

NARAYANA IIT ACADEMY

Presents

South Delhi North/West Delhi East Delhi Gurgaon Dwarka : 47-B, Kalu Sarai, New Delhi – 110016 • Ph.: 011-42707070, 46080611/12

- **hi** : 15, Central Market, West Punjabi Bagh, New Delhi 110026 Ph.: 011-45062651/52/53
- 32/E, Patparganj Village, Mayur Vihar Phase I, Delhi 110 091• Ph.: 011-22750043/52
 M-21, Old DLF Colony, Sector-14, Gurgaon Ph.: 0124-3217791/92

M21, Ou DEr Colony, Secontra, Guigaon • 11... 0124-3217791722
 317/318, Vikas Surya Galaxy, Main Mkt, Sector-4, Dwarka, New Delhi - 110 075 • Ph.: 011-45621724/25

You can also download from:

website: www.narayanadelhi.com ·www.narayanaicc.com ·e-mail: info@narayanadelhi.com

CODE

- 1. The test is of 3 hours duration.
- 2. The Test Booklet consists of 90 questions. The maximum marks are 432.
- 3. There are three parts in the question paper. The distribution of marks subject wise in each part is as under for each correct response.

Instructions

Part A - PHYSICS (144 marks) – Questions No. 1 to 2 and 9 to 30 consist FOUR (4) marks each and Question No. 3 to 8 consist EIGHT(8) marks each for each correct response.

Part B - CHEMISTRY (144 marks) – Questions No. 31 to 39 and 46 to 60 consist FOUR (4) marks each and Question No. 40 to 45 consist EIGHT (8) marks each for each correct response.

- Part C MATHEMATICS (144 marks) Questions No. 61 to 82 and 89 to 90 consist EIGHT (8) marks each and Questions No. 83 to 88 consist EIGHT (8) marks each for each correct response.
- 4. Candidates will be awarded marks as stated above in instruction No. 5 for correct response of each question ¹/₄ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 5. Use Blue/Black Ball Point Pen only for writing particulars/marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibited.
- On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them.

PHYSICS

STATEMENT -1For a charged particle moving from point P to point Q, the net work done by an electrostatic field on the particle is independent of the path

connected point P to point Q.

STATEMENT – 2

The net work done by a conservative force on an object moving along a closed loop is zero.

- (1) Statement 1 is True, Statement 2 is 3. False.
- (2) Statement 1 is True, Statement 2 is True; Statement - 2 is a correct explanation for Statement - 1.
- (3) Statement 1 is True, Statement 2 is True; Statement - 2 is not the correct explanation for Statement - 1.
- (4) Statement 1 is False, Statement 2 is True.

Key (3)

Sol. Statement-2 is not the correct explanation of statement-1.

2.

1.

The above is a plot of binding energy per nucleon E_b , against the nuclear mass M; A, B, C, D, E, F correspond to different nuclei. Consider four reactions :

(i) $A + B \rightarrow C + \varepsilon$

- (ii) $C \rightarrow A + B + \varepsilon$
- (iii) $D + E \rightarrow F + \varepsilon$

(iv) $F \rightarrow D + E + \varepsilon$

where ε is the energy released ? In which reaction is ε positive ?

- (1) (i) and (iv) (2) (i) and (iii)
- (3) (ii) and (iv) (4) (ii) and (iii).

Key. (1)

- **Sol.** Binding energy per nucleon of each product is less than that of each reactants.
 - A p-n junction (4) shown in the figure can act as a rectifier. An alternating current source (V) is connected in the circuit.

The current (I) in the resistor (R) can be shown by :

Sol. Only +ve current passes though the diode.

4. The logic circuit shown below has the input waveforms 'A' and 'B' as shown. Pick out the correct output waveform.

- **Sol.** Y is true only when both A and B are true. Y =AB.
- 5. If x, v and a denote the displacement, the velocity and the acceleration of a particle executing simple harmonic motion of time period T, then, which of the following does not change with time?
 - (1) $a^{2}T^{2} + 4\pi^{2}v^{2}$ (2) aT/x
 - (3) $aT + 2\pi v$ (4) aT/v

Key. (1)

Sol. $x = A \sin \omega t$

 $v = A\omega \cos \omega t$

 $a = -A\omega^2 \sin \omega \theta$ Hence, $a^2T^2 + 4\pi^2v^2$

$$= \sin^{2} \omega \theta \left(-A \omega^{2}\right)^{2} \left(\frac{2\pi}{\omega}\right)^{2} 4\pi^{2} (A \omega)^{2} \cos \theta$$
$$4\pi^{2} (A \omega)^{2} [\sin^{2} \theta + \cos^{2} \theta]$$

which is time independent.

