WWW.10YEARSQUESTIONPAPER.COM

ICSE Paper 2013

MATHEMATICS

SECTION A [40 Marks] (Answer all questions from this Section.)

Question 1.

(a) Given $A = \begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix}, C = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}.$

Find the matrix X such that A + 2X = 2B + C.

- (b) At what rate % p.a. will a sum of ₹ 4000 yield ₹ 1324 as compound interest in 3 years ? [3]
- (c) The median of the following observations 11, 12, 14, (x 2), (x + 4), (x + 9), 32, 38, 47 arranged in ascending order is 24. Find the value of x and hence find the mean.

Solution :

(a) Given: $A = \begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix} \text{ and } C = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$

 $\therefore \qquad \mathbf{A} + 2\mathbf{X} = 2\mathbf{B} + \mathbf{C}$

Putting the given values, we get

$$\begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix} + 2X = 2 \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$$

$$2X = \begin{bmatrix} -6+4 & 4+0 \\ 8+0 & 0+2 \end{bmatrix} - \begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix}$$

$$X = \frac{1}{2} \begin{bmatrix} -4 & 10 \\ 6 & 2 \end{bmatrix}$$

$$X = \begin{bmatrix} -2 & 5 \\ 3 & 1 \end{bmatrix}$$

(b) Given : Principal = \P 4,000, C.I. = \P 1,324,
Amount = P + C.I.

$$= \P$$
 (4,000 + 1,324) = \P 5,324
Time = 3 years
We know that,

$$A = P \left(1 + \frac{r}{100} \right)^T$$

$$5,324 = 4,000 \left(1 + \frac{r}{100} \right)^3$$

[3]

Ans.

x = 20

Therefore, 11, 12, 14, (20 - 2), (20 + 4), (20 + 9), 32, 38, 47

= 11, 12, 14, 18, 24, 29, 32, 38, 47

Now	Mean	$=\frac{\Sigma x}{n}$
		$= \frac{11+12+14+18+24+29+32+38+47}{9}$
		$=\frac{225}{9}=25.$ Ans.

Question 2.

.

5

2

-1

- (a) What number must be added to each of the number 6, 15, 20 and 43 to make them proportional ? [3]
- (b) If (x-2) is a factor of the expression $2x^3 + ax^2 + bx 14$ and when the expression is divided by (x - 3), it leaves a remainder 52, find the values of a and b. [3]
- (c) Draw a histogram from the following frequency distribution and find the mode from the graph :

Class	0-5	5-10	10-15	15-20	20-25	25-30
Frequency	2	5	18	14	8	

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2013 | 477 • Solution : (a) Let the number must be added be x, then the new number = 6 + x, 15 + x, 20 + x, 43 + xThese are proportionals. 6 + x : 15 + x :: 20 + x : 43 + x(6+x)(43+x) = (15+x)(20+x)OT $258 + 6x + 43x + x^2 = 300 + 20x + 15x + x^2$ OT 49x - 35x = 300 - 258OT 14x = 42or Ans. $\mathbf{x} = 3$. OT (b) Let (x-2) is a factor of the given expression. x-2 = 02010 x = 2Given expression, $2x^3 + ax^2 + bx - 14 = 0$ $2(2)^3 + a(2)^2 + b(2) - 14 = 0$ 16 + 4a + 2b - 14 = 04a + 2b + 2 = 04a+2b = -2...(i) 2a+b = -1. 10 and when given expression is divided by (x - 3)

$$x - 3 = 0$$

$$x = 3$$

$$2x^{3} + ax^{2} + bx - 14 = 52$$

$$2 (3)^{3} + a(3)^{2} + b(3) - 66 = 0$$

$$54 + 9a + 3b - 66 = 0$$

$$9a + 3b = 12$$

$$3a + b = 4$$
Solving equation (i) and (ii),
$$2a + b = -1$$

$$3a + b = 4$$

$$(-) (-) (+)$$

$$-a = -5$$

$$a = 5$$

÷-

-

$$3 \times 5 + b = 4$$

$$b = 4 - 15$$

$$b = -11$$

$$a = 5 \text{ and } b = -11$$

Ans.

