ICSE Paper 2007

MATHEMATICS

SECTION A [40 MARKS]

(Answer all questions from this Section.)

Question 1.

- (a) Show that (x 1) is a factor of $x^3 7x^2 + 14x 8$. Hence, completely factorise the above expression.
- (b) Dinesh bought an article for ₹ 374, which included a discount of 15% on the marked price and a sales tax of 10% on the reduced price. Find the marked price of the article.
- (c) Ramesh invests ₹ 12,800 for three years at the rate of 10% per annum compound interest. Find :

 $x^2 - 6x + 8$

- (i) The sum due to Ramesh at the end of the first year.
- (ii) The interest he earns for the second year.

(iii) The total amount due to him at the end of the third year. Solution.

[4]

Hence (x - 1) is a factor.

(a) If (x-1) is a factor \Rightarrow

f(1) = 0f(1) = 1 - 7 + 14 - 8 = 15 - 15 = 0

:"ı'

...

...

Ans.

1

- Factors are (x 1) (x 2) (x 4). (b) Let marked price be x.
 - Distance = 15% Discount on $\forall x = \frac{15}{100}x$ Price discount = $x - \frac{15x}{100} = \frac{85x}{100}$ Rate of Sales tax = 10% Sales Tax = $\frac{85x}{100} \times \frac{10}{100}$ = $\frac{85x}{1000}$

Mathematics, 2007 | 571 $\left(\frac{85 x}{100}\right) + \frac{1}{10} \left(\frac{85 x}{100}\right) = 374$.: Final price, $\frac{\frac{85 x}{100} \left(1 + \frac{1}{10}\right)}{\frac{85 x}{100} \left(\frac{11}{10}\right)} = 374$ ⇒ ⇒ $x = \frac{374 \times 10 \times 100}{85 \times 11} = ₹ 100$ ⇒ Hence marked price is ₹ 400. Ans. (c) Given : P = 12800, R = 10% $\frac{\text{PRT}}{100} = \frac{12800 \times 10 \times 1}{100}$ Interest for first year = (i) = ₹1280 Amount for first year = ₹ 1280 + ₹ 12800 = ₹14080 Ans. PRT 14080 × 10 × 1 Interest for second year = (ii) 100 100 = ₹1408 Ans. (iii) Amount of second year = ₹1408 + ₹14080 = ₹15488 $\underline{PRT} 15488 \times 10 \times 1$ Interest for third year = 100 100 = ₹1548.80 Amount of end of third year = ₹ 15488 + ₹ 1548.80 = ₹17036.80. Ans.

Question 2.

(a) In the given figure, O is the centre of the circle and $\angle PBA = 45^\circ$. Calculate the value of $\angle PQB$. [3]

(b) In an equilateral \triangle ABC of side 14 cm, side BC is the diameter of a semi-circle as shown in the figure below. Find the area of the shaded region. [3] (Take $\pi = 22/7$ and $\sqrt{3} = 1.732$)

