Qn	Sub.			Split	Total
No.	Qn	Value Points / Scoring India	cators	score	Score
1		Benzene + Toluene or (d)			1
2		(d) or Calamine			1
3		Magnetic moment, $\mu = \sqrt{n(n + 1)}$	-		1 1
4 5		Ethylenediaminetetraacetate i			1
5 6		2 – Acetoxy benzoic acid (OR	l) Acetyl salicylic acid		1
-		ZSM -5			1
7		Chloroxylenol and terpineol			1
8		Crystalline Solids	Amorphous solids.		
		 Definite shape 	Irregular shape		
		 Sharp melting point 	Melts over a range of temp.		
		 Shows cleavage property. 	Deosnot show cleavage		
			Property		
		 Anisotropic 	Isotropic		2
		True solids	Pseudo solid or super		
			Cooled liquids.		
		Long range order	Short range order		
		(Any Two is sufficient)			
9		Since X atom are at corners, N	Io.of atom = 1/8 × 8 = 1	1	
		Since Y atoms are at body cen	tre No. of atom = 1		2
		∴ Formulae of the compour	nd is XY	1	
10		On Coupling Zn electrode with SHE it forms a cell with Zn as anode (Zn/Zn ²⁺) and SHE as Cathode. (Zn has a greater Tendency to ionize than H ₂ does)			
		Thus we can write ;		1	
		$E^{\circ}_{Cell} = E^{\circ}_{Cathode} - E^{\circ}_{Anode}$ 0.76 = 0 - E°_{Anode} (Electrode potential of SHE = 0)			2
		$E^{\circ}_{Anode} = 0 - 0.76 = -0.76$	1	1	

11 \$	Al ³⁺ + 3e ⁻ \longrightarrow Al 27g Ie, 27g Al needs = 3 F 1g Al needs = $3 F$ 40g Al needs = $3 \times 40 F$ $= 1 \times 40 F = (1/9) \times 40 \times 96500 C$ $= 4.3 \times 10^5 C.$ (Can Also use Mole concept)	1	2
12	Branch of chemistry which deals with the study of Reaction rate and their mechanism are called Chemical Kinetics. It helps to determine rate of a reaction and the conditions By which reaction rates can be altered.	1	2
13	 When catalyst and reactants are in same phase it is said to Be homogenous catalysis. Eg: i) Oxidation of SO₂ to SO₃ in contact process. ii) Hydrolysis of methyl acetate catalyzed by H⁺ ion. iii) Hydrolysis of sugar catalyzed by H⁺ ions. (Any one example or reaction) 	1	2
14	Nickel is heated with CO forming volatile Nickel carbonyl Which on subjected to high temperature, decomposes to Give pure metal Ni + 4CO → Ni(CO) ₄ [330 – 350 K] Ni(CO) ₄ → Ni + 4CO [450 – 470 K]	1 1	2
15	Due to comparatively higher electronegativity of Nitrogen Than phosphorous, intermolecular H – bonding is Possible in NH3 but not in PH3		2
16	Transition elements are those elements which has Incomplete d orbitals either in ground or in any oxidized	1	

		state. For Ag, Ag ²⁺ has 4d ⁹ Configuration, thus silver is a transition metal.	1	2
17		The 5f electrons of actinoids are more effectively shielded fr nuclear Charge than 4f in lanthanoids.		2
18		$en \qquad Cl \qquad Cl \qquad en \qquad Cl \qquad C$		
19	(a) (b)	Diisobutylaluminium hydride (DIBAL – H) is used to selectively reduce nitriles and some esters without affecting double or triple bond in it.	1 1	2
20		Gas phase : $(CH_3)_3N > (CH_3)_2NH > CH_3NH_2$ Aqueous solution : $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N$	1 1	2
21		 To increase the solubility of CO₂ in water, soda water Is kept under high pressure in sealed vessels. Formation of bends as the scuba divers reach the Surface of the sea. At high altitude partial pressure of oxygen is less and Lead to low conc. Of same in blood. This condition is Called as Anoxia. 	1 1 1	3
22		Activity of a catalyst. It is the ability of a catalyst to speed up a chemical Reaction. It depends upon strength of chemisorption. Eg: For hydrogenation reaction, catalytic activity Increases from group 5 to group 11. Selectivity of a catalyst Ability of a catalyst to direct a chemical reaction to yield a Particular product. Eg:	1 ¹ / ₂	3
		Eg:	- / -	3