...(ii)

-

 (i) The length of radius AC (ii) The coordinates of B. 	
Solution : (a) Given :	[4]
$3 \cos 80^{\circ} \cdot \operatorname{cosec} 10^{\circ} + 2 \sin 59^{\circ} \sec 31^{\circ}$ $= 3 \cos 80^{\circ} \operatorname{cosec} (90^{\circ} - 80^{\circ}) + 2 \sin 59^{\circ} \sec (90^{\circ} - 59^{\circ})$ $= 3 \cos 80^{\circ} \sec 80^{\circ} + 2 \sin 59^{\circ} \operatorname{cosec} 59^{\circ}$ $= 3 \cos 80^{\circ} \times \frac{1}{\cos 80^{\circ}} + 2 \sin 59^{\circ} \times \frac{1}{\sin 59^{\circ}}$ $= 3 + 2 = 5.$	
 (b) Given : ∠ BAD = 65°, ∠ ABD = 70°, ∠ BDC = 45° (i) ∴ ABCD is a cyclic quadrilateral. In Δ ABD, 	Ans.
. = 180° - 135°	sing sum property of A*
≃ 45°	

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2013 | 479 Now from \triangle ACD, $\angle ADC = \angle ADB + \angle BDC$ $= 45^{\circ} + 45^{\circ}$ $(\therefore \angle BDA = \angle ADB = 45^\circ)$ = 90° Hence, ∠D makes right angle belongs in semi-circle therefore AC is a diameter of the circle. (ii) $\angle ACB = \angle ADB$ (Angles in the same segment of a circle) $\angle ACB = 45^{\circ}$ $(\therefore \angle ADB = 45^\circ)$ 1 Ans. The length of radius AC = $\sqrt{(-2-3)^2 + (5+7)^2}$ (c) (i) $=\sqrt{(-5)^2+(12)^2}$ в $= \sqrt{25 + 144}$ (3, - 7) C (-2.5) = 169 = 13. Ans. (ii) Let the point of B be (x, y). Given C is the mid-point of AB. Therefore $-2 = \frac{3+x}{2}$ 3+x = -4x = -4-3 = -7⇒ ⇒ $5 = \frac{-7+y}{9}$ and 10 = -7 + y \Rightarrow y = 17

Hence, the co-ordinate of B (-7, 17).

Question 4.

(a) Solve the following equation and calculate the answer correct to two decimal places:

Ans.

332729	VY 74 V	ATOIRUSSOBDITOMERERUSON	<u>80</u>
48	0 ICSE Last 10 Years Solved	l Papers	
So	olution :		
(a)	Given : $x^2 - 5x - 10 = 0$		
	Here, $a = 1$, $b = -5$ and $c = -3$	10	
		$\mathbf{D} = b^2 - 4ac$	
		$= (-5)^2 - 4 \times 1 \times -10$	
		D = 25 + 40 = 65	
		$x = \frac{-b \pm \sqrt{D}}{2a}$	
		$=\frac{5\pm\sqrt{65}}{2\times1}=\frac{5\pm8.06}{2}$	
		$=\frac{5+8.06}{2},\frac{5-8.06}{2}$	
	2.3	$=\frac{13.06}{2},-\frac{3.06}{2}$	
(b)	(i) From A ABC and A DEC	x = 6.53, -1.53 Ar	15.
(10)	(i) From \triangle ABC and \triangle DEC,		

WWW.10YEARSQUESTIONPAPER.COM

		$\angle ABC = \angle DEC = 90^{\circ}$	(Cirran)
	and	$\angle ACB = \angle DCE = Common$	(Given)
		\triangle ABC ~ \triangle DEC	(B., A A -::)
(ii)	In \triangle ABC and	Δ DEC,	(By AA similarity)
		I IDO I SUMO	

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2013 | 481 (c) (i) Please See Graph. 5 B (0, 4) A (6, 4) X' 6 B' (0, -4) (-6, -4) -5-Reflection of A' and B' in the origin = A' (-6, -4) and B' (0, -4)(ii) The geometrical name for the figure AB A'B' is a parallelogram. (iii) From the graph, AB = 6 cm, BB' = 8 cm. (iv) In A A BB' $(AB')^2 = AB^2 + (BB')^2$ $= (6)^2 + (8)^2 = 36 + 64$ = 100(AB A' B' is a parallelogram) AB' = 10 = A'BPerimeter of ABA'B' = A'B' + AB' + AB + A'B

Ans.

SECTION B [40 Marks]

Answer any four Questions in this Section.

Question 5.