572 | ICSE Last 10 Years Solved Papers (c) If $x = \frac{\sqrt{a+3b} + \sqrt{a-3b}}{\sqrt{a+3b} - \sqrt{a-3b}}$, prove that $3bx^2 - 2ax + 3b = 0$ [4] Solution. (a) $\angle AOB \approx 180^{\circ}$ \Rightarrow $\angle APB = 90^{\circ}$ (angle of diameter) $\angle PAB = 90^\circ - 45^\circ \simeq 45^\circ$ = \Rightarrow $\angle PQB = 45^{\circ}$ (angle for same arc) Ans. Area of equilateral triangle ABC = $\frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4} \times (14)^2 = \frac{\sqrt{3}}{4} \times 196$ **(b)** $= 49 \sqrt{3} \text{ cm}^2$ $= 84.868 \text{ cm}^2$ Area of semi-circle = $\frac{1}{2} \times \pi r^2 = \frac{1}{2} \times \frac{22}{7} \times 7^2$ $= 77 \, \mathrm{cm}^2$ Total area of shaded region = 84.868 + 77 $= 161.868 \text{ cm}^2$. Ans. $\frac{x}{1} = \frac{\sqrt{a+3b} + \sqrt{a-3b}}{\sqrt{a+3b} - \sqrt{a-3b}}$ (c) Given : Applying componendo and dividendo $\frac{x+1}{x-1} = \frac{\sqrt{a+3b} + \sqrt{a-3b} + \sqrt{a+3b} - \sqrt{a-3b}}{\sqrt{a+3b} + \sqrt{a-3b} - \sqrt{a+3b} + \sqrt{a-3b}}$ => $\frac{x+1}{x-1} = \frac{2\sqrt{a+3b}}{2\sqrt{a-3b}} = \frac{\sqrt{a+3b}}{\sqrt{a-3b}}$ \Rightarrow Squaring both sides, 1 $\frac{x^2 + 2x + 1}{x^2 - 2x + 1} = \frac{a + 3b}{a - 3b}$ ⇒ Applying componendo and dividendo $\frac{2x^2 + 2}{4x} = \frac{2a}{6b} = \frac{a}{3b}$ = $\frac{x^2+1}{2x} = \frac{a}{3b}$ = $3bx^2 + 3b = 2ax$ =>* $3bx^2 - 2ax + 3b = 0$ ⇒ **Question 3.** Proved (a) If $2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$ Find the values of x and y [3] (b) Solve the following inequation and graph the solution on the number line : $-2\frac{2}{3} \le x + \frac{1}{3} < 3\frac{1}{3}; x \in \mathbb{R}$ [3] (c) Use a graph paper for this question. The point P(2,-4) is reflected about the line x = 0 to get the image Q. Find (i) the co-ordinates of Q.

- (ii) Point Q is reflected about the line y = 0 to get the image R. Find the coordinates of R.
- (iii) Name the figure PQR.
- (iv) Find the area of figure PQR.

(a)
$$\Rightarrow \begin{bmatrix} 6 & 8 \\ 10 & 2x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 7 & 8+y \\ 10 & 2x+1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$
$$\Rightarrow \\ 8+y=0 \Rightarrow y=-8$$
$$\Rightarrow \\ 2x+1=5 \Rightarrow x=2$$
$$x=2 \text{ and } y=-8$$
(b)
$$-\frac{8}{3} \le x+\frac{1}{3} \text{ and } x+\frac{1}{3} < \frac{10}{3}$$
$$-\frac{8}{3}-\frac{1}{3} \le x \text{ and } x < \frac{10}{3}-\frac{1}{3}=3$$
$$-3 \le x \text{ and } x < 3$$
$$So \ \{x \mid -3 \le x < 3 \mid, x \in \mathbb{R}\}$$

Ans.

[4]

Mathematics, 2007 | 573

(c) (i) Q (-2, -4)

2

з

- (ii) R (-2, 4) (iii) Right angle triangle.
- . (iv)

Area of
$$\triangle PQR = \frac{1}{2} \times 4 \times 8$$

= 16 sq. unit

Question 4.

(a) Evaluate : $\frac{Sin \ 80^\circ}{Cos \ 10^\circ}$ + Sin 59° Sec 31°

Ans.

[3]

(b) Saloni deposited ₹ 150 per month in her bank for eight months under the Recurring Deposit Scheme. What will be the maturity value of her deposit, if the rate of interest is 8% per annum and the interest is calculate at the end of every month ?

