ICSE Paper 2010

MATHEMATICS

SECTION A [40 Marks]

(Answer all questions from this Section.)

Question 1.

-

(a) Solve the following inequation and represent the solution set on the number

$$-3 < -\frac{1}{2} - \frac{2x}{3} \le \frac{5}{6}, x \in R$$
[3]

- (b) Tarun bought an article for ₹ 8,000 and spent ₹ 1,000 for transportation. He marked the article at ₹ 11,700 and sold it to a customer. If the customer had to pay 10% sales tax, find
 - The customer's price. (i)
 - (ii) Tarun's profit percent.
- (c) Mr. Gupta opened a recurring deposit account in a bank. He deposited ₹ 2,500 per month for two years. At the time of maturity he got **₹** 67,500. Find :
 - (i) the total interest earned by Mr. Gupta.
 - (ii) the rate of interest per annum.

Solution :

(a) Given : $-3 < -\frac{1}{2} - \frac{2x}{3} \le \frac{5}{6}$, $x \in \mathbb{R}$

$$-3 < -\frac{1}{2} - \frac{2x}{3} \text{ and } -\frac{1}{2} - \frac{2x}{3} \le \frac{5}{6}$$

$$-3 + \frac{1}{2} < -\frac{2x}{3} \text{ and } -\frac{2x}{3} \le \frac{5}{6} + \frac{1}{2}$$

$$-\frac{5}{2} < -\frac{2x}{3} \text{ and } -\frac{2x}{3} \le \frac{4}{3}$$

$$\frac{5}{2} > \frac{2x}{3} \text{ and } -x \le 2$$

$$x < \frac{15}{4} \text{ and } x \ge -2$$
Solution set = $\left\{x : \frac{15}{4} > x \ge -2\right\}$

$$-\frac{15}{2} - \frac{10}{1} + \frac{11}{2} + \frac{15}{3} + \frac{11}{4} = \frac{11}{4}$$

(b) Given : C.P. ≈ ₹ 8,000 + ₹ 1,000 ≈ ₹ 9,000, M.P. = ₹ 11,700, S.T. = 10%. (i) Amount to be paid = M.P. + S.T. % of M.P

$$= 11,700 + \frac{10}{100} \times 11,700$$
$$= ₹ 12,870$$

Ans.

[4]

ł

Mathematics, 2010 | 525 (ii) Profit = M.P. - C.P. = 11,700 - 9,000= ₹2,700. Profit percent = $\frac{\text{Profit}}{\text{C.P.}} \times 100$ $=\frac{2,700}{9.000}\times100$ = 30%. Ans. (c) Total amount deposited = ₹ (2,500 × 24) = ₹ 60,000 Equivalent principal for one month = $\overline{\langle 2,500 \rangle} \times \frac{24(24+1)}{2} = \overline{\langle (62,500 \rangle \times 12)}$ (i) Total interest = 67,500 - 60,000= ₹7,500 (ii) Interest on ₹ (62,500 × 12) for 1 month $= \mathbf{R} \left(62,500 \times 12 \times \frac{\mathbf{R}}{100} \times \frac{1}{12} \right) \qquad \left[\because \mathbf{I} = \frac{\mathbf{P} \times \mathbf{R} \times \mathbf{T}}{100} \right]$ $7,500 = 625 \,\mathrm{R}.$ R = 12%. Ans. **Question 2.** (a) Given $A = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} -4 \\ -5 \end{bmatrix}$ and $D = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ Find AB + 2C - 4D. [3] (b) Nikita invests ₹ 6,000 for two years at a certain rate of interest compounded annually. At the end of the first year it amounts to ₹ 6,720. Calculate : (i) the rate of interest. the amount at the end of the second year. (ii) [3] (c) A and B are two points on the x-axis and y-axis respectively. P(2, -3) is the mid point of AB. Find the (i) Coordinates of A and B. (ii) Slope of line AB. 0 (iii) Equation of line AB. P (2, - 3) [4] Solution : (a) Given : A = $\begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix}$, B = $\begin{bmatrix} 6 \\ 1 \end{bmatrix}$, C = $\begin{bmatrix} -4 \\ 5 \end{bmatrix}$, D = $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $AB + 2C \sim 4D = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 1 \end{bmatrix} + 2\begin{bmatrix} -4 \\ 5 \end{bmatrix} - 4\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $= \begin{bmatrix} 16 \\ -2 \end{bmatrix} + \begin{bmatrix} -8 \\ 10 \end{bmatrix} - \begin{bmatrix} 8 \\ 8 \end{bmatrix}$ Ans.