(a) Solve the following inequation, write the solution set and represent it on the number line :

$$-\frac{x}{3} \le \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6}, x \in \mathbb{R}$$
 [3]

- (b) Mr. Britto deposits a certain sum of money each month in a Recurring Deposit Account of a bank. If the rate of interest is of 8% per annum and Mr. Britto gets \$\$ 8088 from the bank after 3 years, find the value of his monthly instalment. [3]
- (c) Salman buys 50 shares of face value ₹ 100 available at ₹ 132.
 - (i) What is his investment?
 - (ii) If the dividend is 7.5%, what will be his annual income ?
 - (iii) If he wants to increase his annual income by ₹ 150, how many extra shares should he buy ?
 [4]

WWW.10YEARSQUESTIONPAPER.COM 482 | ICSE Last 10 Years Solved Papers Solution: $-\frac{x}{3} \le \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6}$ (a) Given : Taking L.C.M. of 3, 2 and 6 is 6. $-\frac{x}{3} \times 6 \le \frac{x}{2} \times 6 - \frac{4}{3} \times 6 < \frac{1}{6} \times 6$ $-2x \leq 3x - 8 < 1$ $-2x \leq 3x-8$ and . => 3x - 8 < 1 $8 \leq 3x + 2x \qquad \Rightarrow \qquad$ \Rightarrow 3x < 1 + 8⇒ $8 \leq 5x$ \Rightarrow 3x < 9 $\frac{8}{5} \le x$ \Rightarrow x < 3 ⇒ \therefore The solution set is $\{x : 1 \cdot 6 \le x \le 3, x \in \mathbb{R}\}$ Number line (b) Let the monthly instalment be \mathbf{x} Given : Maturity amount = \$ 8,088, Time (n) = 3 years = 3×12 months = 36 months, Rate $(\mathbf{R}) = 8\%$ p.a. Principle for one month = $P \times \frac{n(n+1)}{2}$ $=\frac{x\times 36\times 37}{2}$ $= 18 \times 37 x$ $\frac{18 \times 37 \times 8 \times 1}{100 \times 12}$ Interest = '.' I =

WWW.10YEARSQUESTIONPAPER.COM
Mathematics, 2013 [483
(ii) Rate of dividend =
$$7\cdot5\%$$

Annual income = $\sqrt[3]{\frac{5,000 \times 7\cdot5}{100}}$
= $\sqrt[3]{375}$ Ans.
(iii) Let extra share should he buy be x.
then total number of shares = $50 + x$
Total face value = $\sqrt[3]{100 \times (50 + x)} \times 7\cdot5$
 \therefore Annual income = $\sqrt[3]{\frac{100 \times (50 + x) \times 7\cdot5}{100}}$
= $(50 + x) \times 7\cdot5$
 \therefore ($50 + x) \times 7\cdot5$ = $375 + 150$
 $50 + x = \frac{525}{7\cdot5} = 70$
 $x = 70 - 50$
 $x = 20$
Hence, the extra shares should be buy = 20 . Ans.

Question 6.

(a) Show that
$$\sqrt{\frac{1-\cos A}{1+\cos A}} = \frac{\sin A}{1+\cos A}$$
 [3]

(b) In the given circle with centre O, ∠ ABC = 100°, ∠ ACD = 40° and CT is a tangent to the circle at C. Find ∠ADC and ∠DCT.
 [3]

(c) Given below are the entries in a Savings Bank A/c pass book :

Det oelow	Particulars	Withdrawals	Deposit	Balance
Date	Farticulars			₹ 8,500
Feb. 8.	B/F	1		10,000
	To self	₹4,000		(1
Feb. 18		A CONTRACTOR OF A	₹2,230	<u> </u>
April 12	By cash		12,200	la serie
June 15	To self	₹ 5,000		19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -
		· · _ ·	₹ 6,000	
July 8	By cash	months from Feb	A CONTRACT OF A	

Calculate the interest for six months from February to July at 6% p.a.