www.10yearsquestionpaper.com I ICSE Last 10 Years Solved Papers

		un of the follow	na distrik.			
	Class Interv	an of the followi	10-20	Charles of the second		
	Frequency	10	6	20-30	30-40	4050
Soh	stion :			8	12	5
(a)	Given :	•		<u>n 80°</u> s 10° + Sin (
3			$=\frac{Sir}{Cos}$	1 (90° – 10°) Cos 10° 5 10° Cos 3	$+\frac{\sin{(90^{\circ})}}{\cos{3}}$	<u>- 31°)</u> 1°
\$			Cos	$\frac{10^\circ}{10^\circ} + \frac{\cos 3}{\cos 3}$	91°	
			= 1 <u>+</u>	요양있는 그라지구리		1 N
(b)	Equi :slent	principal for 1	L	4	_	Ап
ţ.				$0\left[\frac{8(8+1)}{2}\right]$]= ₹150 × ;	36
	Inte	erest on this pri	$acipal = \frac{P \times I}{I}$	$R \times T$		
					-	
			= 2 15	0 × 36 × 8 12 × 100		
	Total mon	av donati 1	T	12×100]=₹36	
		ey deposited by	Amit = $?(15)$	0 x 8)	23	
3.			= ₹120	0	÷	
		Maturity v	value = ₹120	0 + ⋜ 36		
(c)			= 🕈 1230	6.		
a caracteristic de la cara	ass Internal	p=-=-, <u>(</u>				Ans.
1	ass Interval	<i>f</i>	x	d = x -	A	<u> </u>
	0i0	10	5	-20		fd /
1	16-20	6	15	1	- 20	65.25.6
	20-30	8	-25 ≈ A	-10	6	
	30-40	12	35	0	1 N N	0
	2 C C C C C C C C C C C C C C C C C C C			10	10	
	40 50	5	45	6 G.	12	0
	2 C C C C C C C C C C C C C C C C C C C		45	20	10	
	2 C C C C C C C C C C C C C C C C C C C	$N = \Sigma f = 41$		20	10(
	2 C C C C C C C C C C C C C C C C C C C	$N = \Sigma f = 41$	45 $an = A + \frac{\Sigma f d}{N}$	20	10(0
	2 C C C C C C C C C C C C C C C C C C C	$N = \Sigma f = 41$	$an = A + \frac{\Sigma f d}{N}$	20	100 $\Sigma fd =$	0
L		$N = \Sigma f = 41$	$an = A + \frac{\Sigma f d}{N}$ $= 25 + \frac{-4}{41}$	20	100 $\Sigma fd =$	0
ŀ		$N = \Sigma f = 41$ Me	$e^{2an} = A + \frac{\Sigma f d}{N}$ $= 25 + \frac{-4}{41}$ $= 24.03$	20 0 = 25 - 0.9	100 $\Sigma fd =$	0 = - 40
Ļ	40 50	$N = \Sigma f = 41$ Me	$an = A + \frac{\Sigma f d}{N}$ $= 25 + \frac{-4}{41}$ $= 24.03$ N R 140 M	$\frac{20}{20} = 25 - 0.9$	100 $\Sigma fd =$	0
estion	40 50 	$N = \Sigma f = 41$ Me SECTION Source any Four ($an = A + \frac{\Sigma f d}{N}$ $= 25 + \frac{-4}{41}$ $= 24.03$ N B [40 Mark Questions in th	20 0 = 25 - 0.9 s] is Section.	100 $\Sigma fd =$	0 = - 40
estion	40 50 	$N = \Sigma f = 41$ Me SECTION Source any Four ($an = A + \frac{\Sigma f d}{N}$ $= 25 + \frac{-4}{41}$ $= 24.03$ N B [40 Mark Questions in th	20 0 = 25 - 0.9 s] is Section.	100 $\Sigma fd =$	0 = - 40
estion Let A	40 50 	$N = \Sigma f = 41$ Me	$an = A + \frac{\Sigma f d}{N}$ $= 25 + \frac{-4}{41}$ $= 24.03$ N B [40 Mark Questions in th	20 0 = 25 - 0.9 s] is Section.	100 $\Sigma fd =$	0 = - 40

.