(a) Cards marked with numbers 1, 2, 3, 4 ... 20 are well shuffled and a card is drawn at random. What is the probability that the number of the cards is

- (i) a prime number
- (ii) divisible by 3
- (iii) a perfect square ?

[3]

[3]

(b) Without using trigonometric tables evaluate :

$$\frac{\sin 35^\circ \cos 55^\circ + \cos 35^\circ \sin 55^\circ}{\csc^2 10^\circ - \tan^2 80^\circ}$$

WWW.10YEARSQUESTIONPAPER.COM Mathematics, 2010 | 527 (c) (Use graph paper for this question) A(0, 3), B(3, -2) and O(0, 0) are the vertices of triangle ABO. Plot the triangle on a graph sheet taking 2 cm = 1 unit on both the axes. (i) Plot D the reflection of B in the Y axis, and write its co-ordinates. (ii) Give the geometrical name of the figure ABOD. (iii) [4] Write the equation of the line of symmetry of the figure ABOD. (iv) Solution : (a) Given : Cards marked with numbers 1, 2, 20. n(S) = 20Prime Numbers = 2, 3, 5, 7, 11, 13, 17, 19(i) $n(\mathbf{E}) = 8$ P (Prime number) = P(A) = $\frac{n(E)}{n(S)} = \frac{8}{20} = \frac{2}{5}$ Ans. No. divided by 3 = 3, 6, 9, 12, 15, 18(ii) n(E) = 6P (no. divided by 3) = P(A) = $\frac{n(E)}{n(S)} = \frac{6}{20} = \frac{3}{10}$ Ans. No. perfect square = 1, 4, 9, 16(iii) $n(\mathbf{E}) = 4$ P (Perfect square) = P(A) = $\frac{n(E)}{n(S)} = \frac{4}{20} = \frac{1}{5}$ Ans. sin 35° cos 55° + cos 35° sin 55° (b) Given : $cosec^2 10^\circ - tan^2 80^\circ$ $\sin (90 - 55)^{\circ} \cos 55^{\circ} + \cos (90 - 55)^{\circ} \sin 55^{\circ}$ cosec² 10° - tan² (90 - 10)° 5. F $\frac{\cos 55^{\circ} \cos 55^{\circ} + \sin 55^{\circ} \sin 55^{\circ}}{(1 + \cot^2 10^{\circ}) - \cot^2 10^{\circ}}$ $= \frac{\cos^2 55^\circ + \sin^2 55^\circ}{1 + \cot^2 10^\circ - \cot^2 10^\circ} = \frac{1}{1} = 1$ Ans. (c) (i) See graph. (0, 3) 0 (0, 0) B (3, -2) D (-3, -2

- 528 | ICSE Last 10 Years Solved Papers
 - (ii) Coordinate of D = (-3, -2)
 - (iii) Geometrical name of ABOD is arrow.
 - (iv) Equation of the line of symmetry is

x = 0

Question 4.

- (a) When divided by x 3 the polynomials $x^3 px^2 + x + 6$ and $2x^3 x^2 (p + 3)x 6$ leave the same remainder. Find the value of 'p'. [3]
- (b) In the figure given alongside AB and CD are two parallel chords and O is the centre. If the radius of the circle is 15 cm, find the distance MN between the two chords of length 24 cm and 18 cm respectively.
- (c) The distribution given below shows the marks obtained by 25 students in an aptitude test. Find the mean, median and mode of the distribution. [4]

Marks obtained	5	6	7	8	9	10
No. of students	3	9	6	4	2	1

Solution :

(a) Given:

 $f(x) = x^3 - px^2 + x + 6$ $g(x) = 2x^3 - x^2 - (p+3)x - 6$ М

o

R

when f(x) is divided by (x - 3) remainder f(3) and f(x) is divided by (x - 3) remainder g(3).