Solution :

(a) L.H.S. =
$$\sqrt{\frac{1-\cos A}{1+\cos A}}$$

Multiplying by $\sqrt{1+\cos A}$ in numerator and denominator

$$= \sqrt{\frac{1-\cos A}{1+\cos A}} \times \sqrt{\frac{1+\cos A}{1+\cos A}}$$

		(GERA)
		*
e radio	us through the	e point to conta
		- Point to contra
		. A
als	Deposit	Balance
-		₹ 8,500
0	2 0	₹ 4,500
	2,230	₹ 6,730
0		₹ 1,730
ि	6.000	₹ 7,730
0		₹ 2,230 ₹ 6,000 of Feb. = ₹ 4,50

- Principal for the month of April = ₹ 4,500
- Principal for the month of May = ₹ 6,730
- Principal for the month of June = ₹ 1,730
- Principal for the month of July = ₹ 7,730
- Total principal from the month of Feb. to July = ₹ 29,690

Time =
$$\frac{1}{12}$$
 years

- Rate of interest = 6%
 - Interest = $\frac{P \times R \times T}{100}$
 - 100
 - $=\frac{29690\times6\times1}{100\times12}$
 - = ₹148.45

Ans.

Question 7.

÷

13

12

- (a) In \triangle ABC, A(3, 5), B(7, 8) and C(1, -10). Find the equation of the median through A. [3]
- (b) A shopkeeper sells an article at the listed price of ₹ 1,500 and the rate of VAT is 12% at each stage of sale. If the shopkeeper pays a VAT of ₹ 36 to the Government, what was the price, inclusive of Tax, at which the shopkeeper purchased the article from the wholesaler ? [3]
- (c) In the figure given, from the top of a building $AB = 60 \text{ m}^{\Lambda}$

high, the angles of depression of the top and bottom of a vertical lamp post CD are observed to be 30° and 60° respectively. Find :

- (i) The horizontal distance between AB and CD.
- (ii) The height of the lamp post.

Solution :

(a) Here D is mid point of BC.

$$\therefore \qquad \text{The co-ordinate of D} = \left(\frac{7+1}{2}, \frac{8-10}{2}\right) \\ = (4, -1)$$

Now equation of median AD,

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Here, $x_1 = 3, y_1 = 5, x_2 = 4, y_2 = -1$
 $y - 5 = \frac{-1 - 5}{4 - 3} (x - 3)$
 $y - 5 = -\frac{6}{1} (x - 3)$
 $y - 5 = -6x + 18$

The second second WWW.10YEARSQUESTIONPAPER.COM ICSE Last 10 Years Solved Papers 486 y = -6x + 18 + 5y = -6x + 236x + y - 23 = 0Ans. **(b)** Listed price of an article = ₹1,500 Rate of VAT = 12% VAT on the article = $\frac{12}{100} \times 1500$ = ₹180 Let C.P. of this article be x, then X $VAT = \frac{12}{100} \times x$ $= \mathbf{\overline{x}} \frac{12x}{100}$ If the shopkeeper pays a VAT = ₹36 $180 - \frac{12x}{100} = 36$ Then $\frac{18000 - 12x}{100} = 36$ 18000 - 12x = 3600. 12x = 18000 - 3600 = 14,400x = 1,200. The price at which the shopkeeper purchased the article inclusive of sales

$$= 1,200 + \frac{12}{100} \times 1,200$$

Now in \triangle AED,

	$\tan 30^\circ = \frac{AE}{ED}$	
	$\frac{1}{\sqrt{3}} = \frac{AE}{20\sqrt{3}}$	
	the second s	
⇒ .	$\sqrt{3}$ AE = 20 $\sqrt{3}$	
	AE = 20 m	
now	$\mathbf{EB} = \mathbf{AB} - \mathbf{AE}$	
	$EB = 60 - 20 \implies$	40 m
	$\mathbf{EB} = \mathbf{CD}$	
	CD = 40 m	-6
state and state		

Hence, the height of the lamp post = 40 m.

Question 8.

×

- (a) Find x and y if $\begin{bmatrix} x & 3x \\ y & 4y \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$.
- (b) A solid sphere of radius 15 cm is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate the number of cones recast.
- (c) Without solving the following quadratic equation, find the value of 'p' for which the given equation has real and equal roots :

$$c^{2} + (p-3)x + p = 0$$
 [4]

Solution ;

(a) Given:

$$\begin{vmatrix} x & 3x \\ 2 \end{vmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

1

[3]

[3]

Ans.

Ans.