Option (2) however may not be regarded as the correct answer because it is not mentioned that x, the displacement is measured from equilibrium position.

- 6. In an optics experiment, with the position of the object fixed, a student varies the position of a convex lens and for each position, the screen is adjusted to get a clear image of the object. A graph between the object distance u and the image distance v, from the lens, is plotted using the same scale for the two axes. A straight line passing through the origin and making an angle of 45° with the x-axis meets the experimental curve at P. The coordinates of P will be
 - (1) (2f, 2f)
 - (2) $\left(\frac{\mathrm{f}}{2},\frac{\mathrm{f}}{2}\right)$ (3) (f, f) (4) (4f, 4f).

Key. (1)

A thin uniform rod of length ℓ and mass m is 7. swinging freely about a horizontal axis passing through its end. Its maximum angular speed is ω. Its centre of mass rises to a maximum height of

(1)
$$\frac{1}{3} \frac{\ell^2 \omega^2}{g}$$
 (2) $\frac{1}{6} \frac{\ell \omega}{g}$
(3) $\frac{1}{2} \frac{\ell^2 \omega^2}{g}$ (4) $\frac{1}{6} \frac{\ell^2 \omega^2}{g}$

Key. (4)

So

9

Sol.
$$\frac{1}{2} \left(\frac{m\ell^2}{3} \right) \omega^2 = mgh$$

 $\Rightarrow h = \frac{\omega^2 \ell^2}{6g}.$

 $P(r) = \frac{Q}{\pi R^4}r$ be the charge density 8. Let

distribution for a solid sphere of radius R and total charge Q. For a point 'p' inside the sphere at distance r_1 from the centre of sphere, the magnitude of electric field is

(1) 0
(2)
$$\frac{Q}{4\pi\epsilon_0 r_1^2}$$

(3) $\frac{Qr_1^2}{4\pi\epsilon_0 R^4}$
(4) $\frac{Qr_1^2}{3\pi\epsilon_0 R^4}$
(5) (2) $\frac{Qr_1^2}{4\pi\epsilon_0 r_1^2}$
(6) $\frac{Qr_1^2}{3\pi\epsilon_0 R^4}$
(7) $\frac{Qr_1^2}{4\pi\epsilon_0 R^4}$
(8) $\frac{Qr_1^2}{2\pi\epsilon_0 R^4}$

The transition from the state n = 4 to n = 3 in a hydrogen like atom results in ultraviolet radiation. Infrared radiation will be obtained in the transition from :

(1)
$$2 \to 1$$

(3) $4 \to 2$
(4) $5 \to 4$
(5) $4 \to 2$

Sol. Energy of transition is less only in this case.

One kg of a diatomic gas is at a pressure of $8 \times$ 10. 10^4 N/m². The density of the gas is 4 kg/m³. What is the energy of the gas due to its thermal motion?

(1)
$$3 \times 10^4 \text{ J}$$
 (2) $5 \times 10^4 \text{ J}$
(3) $6 \times 10^4 \text{ J}$ (4) $7 \times 10^4 \text{ J}$

Key. (2)

Sol.
$$E = \frac{5}{2} nRT$$
$$= \frac{5}{2} PV$$
$$= \frac{5}{2} P \frac{m}{P}$$

$$=\frac{5}{2}\times\frac{(8\times10^4)(1)}{4}=5\times10^4\,\mathrm{J}\,.$$

This question contains Statement-1 and Key Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.

11. **STATEMENT – 1**

The temperature dependence of resistance is usually given as $R = R_0 (1 + \alpha \Delta t)$. The resistance of a wire changes from 100 Ω to 150 Ω when its temperature is increased from 27°C to 227°C. This implies that $\alpha = 2.5 \times 10^{-3}$ /°C. **STATEMENT – 2**

 $R = R_0 (1 + \alpha \Delta t)$ is valid only when the change in the temperature ΔT is small and $\Delta R = (R - R_0) << R_0$.