		f(3) = g(3)	
	(3) ³	$-(3)^2 p + 3 + 6 = 2 (3)^3 - (3)^2 - (p + 3) 3 - 6$	
		27 - 9p + 3 + 6 = 54 - 9 - (p + 3) 3 - 6	51
	⇒	36 - 9 p = 30 - 3p	1
	⇒	9p - 3p = 36 - 30	
	⇒	6p = 6	
	⇒	p = 1	Ans.
(Ь)	Given : $OA = OC = 3$	15 cm, AB = 24 cm, CD = 18 cm.	1.1.1.1.1.1
	Now	AM = 12, CN = 9	~
	In ∆ OAM,	$OA^2 = OM^2 + AM^2$	В
		$OM^2 = OA^2 - AM^2$	0
		$= 15^2 - 12^2$	
		= 225 - 144 C	N D
		= 81	
		OM = 9	
	Similarly, in \triangle OCN,	$OC^2 = ON^2 + CN^2$	
		$ON^2 = OC^2 - CN^2 = 15^2 - 9^2$	
		= 225 - 81 = 144	
		ON = 12	
		MN = OM + ON = 9 + 12 = 21 cm.	Ans.

Mathematics, 2010 | 529

	x,	f_i	$x_i f_i$	cf
	5	3	15	3
20	6	9	54	12
5	7	6	42	18
	8	4	32	22
	9	2	18	22 24
÷.	10	1	10	25
	3 [.]	$\Sigma f = 25$	$\Sigma x_i f_i = 171$	

Mean =
$$\frac{\sum x_i f_i}{N} = \frac{171}{25} = 6.84$$
 Ans.

 $\therefore n = 25 \text{ (odd)}$

Median =
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 term = 13th term = 7 Ans.
Mode = 6 (maximum freq.) Ans.

SECTION B [40 Marks]

Answer any four Questions in this Section.

Question 5.

(a) Without solving the following quadratic equation, find the value of 'p' for which the roots are equal.

$$px^2 - 4x + 3 = 0$$
 [3]

- (b) Rohit borrows ₹ 86,000 from Arun for two years at 5% per annum simple interest. He immediately lends out this money to Akshay at 5% compound interest compounded annually for the same period. Calculate Rohit's profit in the transaction at the end of the two years. [3]
- (c) Mrs. Kapoor opened a Saving Bank Account in State Bank of India on 9th January 2008. Her pass book entries for the year 2008 are given below :

Date	Particulars	Withdrawals (in ₹)	Deposits (in ₹)	Balance (in ₹)
Jan 9, 2008	By Cash	_	10,000	10,000
Feb 12, 2008	By Cash		15,500	25,500
April 6, 2008	To Cheque	3,500	<u></u> 0	22,000
April 30, 2008	To Self	2,000	3 <u></u> 1	20,000
July 16, 2008	By Cheque		6,500	26,500
Aug. 4, 2008	To Self	5,500	~_£	21,000
Aug. 20, 2008	To Cheque	1,200		19,800
Dec. 12, 2008	By Cash	2 1.	1,700	21,500

Mrs. Kapoor closed the account on 31st December, 2008. If the bank pays interest at 4% per annum, find the interest Mrs. Kapoor receives on closing the account. Give your answer correct to the nearest rupee. [4]

Solution :

(a) Roots are equal \Rightarrow

$$b^2 - 4ac = 0$$
$$b^2 = 4ac$$

530 | ICSE Last 10 Years Solved Papers
Given : a = p, b = 4, c = 3. WWW. 10 YEAR SQUESTION PAPER. COM
⇒ 16 = 4, p.3
⇒ p =
$$\frac{16}{12} = \frac{4}{3}$$
 Ans.
(b) Given : P = 86,000, R = 5%, T = 2 years.
S.I. = $\frac{P \times R \times T}{100} = \frac{86,000 \times 5 \times 2}{100} = ₹8,600$
C.I. = $P\left[\left(1 + \frac{R}{100}\right)^2 - 1\right] = 86,000\left[\left(\frac{21}{20}\right)^2 - 1\right] = 86,000 \times \frac{41}{400} = ₹8,815$
Profit = C.I. - S.I. = 8,815 - 8,600
= ₹215
(c) Minimum balance for the month
January - 10,000
February - 10,000
March - 25,500
April - 20,000
July - 20,000
July - 20,000
July - 20,000
July - 19,800
September - 19,800
November - 19,800
Principal = ₹2,04,700, R = 4%
S.I. = $\frac{P \times R \times T}{100} = \frac{2,04,700 \times 4 \times 1}{100 \times 12}$
= ₹682:33 = ₹682. Ans.