488 ICS	E Last 10 Years Solved Papers	
	The number of cones $= \frac{Volum}{Volum}$	ne of a sphere me of a cone
WWW.10YEARS(QUESTIONPAPER.COM $= \frac{\frac{4}{3}\pi \times \frac{1}{3}}{\frac{1}{3}\pi (2 \cdot 3)}$	$(15)^3$ $(5)^2 \times 8$
	$\approx \frac{15 \times 15}{2 \cdot 5 \times 2}$	$\frac{5 \times 15}{5 \times 2}$
(c) Given ea ∵Roots	$\begin{array}{ll} x^{2} + (p-3)x + p &= 0\\ \text{are real and equal, then} \end{array}$	Ans.
Here we 0.	$b^2 - 4ac = 0$ compare the coefficients of a, b and c with	the equation $ax^2 + bx + c =$
	a = 1, b = p - 3 and $c = 1ing the values of a, b and c in equation$	p
	$\frac{(p-3)^2 - 4 \times 1 \times p}{p^2 + 9 - 6p - 4p} = 0$	÷.
	$P^{2} + 9 - 10p = 0$ $P^{2} - 10p + 9 = 0$	*

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2013 | 489 Solution : (a) Radius of quadrant OACB, r = 3.5 cm Area of quadrant OACB = $\frac{1}{4}\pi r^2$. $=\frac{1}{4}\times\frac{22}{7}\times3.5\times3.5$ $= 9.625 \text{ cm}^2$. Here, $\angle AOD = 90^{\circ}$ area of \triangle AOD = $\frac{1}{2} \times \text{base} \times \text{height}$ Then Base = 3.5 cm and height = 2 cm $=\frac{1}{2} \times 3.5 \times 2 = 3.5 \text{ cm}^2.$. Area of shaded portion = Area of quadrant - Area of triangle = 9.625 - 3.5 $= 6.125 \text{ cm}^2$ (b) Let the number of black balls be x, then Ans. Total number of balls = 30 + xThus, the prabability of black balls = $\frac{x}{30 + x}$. and the probability of white balls = $\frac{30}{30+x}$ Probability of black ball = $\frac{2}{5} \times \text{probability of white ball}$ Given : x 2 30

(c)

4

C.I.	Frequency (f _i)	Mid-value (x)	$d_i = \frac{x-a}{b}$	$f_i d_i$
20-30	10	25	<u> </u>	
30-40	6	35	-z	-20
40-50	8	45	10	-6
50-60	12	55	U	0
60-70	5	65	I Q	12
70-80	9	- 100 m (11)	2	10
and the second second	$\Sigma f_i = 50$	75	3	27
and the second s	and $h = 10$	and a second second		$\Sigma f_i d_i = 23$

Mean =
$$a + \frac{\sum f_i d_i}{\sum f_i} \times h$$

= $45 + \frac{23}{50} \times 10$
= $45 + 4 \cdot 6 = 49 \cdot 6$.

Ans.

Ans.

WWW.10YEARSQUESTIONPAPER.COM 490 | ICSE Last 10 Years Solved Papers

Question 10.

- (a) Using a ruler and compasses only :
 - Construct a triangle ABC with the following data : (i) AB = 3.5 cm, BC = 6 cm and $\angle ABC = 120^{\circ}$
 - In the same diagram, draw a circle with BC as diameter. Find a point P (ii) on the circumference of the circle which is equidistant from AB and BC.
 - (iii) Measure ∠ BCP.

[3]

(b) The mark obtained by 120 students in a test are given below :

Marks	No. of Students
0-10	5
10-20	9
20-30	16
30-40	22
40-50	26
5 0 –60	18
60-70	11
70-80	6
80-90	4
90-100	3

Draw an ogive for the given distribution on a graph sheet. Using suitable scale for ogive to estimate the following :

(i) The median.

- (ii) The number of students who obtained more than 75% marks in the test.
- The number of students who did not pass the test if minimum marks (iii) required to pass is 40. [6]

Solution :

- (a) Steps of Construction :
 - Draw a line BC = 6 cm. (i)
 - With the help of the point B, draw (ii) \angle ABC = 120°
 - Taking radius 3.5 cm cut BA = 3.5(iii) cm.
 - (iv) Join A to C.
 - Draw \perp bisector MN of BC. (v)
 - Draw a circle O as centre and OC as (vi) radius.
 - Draw angle bisector of \angle ABC which intersects circle at P. (vii)
 - (viii) Join BP and CP.
 - Now, $\angle BCP = 30^{\circ}$. · (ix)

)	Marks	No. of Students (f)	Cumulative Frequency
	0–10	5	5
	10-20	9	14
	20-30	16	30
12.1210	30-40	22	52
100	40-50	26	78
	50-60	· 18	96
1	60-70	11	107
	70-80	6	113
	80-90	4	117
	90–100	3	120
		n = 120	- Fright -

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2013 | 491

On the graph paper, we plot the following points :

(10, 5), (20, 14), (30, 30), (40, 52), (50, 78), (60, 96), (70, 107), (80, 113), (90, 117), (100, 120).