26		i) Ammonolysis of alkyl halide $NH_3 + CH_3CH_2Cl \longrightarrow C_2H_5 - NH_3^+Cl^-$ $C_2H_5 - NH_3^+Cl^- + NaOH \longrightarrow C_3H_5NH_2 + H_2O + NaCl$			
		 ii) Reduction of nitriles CH₃ <u>CN</u> → H₂/Ni Na(Hg)/ Ethanol CH₃<u>CH₂ NH₂</u> iii) Reduction of amides 			3
		iv) Hoffmann bromamide Degradation			
		CH ₃ CH ₂ CONH ₂ + Br ₂ + NaOH	Na ₂ CO ₃ + 2H ₂ O + 2NaBr		
27		 DNA Contains deoxyribose sugar Nitrogen base are adenine, Thymine,Guanine, Cytosin Double stranded Genetic material in most 	RNA Contains Ribose sugar Nitrogen bases are adenir Uracil, Guanine, Cytosin Single stranded Genetic material in some	1 1	3
		organisms • More stable	Protein synthesis. Less stable	1	
28	(a) (b)	Question is unclear since NCERT text does not mention the Term synthetic polypeptide . May be the questioner asking for polyamides. - So, Nylon6 and Nylon-6,6. OR any appropriate answer. Appropriate answer.			3
29	(a) (b) (c)	Drugs Used to decrease the acidity od stomach is antacids. Drugs which abolish pain without impairing consciousness Antibiotics are chemicals which kills or prevent the growth Of microorganism which are in turn prepared from other Microorganisms			3

30	(a)	The reaction which appears to be higher order but actually f first order kinetics are called pseudo first order reactions. It happens when one reactant is in excess. $CH_3COOC_2H_5 + H_2O \rightarrow CH_3COOH + C_2H_5OH$ $r = k'[CH_3COOC_2H_5][H_2O]$ Since $[H_2O]$ is a constant,	2	
		$r = k [CH_3COOC_2H_5]$ where $k = k'[H_2O]$		
	(b)	Thus it follows first order kinetics. K = 1.15×10 ⁻³ s ⁻¹		
	(0)	$[R]_0 = 5g$ [R] = 3g t = ?		4
		We have for first order reaction, $K = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$ $t = \underline{2.303} \log \frac{[R]_0}{[R]_0}$	1	
		k [R] t = 2.303 log 5 = 4.442×10 ² s 1.15×10 ⁻³ 3	1	
31	(a)	Due to the ease with which it liberate atoms of nascent Oxygen, it act as a powerful oxidizing agent. $O_3 \rightarrow O_2 + [O]$	1 1	4
	(b)	When ozone react with an excess of potassium iodide soln Buffered with a borate buffer(pH 9.2) iodine is liberated, Which can be titrated against a standard solution of Sodium thiosulphate	2	
32	(a)	 It is because, i) The resonance in chlorobenzene tend to develop a partial double bond character to the C - Cl bond which is difficult to cleave or break. (Or draw resonance structure ii) The C carrying halogen in chlorobenzene is sp² hybridi zed which is more electronegative than sp³ hybridized carbon in alkyl chloride. Thus the bond in chlorobenzene 		

		become shorter and difficult to break.		
	(b)	$CH_3 - CH_2 - CH - CH_3 \xrightarrow{Alc. KOH} CH_3 - CH = CH - CH_3$ 2 - bromobutane $CH_3 - \overset{+}{CH}_2 - CH = CH_2$ (Minor)	1	4
		It is because as per saytzeff rule, the product in which Double bonded carbon carries greater number of alkyl Group is formed as major product.	1	
33.	(a)	Aldehydes having atleast one alpha hydrogen Undergo reaction in presence of dil alkali to form aldols Which readily looses water to give $\alpha\beta$ unsaturated Carbonyl compounds. 2CH ₃ CHO $\rightarrow CH_3$ - CH ₃ - CH ₂ - CHO $\rightarrow -H_2O$ CH ₃ - CH = CH - CHO Aldol Condensation	2	4
	(b)	Product HVZ Reaction. Carboxyllic acids with alpha hydrogen halogenated with Chlorine or bromine in presence of red phosphorous, to Give α halo carboxylic acid. $R - CH_2 COOH \xrightarrow{(i) X_2 / red phosphorous}_{(ii) H_2O} R - CH - COOH$ X (X - Cl, Br)	2	7