Question 6.

j fi 33

Ľ

- (a) A manufacturer marks an article for ₹ 5,000. He sells it to a wholesaler at a discount of 25% on the market price and the wholesaler sells it to a retailer at a discount of 15% on the market price. The retailers sells it to a consumer at the market price and at each stage the VAT is 8%. Calculate the amount of VAT received by the Government from :
 - (i) the wholesaler (ii) the retailer.
- (b) In the following figure O is the centre of the circle and AB is a tangent to it at point B. $\angle BDC = 65^\circ$. Find $\angle BAO$. [8]

Mathematics, 2010 | 531

$$x^2 + x^2 = 84^2$$

532 | ICSE Last 10 Years Solved Papers

$$2x^{2} = 84 \times 84$$

$$x^{2} = 84 \times 42$$
Now
Area of $\triangle ABC = \frac{1}{2} \times AB \times AC$

$$= \frac{1}{2} \times 84 \times 42$$

$$= 1764 \text{ cm}^{2}$$
Diameter of semicircle $(2r) = 84 \text{ cm}$
Radius $(r) = \frac{1}{2} \times 84 - 42$

$$\therefore \qquad \text{Area of semicircle} = \frac{1}{2}\pi r^2 = \frac{1}{2} \times \frac{22}{7} \times 42 \times 42$$
$$= 2772 \text{ cm}^2$$

Diameter of each (three equal) semicircles = $\frac{1}{3} \times 84 = 28$ cm.

Radius of the 3 equal semicircles
$$=\frac{1}{2} \times 28 = 14$$
 cm

Area of three equal semi circles = $3 \times \frac{1}{2} \pi r^2$

$$= 3 \times \frac{1}{2} \times \frac{22}{7} \times 14 \times 14$$
$$= 924 \text{ am}^2$$

⁴ Ans.

Area of shaded region = Area of semicircles + Area of three equal circles - Area of \triangle ABC

$$= 2772 + 924 - 1764$$

= 3696 - 1764
= 1932 cm².

Question 7.

...

- (a) Use ruler and compasses only for this question :
 - (i) Construct $\triangle ABC$, where AB = 3.5 cm, BC = 6 cm and $\angle ABC = 60^\circ$.
 - (ii) Construct the locus of points inside the triangle which are equidistant from BA and BC.
 (iii) Construct the locus of points inside the triangle which are equidistant from
 - (iii) Construct the locus of points inside the triangle which are equidistant from B and C.
 - (iv) Mark the point P which is equidistant from AB, BC and also equidistant from B and C. Measure and record the length of PB.
 [3]
- (b) The equation of a line is 3x + 4y 7 = 0. Find
 - (i) the slope of the line.
 - (ii) the equation of a line perpendicular to the given line and passing through the intersection of the lines x - y + 2 = 0 and 3x + y - 10 = 0. [3]
- (c) The mean of the following distribution is 52 and the frequency of class interval 30-40 is 'f. Find 'f.

Class Interval	10-20	20-30	30-40	40-50	50-60	60-70	70-80	6
Frequency	5	3	f	7	2	6	13	[4]

Solution :

- (a) Steps of Construction :
 - (i) Draw BC = 6 cm and make an angle at B = 60° . Cut BA = 3.5 cm and meet A to C. This is the required \triangle ABC.
 - (ii) Draw the bisector of \triangle ABC and perpendicular bisector of BC; both intersecting at P.
 - (iii) P is the required point. PB = 3.5 cm.

(b) Given : Equation of the line is

$$3x+4y-7 = 0$$

$$4y = -3x + 7$$

$$y = -\frac{3}{4}x + \frac{7}{4}$$

(c)

Slope of the line $(m_1) = -\frac{3}{4}$ Ans.

