GENERAL INSTRUCTIONS:
i) Attempt all the questions.
ii) Section - A consists of 4 questions of 1 mark each.
iii) Section - B consists of 4 questions of 2 marks each.
iv) Section - C consists of 4 questions of 4 marks each.
v) Section - D consists of 2 questions of 6 marks each.

SECTION - A

1. A line makes angles of 45° and 60° with x and y axis respectively.

Find the angle it makes with z axis.
2. Find k if $2 \hat{\imath}+6 \hat{\jmath}+14 \hat{k}$ and $\hat{\imath}-\lambda \hat{\jmath}+7 \hat{k}$ are parallel vectors.
3. If $f(x)=x+7$ and $g(x)=x-7, x \in R$ find $f \circ g(7)$.
4. If A and B are two events such that $P(A)=0.4, P(B)=0.8$ and $P(B / A)=0.6$ find $P(A / B)$.

SECTION - B

5. The odds against A solving a problem are $4: 3$ and the odds against in favor of B solving it are 7:5. Find the probabilities that the problem is solved if they try independently.
6. Find the vector equation of line passing through the point $(2,4,6)$ and parallel to the line $3 x+4=4 y-1=1-4 z$.
7. Let $f(x)$ is an invertible function, find the inverse of $f(x)=\frac{3 x-2}{5}$.
8. Let $\vec{a}=\hat{\imath}+\hat{\jmath}$ and $\vec{b}=2 \hat{\imath}-3 \hat{k}$. Find a unit vector in the direction of $2 \vec{a}+3 \vec{b}$.

SECTION - C

9. Let $\vec{a}=4 \hat{\imath}+5 \hat{\jmath}-\hat{k}, \vec{b}=\hat{\imath}-4 \hat{\jmath}+5 \hat{k}$ and $\vec{c}=3 \hat{\imath}+\hat{\jmath}-\hat{k}$. Find a vector \vec{d} such that \vec{d} is perpendicular to \vec{a} and \vec{b} and $\vec{d} . \vec{c}=21$.
10. Find image of the point $(3,5,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$.
11. Two cards are drawn with replacement from a well shuffled deck of 52 cards. Find the probability distribution of number of queens.
12. Let R be the relation on A defined $a s a R b$, if $a \leq b$, show that R is reflexive and transitive but not symmetric.

SECTION - D

13. 40% students of a college reside in hostel and the remaining resides outside. At the end of the year 50% of the hostellers got A grade while from outside students only 30% got A grade in examination. At the end of the year, a student of the college was chosen at random and was found to get A grade. What is the probability that the selected student was a hostler?
14. Find the equation of the plane passing through the point($1,1,-1$) and perpendicular to the planes $\vec{r} .(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})=7$ and $\vec{r} .(\widehat{2 i}-3 \hat{\jmath}+4 \hat{k})=0$.