- (1) Statement 1 is True, Statement 2 is False.
- (2) Statement 1 is True, Statement 2 is Key True; Statement 2 is a correct explanation for Statement 1.
 (2) Statement 1.
 (2) Statement 1.
- (3) Statement 1 is True, Statement 2 is True; Statement - 2 is not the correct explanation for Statement - 1.
- (4) Statement 1 is False, Statement 2 is True.

Key (4)

Sol. R_0 is the resistance at 0°C.

Directions : Question numbers 12 and 13 are based on the following paragraph.

A current loop ABCD is held fixed on the plane of the paper as shown in the figure. The arcs BC (radius = b) and DA (radius = a) of the loop are joined by two straight wires AB andCD. A steady current I is flowing in the loop. Angle made by AB and CD at the origin O is 30°. Another straight thin wire with steady current I₁ flowing out of the plane of the paper is kept at the origin. 15.

- 12. The magnitude of the magnetic field (2) due to the loop ABCD at the origin (O) is
 - (1) zero

(2)
$$\frac{\mu_0 I(b-a)}{24ab}$$

(3)
$$\frac{\mu_0 I}{4\pi} \left[\frac{b-a}{ab} \right]$$

(4)
$$\frac{\mu_0 I}{4\pi} \left[2(b_a) + \frac{\pi}{3}(a+b) \right]$$

$$B = \frac{1}{12} \text{ of } \frac{\mu_0 I}{2} \left(\frac{1}{a} - \frac{1}{b} \right)$$
$$= \frac{\mu_0 I (b-a)}{24ab}.$$

13. Due to the presence of the current I_1 at the origin

- (1) the forces on AB and DC are zero
- (2) the forces on AD and BC are zero
- (3) the magnitude of the net force on the loop

is given by
$$\frac{I_1I}{4\pi}\mu_0\left[2(b-a)+\frac{\pi}{3}(a+b)\right]$$

(4) the magnitude of the net force on the loop

s given by
$$\frac{\mu_0 \Pi_1}{24ab}(b-a)$$

Key. (2)

$$\mathbf{F} = \mathbf{I}(\ell \times \mathbf{B}) = \mathbf{0}.$$

A mixture of light, consisting of wavelength 590 nm and an unknown wavelength, illuminates Young's double slit and gives rise to two overlapping interference patterns on the screen. The central maximum of both lights coincide. Further, it is observed that the third bright fringe of known light coincides with the 4th bright fringe of the unknown light. From this data, the wavelength of the unknown light is :

Key. (3)

• Fringe width
$$=\frac{\lambda d}{D}$$

 $\therefore \lambda_{\text{unknown}} = \frac{3}{4} \times 590 \text{ nm}$

= 442.5 nm.

15. Two points P and Q are maintained at the potentials of 10V and -4V, respectively. The work done in moving 100 electrons from P to Q is

(1)
$$-9.60 \times 10^{-17} \text{ J}$$
 (2) $9.60 \times 10^{-17} \text{ J}$
(3) $-2.24 \times 10^{-16} \text{ J}$ (4) $2.24 \times 10^{-16} \text{ J}$.

Key. (4)

Sol. $W = 100 \times 1.6 \times 10^{-19} \times 14$ = 2.24×10⁻¹⁶ J.

16. The surface of a metal is illuminated with the light of 400 nm. The kinetic energy of the ejected photoelectrons was found to be 1.68 eV. The work function of the metal is : (hc = 1240 eV.nm)

4

Sol.
$$\frac{hc}{\lambda} = \phi + (KE)_{max}$$

 $\Rightarrow \frac{1240}{400} = \phi + 1.68$
 $\Rightarrow \phi = 1.41 \text{ eV}$

17. A particle has an initial velocity of $3\hat{i} + 4\hat{j}$ and an acceleration of $0.4\hat{i} + 0.3\hat{j}$. It speed after 10 s is :

(2) $7\sqrt{2}$ units (1) 10 units

Key. (2)

- **Sol.** $\vec{V} = \vec{u} + \vec{a}t$ $\vec{V} = (3\hat{i} + 4\hat{j}) + 10(0.4\hat{i} + 0.3\hat{j})$ $\vec{\mathbf{V}} = 7\hat{\mathbf{i}} + 7\hat{\mathbf{i}}$ $\Rightarrow |\vec{V}| = 7\sqrt{2}$
- 18. A motor cycle starts from rest and accelerates along a straight path at 2 m/s^2 . At the straight point of the motor cycle there is a stationary electric siren. How far has the motor cycle gone when the driver hears the frequency of the siren at 94% of its value when the motor cycle was at rest?