(ii) Slope of the perpendicular line $(m_2) = \frac{-1}{m_1} = \frac{-1}{-3/4} = \frac{4}{3}$ Intersection of the lines x - y + 2 = 0 ...(i) and 3x + y - 10 = 0 ...(ii) By Adding equation (i) and (ii) $4x = 8 \implies x = 2$

Put x = 2, in equation (i) we get

 $2 - y + 2 = 0 \implies$ $y - y_1 = m_2 (x - x_1)$ $y - 4 = \frac{4}{3} (x - 2)$

⇒	2	4x - 3	y+4=0	13
Interval	Frequency (f _i)	x _i	$d_i = x_i - A$	$f_i d_i$
10-20	5	15	- 30	- 150
20–30	3	25	- 20	- 60
30-40	. f	35	- 10	- 10f
40–50	7	45 A	0	0
50-60	2	55	10	20
60–70	6	65	20	120
7080	13	7 5	30	390
2	36 + f	0		$\Sigma f_i d_i = 320 - 10f$

v = 4

534 | ICSE Last 10 Years Solved Papers

	Mean = $A + \frac{\Sigma f_i d_i}{N}$	
	$52 = 45 + \frac{320 - 10f}{36 + f}$	
⇒	$7 = \frac{320 - 10f}{36 + f}$	
⊅ 1	252 + 7f = 320 - 10f	
⇒	17f = 68	
⇒	f = 4	63
lestion 8		Ans.

Question 8.

-1

(a) Use the Remainder Theorem to factorise the following expression :

$$2x^3 + x^2 - 13x + 6$$
 [3]

(b) If x, y, z are in continued proportion, prove that
$$\frac{(x+y)^2}{(y+z)^2} = \frac{x}{z}$$
. [3]

(c) From the top of a light house 100 m high the angles of depression of two ships on opposite sides of it are 48° and 36° respectively. Find the distance between the two ships to the nearest metre. [4]

1.

Solution :

(a) Given :

Ans.

(b) If x, y, z are in continued proportion

$$\frac{x}{y} = \frac{y}{z} = k$$

$$\Rightarrow \qquad y = kz$$
and
$$x = xy = k^{2z}$$

$$L.H.S. = \frac{(x + y)^{2}}{(y + z)^{2}} = \frac{(k^{2}z + kz)^{2}}{(kz + z)^{2}}$$

$$= \frac{k^{2}z^{2}(k + 1)^{2}}{z^{2}(k + 1)^{2}}$$

$$= k^{2}$$

$$R.H.S. = \frac{x}{z} = \frac{k^{2}z}{z} = k^{2}$$
Hence
$$L.H.S. = R.H.S.$$
Proved
(c)
In $\triangle ABD,$

$$tan 48^{\circ} = \frac{AD}{BD}$$

$$\Rightarrow \qquad 1.11 = \frac{100}{BD}$$

$$BD = \frac{100}{i \cdot 11} = 90.09 \text{ m}$$
In $\triangle ACD,$

$$tan 36^{\circ} = \frac{AD}{DC}$$

$$\Rightarrow \qquad 0.7265 = \frac{100}{DC}$$

$$\Rightarrow \qquad DC = \frac{100}{0.7265} = 137.64 \text{ m}$$

$$\therefore \qquad BC = BD + DC$$

$$= 90.09 + 137.64$$

$$= 227.73 \text{ m}.$$
(a) Evaluate:
$$\begin{bmatrix} 4 \sin 30^{\circ} & 2 \cos 60^{\circ} \\ \sin 90^{\circ} & 2 \cos 0^{\circ} \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}$$
(3)

(b) In the figure ABC is a triangle with ∠EDB = ∠ACB.
 Prove that ΔABC ~ ΔEBD.
 If BE = 6 cm, EC = 4 cm, BD = 5 cm and area of ΔBED = 9 cm². Calculate the :

(i) length of AB

- (ii) area of $\triangle ABC$.
- (c) Vivek invests ₹ 4,500 in 8%, ₹ 10 shares at ₹ 15. He sells the shares when the price rises to ₹ 30, and invests the proceeds in 12% ₹ 100 shares at ₹ 125. Calculate :

в

[4]

- (i) the sale proceeds.
- the number of ₹ 125 shares he buys.
- (iii) the change in his annual income from dividend.