WWW.10YEARSQUESTIONPAPER.COM

492 | ICSE Last 10 Years Solved Papers

Question 11.

(a) In the figure given below, the line segment AB meets X-axis at A and Y-axis at B. The point P(-3, 4) on AB divides it in the ratio 2 : 3. Find the coordinates of A and B.

(b) Using the properties of proportion, solve for x, given

$$\frac{x^4+1}{2x^2} = \frac{17}{8}$$
 [3]

(c) A shopkeeper purchases a certain number of books for ₹ 960. If the cost per book was **₹**8 less, the number of books that could be purchased for **₹**960 would be 4 more. Write an equation, taking the original cost of each book to be 🛪 x, and solve it to find the original cost of the books. [4]

Solution:

an

 \Rightarrow

By

.

(a) Let the co-ordinates of A and B be (x, 0) and (0, y)

. The co-ordinates of a point P (-3, 4) on AB divides it in the ratio 2:3.

i.e., $AP \cdot PB = 2 \cdot 3$

By using section formula, we get

$$-3 = \frac{2 \times 0 + 3 \times x}{2 + 3} \qquad \left[\because x = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} \right]$$
$$-3 = \frac{3x}{5} \implies 3x = -15$$
$$\Rightarrow \qquad x = -5$$
$$\text{and} \qquad 4 = \frac{2 \times y + 3 \times 0}{2 + 3} \qquad \left[\because y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \right]$$
$$4 = \frac{2y}{5} \implies 2y = 20$$
$$\Rightarrow \qquad y = 10$$
Hence, the co-ordinates of A and B are (-5, 0) and (0, 10). \qquad \text{Ans}(b) Given :
$$\frac{x^4 + 1}{2x^2} = \frac{17}{8}$$
By using componendo and dividendo, we get
$$\frac{x^4 + 1 + 2x^2}{x^4 + 1 - 2x^2} = \frac{17 + 8}{17 - 8}$$

. WWI	1.10YEARSQUESTIONPAPER.COM	Mathematics, 2013 493
	$\left(\frac{x^2+1}{x^2-1}\right)^2 = \frac{25}{9}$	
	$\left(\frac{x^2+1}{x^2-1}\right)^2 = \left(\frac{5}{3}\right)^2$	
	Taking square root on both sides, we get	
	$\frac{x^2+1}{x^2-1} = \frac{5}{3}$	
	$\Rightarrow 5x^2 - 5 = 3x^2 + 3$	
	$\Rightarrow \qquad 5x^2-3x^2=3+5$	
	\Rightarrow $2x^2 = 8 \Rightarrow$	$x^2 = 4$
	\Rightarrow $x = \pm 2$	Ans.
(c)	Given the original cost of each book be $\forall x$.	
	Total cost = ₹ 960	(Given)
	$\therefore \qquad \text{Number of books for 960} = \frac{960}{x}$	
	If the cost per book was $₹8$ less, (i.e., $x - 8$) the	n
	Number of books = $\frac{960}{x-8}$	
	According to question,	
	$\frac{960}{x-8} = \frac{960}{x} + 4$	
	$\frac{960}{x-8} - \frac{960}{x} = 4$	
	x - x + 8	

.

$$960 \left[\frac{x - x + 6}{x (x - 8)} \right] = 4$$

$$\frac{8}{x^2 - 8x} = \frac{1}{240}$$

$$\Rightarrow \qquad x^2 - 8x = 1,920$$

$$\Rightarrow \qquad x^2 - 8x - 1,920 = 0$$

$$\Rightarrow \qquad x^2 - 48x + 40x - 1,920 = 0$$

$$\Rightarrow \qquad x(x - 48) + 40 (x - 48) = 0$$

$$\Rightarrow \qquad (x - 48) + 40 (x - 48) = 0$$

$$x - 48 = 0 \qquad \text{or } x + 40 = 0$$

$$x - 48 = 0 \qquad \text{or } x - 40 = 0$$

'.' - 40 is not possible.

Hence, the original cost of each book = ₹ 48.

- يا موجو ويوريون ويا اليان الما ويون الماري والماري والماري والم