - 5)$$

$$y = 7x - 35$$

$$7x - y - 35 = 0$$

Ans.

Ans.

¥.

Question 11.

- If the height of the model is 80 cm, find the actual height of the building in metres.
- (ii) If the actual volume of a tank at the top of the building is $27m^3$, find the volume of the tank on the top of the model. (2]
- (b) The speed of an express train is x km/h and the speed of an ordinary train is 12 km/h less than that of the express train. If the ordinary train takes one hour longer than the express train to cover a distance of 240 km, find the speed of the express train. [4]
- (c) Using ruler and compasses construct
 - (i) a triangle ABC in which AB = 5.5 cm, BC = 3.4 cm and CA = 4.9 cm.
 - (ii) the locus of points equidistant from A and C.
 - (iii) a circle touching AB at A and passing through C. [4]

Solution :

(a) Scale factor
$$k = \frac{1}{30}$$

(i)

Height of the model = k (times the height of the building)

Height of building = 80×30

 $= 2400 \,\mathrm{cm}$

 $= 24 \, \text{m}$

Ans.

					1. 1970 (PR 1970)			
23	(ii)	Volume of model	Ŧ	k^3 times volume of the building				
52			=	$\frac{1}{30} \times \frac{1}{30} \times \frac{1}{30} \times 27 \text{ m}^3$				
			=	$\frac{1}{1000} m^3 = 0.001 m^3 \qquad .$	Ans.			
(b)	ä	Time taken by express train	=	$\frac{240}{x}h$				
		Speed of ordinary train	=	(x - 12) km/h				
		Time taken by ordinary train	=	$\frac{240}{x-12}$				
	Accor	ding to the question, $\frac{240}{x}$	=	$\frac{240}{x-12}-1$	5			
	⇒	240(x-12)	=	240 x - x (x - 12)				
	⇒	240x - 2880	=	$240 x - x^2 + 12x$				
	⇒	$x^2 - 12x - 2880$	_	0				
	⇒	$x^2 - 60x + 48x - 2880$	=	0				
	⇒	x(x-60) + 48(x-60)	=	0				
	⇒	(x-60)(x+48)	5	0	52			
	eithe	x - 60 = 0	or	x+48=0				
	⇒	x = 60	or	x = -48	Ans.			
	Hence, the speed of express train is 60 km/h.							
(c)	Step	s of construction :		× ×				

- 1. Draw \triangle ABC with given values.
- 2. Draw XY perpendicular bisector of AC.
- 3. Draw perpendicular of AB at A which cuts perpendicular XY at O.
- 4. Draw a circle at centre O which touching AB at A and passing through C *i.e.*, required circle.

www.10yearsquestionpaper.com