Mathematics, 2007 | 575

- (b) Ajay owns 560 shares of a company. The face value of each share is ₹ 25. The company declares a dividend of 9%. Calculate :
 - (i) The dividend that Ajay will get.
 - (ii) The rate of interest on his investment, if Ajay had paid \mathbf{R} 30 for each share. [3]
- (c) The surface area of a solid metallic sphere is 616 cm². It is melted and recast into smaller spheres of diameter 3.5 cm. How many such spheres can be obtained ?
 [4] Solution.

(a)

$$A^{2} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}$$

$$AB = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix}$$

$$B^{2} = \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 6 \\ -2 & -3 \end{bmatrix}$$

$$A^{2} + AB + B^{2} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 6 \\ -2 & -3 \end{bmatrix}$$

$$A^{2} + AB + B^{2} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 6 \\ -2 & -3 \end{bmatrix}$$

$$A^{2} + AB + B^{2} = \begin{bmatrix} 4 & 9 \\ 5 & 4 \end{bmatrix}$$
Ans.
(b) Given:
Number of shares = 560
Divided on 1 share = $\frac{9}{100} \times 25 = \sqrt[7]{\frac{9}{4}}$
(i)
Dividend on 560 shares = $\frac{9}{4} \times 560$

$$= \sqrt[7]{1260}$$
Ans.
(ii)
Total investment = 560×30

$$= \sqrt[7]{1260}$$
Ans.
(c)
Surface area of solid sphere = $\frac{4\pi R^{2}}{2} = 616$

$$R^{2} = \frac{616 \times 7}{4 \times 22} = 49$$

$$R = 7 \text{ cm.}$$
Volume of original sphere = $\frac{4}{3} \times \pi \times 7^{3} \text{ cm}^{3}$.
Radius of small sphere = $\frac{4}{3} \times \pi \times \left(\frac{7}{4}\right)^{3}$

576 | ICSE Last 10 Years Solved Papers

Number of small sphere =
$$\frac{\frac{4}{3}\pi \times 7^3}{\frac{4}{3} \times \pi \times \left(\frac{7}{4}\right)^3}$$

= 64. Ans.

Question 6.

(a) Mr. Ashok Sharma's income from his salary in the year 2005-06 was ₹2,96,000.^{**}

Savings :

Contribution towards Provident Fund : ₹ 1,500 per month Contribution towards L.I.C. premium : ₹ 10,000 per year National Saving Certificates : ₹ 15,000 Donations :

To Prime Minister's Relief Fund : ₹ 12,000 (eligible for 100%tax exemption) If a sum of ₹ 4,000 was deducted every month towards Income Tax from his salary for the first 11 months of the year, calculate Mr. Sharma's income tax liability in the last month of the year.

Tax Slab :

Upto ⋜ 50,000	No tax	
₹ 50,001 to ₹ 60,000	10% of	income exceeding ₹ 50,000
₹ 60,001 to ₹ 1,50,000) + 20% of the income exceeding ₹ 60,000
Above 🕇 1,50,000		0 + 30% of the income exceeding ₹ 1,50,000
Standard Deduction	₹20,00	
Rebate in tax	20% of	the total savings or ₹ 14,000 whichever is,less
Surcharge		the total tax payable after rebate. [6]

- (b) Five years ago, a woman's age was the square of her son's age. Ten years hence her age will be twice that of her son's age. Find :
 - (i) The age of the son five years ago.
 - (ii) The present age of the women. [4]

Solution.

(b) Let the present age of women be x years and her son be y years.

Five years ago :

	$(x-5) = (y-5)^2$	(1)
Ten years hence :		
	(x + 10) = 2(y + 10)	
⇒	x+10 = 2y+20	
⇒	x-2y = 10	
₽	x = 2y + 10	(2)
From (1),	and the second s	
	$x - 5 = y^2 + 25 - 10y$	

-19

 $x = y^2 - 10y + 30 \qquad \dots (3)$

8

**

Solution has not given due to out of present syllabus.