[4]

'C

ε

536	ICSE Last 10 Years Solved Papers	
Solut		
(a) (Given : $\begin{bmatrix} 4 \sin 30^\circ & 2 \cos 60^\circ \\ \sin 90^\circ & 2 \cos 0^\circ \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}$	
	$= \begin{bmatrix} 4 \times \frac{1}{2} & 2 \times \frac{1}{2} \\ 1 & 2 \times 1 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}$	
	$= \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}$	
	$=\begin{bmatrix}13 & 14\\14 & 13\end{bmatrix}$	2. 2 555
		Ans.
(b)	$\angle \text{EDB} = \angle \text{ACB} \text{ (given)}$	
	$\angle DBE = \angle ABC$	
⇒	$\angle DEB = \angle BAC$	(AA axiom)
(i)	Δ ABC ~ Δ EBD Given : BE = 6 cm, EC = 4 cm, BD = 5 cm.	Proved
	$\frac{AB}{EB} = \frac{BC}{BD} = \frac{AC}{ED}$	
	$\frac{AB}{EB} = \frac{BC}{BD}$	
⇒	$\frac{AB}{6} = \frac{BE + EC}{5} = \frac{6+4}{5} = \frac{10}{5} = 2$	
4	AB = 12 cm	Ans.
(ii)	Area of \triangle EBD $=$ EB ² $=$ 36	1
	$\frac{\text{Area of } \triangle \text{ ABC}}{9} = \frac{(12)^2}{(6)^2}$	
⇒	Area of \triangle ABC = $\frac{144 \times 9}{36} = 36$ m.	Ans.
(c)	Number of shares bought = $\frac{4,500}{15}$	27
	= 300 Total face value = ₹ 300 × 10	
	= ₹ 3,000	
	Dividend = $\frac{8}{100} \times 3,000$	
Am	\approx ₹ 240.	
(i)	Sale proceeds $=$ \$9,000 \$ 4,500 \$ 4,500	
	Sale proceeds = ₹ 9,000 - ₹ 4,500 = ₹ 4,500	Ans.
(ii)	Number of shares bought at $\overline{125} = \frac{9,000}{125}$	
	= 72	Ans.

WWW.10YEARSQUESTIONPAPER.COM
(iii) Total face value of 72 shares =
$$\overline{\langle} 72 \times 100$$

= $\overline{\langle} 7,200$
Dividend = $\frac{12}{100} \times 7,200$
= $\overline{\langle} 864$.
Change in his annual income = $864 - 240$
= $\overline{\langle} 624$.

Question 10.

- (a) A positive number is divided into two parts such that the sum of the squares of the two parts is 208. The square of the larger part is 8 times the smaller part. Taking x as the smaller part of the two parts, find the number. [4]
- (b) The monthly income of a group of 320 employees in a company is given below :

Monthly Income	No. of Employees
6000-7000	20
7000-8000	45
8000-9000	65
9000-10000	95
1000011000	60
11000-12000	30
12000-13000	5

Draw an ogive of the given distribution on a graph sheet taking 2 cm = ₹ 1,000on one axis and 2 cm = 50 employees on the other axis. From the graph determine :

- (i) the median wage.
- the number of employees whose income is below ₹ 8,500
- (iii) If the salary of a senior employee is above ₹ 11,500, find the number of senior employees in the company.
- (iv) the upper quartile.

Solution :

(a) Let x and y are the two parts.

$$x^2 + y^2 = 208 \qquad \dots (1)$$

$$v^2 = 8x \qquad \dots (2)$$

[6]

⇒

$$x^2 + 8x - 208 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Here, a = 1, b = 8, c = -208

$$=\frac{-8\pm\sqrt{(8)^2-4\times1\times(-208)}}{2\times1}$$

538 | ICSE Last 10 Years Solved Papers

$$= \frac{-8 \pm \sqrt{64 + 832}}{2}$$

$$= \frac{-8 \pm 29.93}{2} = \frac{-8 \pm 29.93}{2} \text{ or } \frac{-8 - 29.93}{2}$$

$$= -18.96 \text{ or } 10.97$$

$$y^{2} = 8x$$

$$= 8 \times 10.97$$

$$= 87.76$$

$$y = 9.37$$
Number = $x + y$

$$= 10.97 + 9.37$$

$$= 20.34$$
Ans.