Mathematics, 2007 | 577

From (2) and (3) $2y + 10 = y^2 - 10y + 30$ $y^2 - 12y + 20 = 0$ ⇒ y(y-10) - 2(y-10) = 0 \Rightarrow y = 2 or y = 10y = 2 years is not possible. y = 10i.e., Age of the son five years ago = y - 5 = 10 - 5(i) = 5 years Present age of women = $2y + 10 = 2 \times 10 + 10$ (ii) Ans. = 30 years.

Question 7.

(a) Solve the following quadratic equation for x and give your answer correct to two decimal places :

$$x^2 - 3x - 9 = 0$$
 [3]

(b) Using a ruler, construct a triangle ABC with BC = 6.4 cm, CA = 5.8 cm and $\angle ABC = 60^{\circ}$. Draw its incircle. Measure and record the radius of the incircle.

[3]

(c) Mrs. Kumar has an account with The Bank of India. The following entries are from her pass book :

Date	Particulars	Withdrawals	Deposits	Balance	
		₹ P	₹ P	R P	
08.02.06	B/F	ar tá	—	8500.00	
18.02.06	To self	4000.00	1 <u>22 - 20</u>	<u></u>	
12.04.06	By cash	-	2238.00	14-00	
15.06.06	To self	5000.00	—		
08.07.06	By cash	·	6000.00	2. 1911 - 191 1	

Complete the above page of her pass book and calculate the interest for the six months, February to July 2006, at 4.5% per annum. [4]

Solution : (a) Given :

$$x^2 - 3x - 9 = 0$$

Comparing with $ax^2 + by + c = 0$, we get

$$a = 1, b = -3, c = -9$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{+3 \pm \sqrt{9 + 36}}{2} = \frac{3 \pm \sqrt{45}}{2}$$

$$= \frac{3 \pm 6.70}{2}$$

$$= \frac{9.7}{2} \text{ or } \frac{-3.70}{2}$$

$$= 4.85 \text{ or } -1.85.$$
Ans.

578 | ICSE Last 10 Years Solved Papers

- (b) Steps of Constructions: www.10yearsquestionpaper.com
 - Draw BC = 6.4 and at B angle 60°. 1. 2.
 - Taking C as centre cut AC = 5.8 cm on the arm XB.
 - Draw angle bisector of $\angle ACB$ and $\angle ABC$ 3. which intersect at O. 4.
 - Taking O as centre. Draw a incircle. 5.
 - Draw \perp from O on BC which cut at M. 6,
- Required radius of incircle OM = 1.5 cm. (c) Data

.

	08.02.06	Particulars	Withdrawals र	Deposits T	Balance
	[1] M. M. Martin, and M. M. M. M. Martin, Phys. Rev. Lett. 71, 105 (1996).	B/F			₹
	18.02.06	To self	1000.00		8500.00
	12.04.06	By cash	4000.00		4500.00
	15.06.06	To self		2238.00	6738.00
	08.07.06	By cash	5000.00	- 1	1738.00
		im balance for Feb		6000.00	7738.00
		Principal for 1 m	April = $\langle 4, $ May = $\langle 6, $ June = $\langle 1, $ July = $\langle 7, $ onth = $\langle 29, 7 $ erest = $\frac{\overline{PRT}}{100} = \langle 7 $	100×12	, / <u>1</u>
Qu	estion 8.	1 3	= ₹111.43		Ans.
(a)	Prove the identit	ty: $\frac{Sec A - 1}{Sec A + 1} = \frac{1 - 1}{1 + 1}$	Cos A		334Je
(b)	The mid point of	Sec $A + 1^{-}1 + f$ the line com-	Cos A		[3]
	the values of a a	f the line segment j nd b.	oining (2a, 4) an	d (-2, 2b) is (1,	2a+1) Find
(c)	In the single c			31.6	-/- + 0100

(c) In the given figure, if $\angle ACE = 43^{\circ}$ and $\angle CAF = 62^{\circ}$ find the values of a, b and

[4]

www.10yearsquestionpaper.com *Mathematics*, 2007 | 579 Solution.

(a)
L.H.S. =
$$\frac{\sec A - 1}{\sec A + 1}$$

= $\frac{UCos A - 1}{UCos A - 1}$
 $\frac{UCos A + 1}{(1 - \cos A) \cos A}$
= $\frac{1 - \cos A}{\cos A}$
= $\frac{1 - \cos A}{1 + \cos A}$
= R.H.S.
Proved
(b) Mid points $\operatorname{ere}\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)^2$
 $\frac{x_1 + x_2}{2} = \frac{2a - 2}{2} = 1$
 \Rightarrow $a - 1 = 1$
 \Rightarrow $a - 1 = 1$
 \Rightarrow $a - 2$
 $\frac{y_1 + y_2}{2} = \frac{4 + 2b}{2} = 2a + 1$
 \Rightarrow $4 + 2b = 4a + 2$
 $4 + 2b = 4a + 2$
 $4 + 2b = 10$
 \Rightarrow $2b = 10 - 4$
 $b = 3$
(c)
 $a = 2 \operatorname{and} b = 3$, Ans.
(c)
 $a = 2 \operatorname{and} b = 3$, Ans.
 $(a = 2 \operatorname{EEF} = 180^\circ - 75^\circ$ (cyclic quadrilateral)
 $= 105^\circ$
 $(c = 4BD = 2a = 180^\circ - 75^\circ$
 $(c = 180^\circ - 75^\circ$ Ans.
 $(c = 180^\circ - (167^\circ)$
 $= 130^\circ - (167^\circ)$
 $= 130^\circ - (187^\circ)$
 $= 180^\circ - (187^\circ)$
 $(a A function in x is defined as $6x_1 = \frac{3x^2 + 2x - 1}{3x^2 + 2x - 1}$$

Find the value of the expression :
$$\frac{f(2)}{f(-3)} + 1$$
.

** Solution has not given due to out of present syllabus.

[3]

- 580 | ICSE Last 10 Years Solved Papers
- (b) Find the equation of the line parallel to the line 3x + 2y = 8 and passing through the point (0, 1).
 (a) Free distance in the line is a set of the line and passing through the point (0, 1).
- (c) From the top of a hill, the angles of depression of two consecutive kilometer stones, due east are found to be 30° and 45° respectively. Find the distance of the two stones from the foot of the hill.

Solution

(b) Given: 3x + 2y = 8 $\Rightarrow \qquad 2y = -3x + 8$ $\Rightarrow \qquad y = \frac{-3}{2}x + 4$ Slope of the line $= m_1 = -\frac{3}{2}$

Equation of the line passing through the point (0, 1)

$$y - y_1 = m (x - x_1)$$

 $y - 1 = -\frac{3}{2}(x - 0)$
 $2y - 2 = -3x$
 $3x + 2y = 2$

(c) $In \land ABC$,

$$\tan 45^\circ = \frac{h}{x} = 1$$
$$h = x$$

In \triangle ABD,

Question 10.

(a) The table below shows the distribution of the scores obtained by 120 shooters in a shooting competition. Using a graph sheet, draw an ogive for the distribution.

Scores obtained	0-10	10–20	2030	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Number of Shooters	5	9	16	22	26	18	11	6	4	3

Use your ogive to estimate :

(i) The Median.

- (ii) The inter quartile range.
- (iii) The number of shooters who obtained more than 75% scores.

Ans.

...(1)

- Mathematics, 2007 | 581
- **(b)** In the given figure, ABC is a triangle. DE is parallel to BC and $\frac{AD}{DB} = \frac{3}{2}$.
- (i) Determine the ratios $\frac{AD}{AB}$, $\frac{DE}{BC}$
 - (ii) Prove that $\triangle DEF$ is similar to $\triangle CBF$. Hence, find $\frac{EF}{FB}$.
- F. Hence,
 - (iii) What is the ratio of the areas of ΔDFE and ΔBFC ?