Ans.

(Ь)

Monthly Income	No. of Employees	C.F.
6000-7000	20	20
7000-8000	45	65
8000-9000	65	130
9000-10000	95	225
10000-11000	60	285
11000-12000	30	315
12000-13000	5	320
	320	-

Here n (no. of employees) = 320 (even)

(i)

- (iii) Number of senior employees in the company = 320 302 = 18. Ans.
- (iv) Upper quartile = $\frac{3n}{4} = \frac{3 \times 320}{4} = 240$ Upper quartile = 10,200.

Question 11.

- (a) Construct a regular hexagon of side 4 cm. Construct a circle circumscribing the hexagon.
 [3]
- (b) A hemispherical bowl of diameter 7.2 cm is filled completely with chocolate sauce. This sauce is poured into an inverted cone of radius 4.8 cm. Find the height of the cone. [3]

(c) Given
$$x = \frac{\sqrt{a^2 + b^2} + \sqrt{a^2 - b^2}}{\sqrt{a^2 + b^2} - \sqrt{a^2} - b^2}$$

Use componendo and dividendo to prove that $b^2 = \frac{2a^2x}{x^2+1}$.

Solution :

- (a) Steps of Construction :
 - Using the given data, construct the regular hexagon ABCDEF with each side equal to 4 cm.
 - (ii) Draw the perpendicular bisectors of sides AB and AF which intersect each other at point O.
 - (iii) With O as centre and OA as radius draw a circle which will pass through all the vertices of the regular hexagon ABCDEF.
- (b) Given : Diameter of hemispherical bowl = 7.2 cm

Radius of hemispherical bowl = 3.6 cm

Volume of hemispherical bowl = $\frac{2}{2} \times \pi r^3$

$$= \frac{2}{3} \times \frac{22}{7} \times 3.6 \times 3.6 \times 3.6$$

$$= 97.76 \text{ cm}^{3}.$$
Volume of cone
$$= \frac{1}{3} \times \pi \mathbb{R}^{2}h$$

$$= \frac{1}{3} \times \frac{22}{7} \times 4.8 \times 4.8 \times h$$

$$= 24.14 \times h \text{ cm}^{3}$$
Volume of cone
$$= \text{Volume of hemisperical bowl}$$

$$24.14 \times h = 97.76$$

$$h = \frac{97.76}{24.14}$$

$$= 4.05 \text{ cm}.$$

Mathematics, 2010 | 539

Ans.

[4]

Ans.

17 17 11 540 | ICSE Last 10 Years Solved Papers

(c) Given
$$: x = \frac{\sqrt{a^2 + b^2} + \sqrt{a^2 - b^2}}{\sqrt{a^2 + b^2} - \sqrt{a^2} - b^2}$$

1

ï

a,

⇒

Componendo and dividendo

$$\frac{x+1}{x-1} = \frac{(\sqrt{a^2+b^2}+\sqrt{a^2-b^2})+(\sqrt{a^2+b^2}-\sqrt{a^2-b^2})}{(\sqrt{a^2+b^2}+\sqrt{a^2-b^2})-(\sqrt{a^2+b^2}-\sqrt{a^2-b^2})}$$
$$= \frac{2(\sqrt{a^2+b^2})}{2\sqrt{a^2-b^2}}$$
$$\frac{(x+1)^2}{(x-1)^2} = \frac{a^2+b^2}{a^2-b^2}$$

Proved

1

Again componendo and dividendo

11

$$\Rightarrow \qquad \frac{(x+1)^2 + (x-1)^2}{(x+1)^2 - (x-1)^2} = \frac{a^2 + b^2 + a^2 - b^2}{a^2 + b^2 - a^2 + b^2}$$
$$\frac{2x^2 + 2}{4x} = \frac{2a^2}{2b^2}$$
$$\Rightarrow \qquad \frac{x^2 + 1}{2x} = \frac{a^2}{b^2}$$
$$\Rightarrow \qquad b^2 = \frac{2a^2x}{x^2 + 1}$$

WWW.10YEARSQUESTIONPAPER.COM