Solution.

..

Scores	Number of Shooters	Cumulative Frequency		
0-10	. 5	5		
1020	9	14		
2030	16	30		
30-40	22	52		
40-50	26	78		
5060	18	96		
60 –70	11	107		
70-80	6	113		
80–90	4	117		
90–100	3	120		

(i) To find the median

Let A be a point on y axis
$$= \frac{1}{2} \left[\frac{n}{2} + \left(\frac{n}{2} + 1 \right) \right]$$

 $= \frac{1}{2} [60 + 61] = 60.5$

No. of shooters

$$Median = 45$$

Ans,

(ii) To find the lower quartile :

Let B be the point on y axis
$$=\frac{n}{4}=\frac{120}{4}=30$$

1

1

..

Let C be the point on y axis
$$=$$
 $\frac{3n}{4} = \frac{3 \times 120}{4} = 90$

- . The upper quartile = 56
- Inter quartile range = 56 30 = 26.
- (iii) The number of shooters when obtained more than 75% scores. From E draw a vertical line to meet ogive at F. From F draw horizontal line to D

1

$$120 - 110 = 10$$
 Ans.

Scores

[4]

Ans.

582 | ICSE Last 10 Years Solved Papers

 $\frac{AD}{DB} = \frac{3}{2}$ (b) Given : $\frac{AD}{AD + DB} = \frac{3}{3+2} = \frac{3}{5}$ (i) $\frac{AD}{AB} = \frac{3}{5}$ ⇒ $\angle ADE = \angle ABC$ and $\angle A = \angle A$ $\triangle ADE - \triangle ABC$ $\frac{DE}{BC} = \frac{AD}{AB} = \frac{3}{5}$ Ans. $\angle FED = \angle FBC$ (ii) $\angle DFE = \angle BFC$ (vert. opp.) Proved $\Delta DEF \sim \Delta CFB$ ⇒ $\frac{DE}{BC} = \frac{FE}{FB} = \frac{3}{5}$ Ans, 1 $\frac{\text{area of } \Delta DFE}{\text{area of } \Delta CFB} = \frac{DE^2}{BC^2} = \left(\frac{DE}{BC}\right)^2$ (iii) $=\frac{9}{25}$ Ans.

Question 11.

i

(a) If the line joining the points A (4, - 5) and B (4, 5) is divided by the point P such that $\frac{AP}{AB} = \frac{2}{5}$, find the co-ordinates of P. [3]

(b) In the figure given below, PT is a tangent to the circle. Find PT if AT = 16 cm and AB = 12 cm. [3]

- (c) Construct a triangle BCP given BC = 5 cm, BP = 4 cm and ∠PBC = 45°.
 (i) Complete the rectangle ABCD such that :
 - Complete the rectangle ADOD such that
 - (1) P is equidistant from AB and BC.
 - (2) P is equidistant from C and D.

(ii) Measure and record the length of AB.Solution.

(a) Given:

-

⇒

 $\frac{AP}{AB} = \frac{2}{5}$ $\frac{AB}{AP} = \frac{5}{2}$ $\frac{AB}{AP} - 1 = \frac{5}{2} - 1$ $\frac{PB}{AP} = \frac{3}{2}$ $\frac{AP}{AP} = \frac{3}{2}$ $\frac{2}{A}$ $\frac{3}{P}$ $\frac{3}{P$

[4]

Mathematics, 2007 | 583

Coordinates of P =
$$\left(\frac{mx_2 + nx_1}{m + x}, \frac{my_2 + xy_1}{m + x}\right)$$

= $\left(\frac{2 \times 4 + 3 \times 4}{2 + 3}, \frac{2 \times 5 + 3 \times (-5)}{2 + 3}\right)$
= $\left(\frac{8 + 12}{5}, \frac{10 - 15}{5}\right)$
= $(4, -1)$ Ans.

(b) . PT is a tangent,

5. J

ei.

. .

www.10yearsquestionpaper.com