(Speed of wound = 330 ms^{-1})

- (1) 49 m (2) 98 m (4) 196 m.
- (3) 147 m

$$V = \sqrt{2aS} = \sqrt{4S}$$

Also, 94 = 100 $\left(\frac{330 - V}{330}\right)$
 $\Rightarrow \frac{33 \times 6}{10} = \sqrt{4S}$
 $\Rightarrow S = 98 \text{ m}$

19. Consider a rubber ball freely falling from a height h = 4.9 m onto a horizontal elastic plate. Assume that the duration of collision is negligible and the collision with the plate is totally elastic.

Then the velocity as a function of time and the height as a function of time will be :

I H F

$$\begin{array}{c|c} & & & y \\ \hline t_1 & 2t_1 & 3t_1 & 4t_1 \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & &$$

* 7

Key. (3)

(4)

- Sol. When ball strikes the surface its velocity will be reversed so correct option is (3).
- 20. A charge Q is placed at each of the opposite corners of a square. A charge q is placed at each of the other tow corners. If the net electrical force on Q is zero, then Q/q equals:

(1)
$$-2\sqrt{2}$$
 (2) -1
(3) 1 (4) $-\frac{1}{\sqrt{2}}$.

Kev. (1)

21.

A long metallic bar is carrying heat from one of its ends to the other end under steady-state. The variation of temperature θ along the length x of the bar from its hot end is best described by which of the following figures ?

22. A transparent solid cylindrical rod has a refractive index of $\frac{2}{\sqrt{3}}$. It is surrounded by air. A light ray is incident at the mid-point of one end of the rod as shown in the figure.

The incident angle θ for which the light ray grazes along the wall of the rod is :

(1)
$$\sin^{-1}\left(\frac{1}{2}\right)$$
 (2) $\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(3) $\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$ (4) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$.

Key. (4)

Sol.
$$1 \times \sin 90 = \frac{2}{\sqrt{3}} \sin(90 - \alpha)$$

THE N
 $\Rightarrow \cos \alpha = \frac{\sqrt{3}}{2}$
So $\sin \alpha = \sqrt{1 - \frac{3}{4}} = \frac{1}{2}$
Now, $1 \times \sin \theta = \frac{2}{\sqrt{3}} \sin \alpha$

$$= \frac{2}{\sqrt{3}} \times \frac{1}{2} = \frac{1}{\sqrt{3}}$$
$$\Rightarrow \quad \theta = \sin^{-1} \frac{1}{\sqrt{3}}$$

23. Three sound waves of equal amplitudes have frequencies (v - 1), v, (v + 1). They superpose 26. to give beats. The number of beats produced per second will be (1) 4 (2) 3

(3) 2 (4) 1.

- Key. (3)
- **Sol.** $p_1 = p_0 \sin 2\pi (x 1)t$ $p_2 = p_0 \sin 2\pi(x)t$ $p_3 = p_0 \sin 2\pi (x+1)t$ $p = p_1 + p_3 + p_2$

 $= p_o \sin 2\pi (x-1)t + p_o \sin 2\pi (x+1)t + p_o \sin 2\pi xt$

 $= 2p_0 \sin 2\pi xt \cos 2\pi t + p_0 \sin 2\pi xt$ $= p_0 \sin 2\pi xt [2\cos \pi t + 1]$ \Rightarrow f_{beat} = 2. р

24. The height at which the acceleration due to gravity becomes $\frac{g}{q}$ (where g = the acceleration due to gravity on the surface of the earth) in terms of R, the radius of the earth, is :

(1) 2R
(2)
$$\frac{R}{\sqrt{2}}$$

(3) R/2
(4) $\sqrt{2R}$.
ey. (1)
bl. $\frac{GM}{9R^2} = \frac{GM}{(R+h)^2}$
 $\Rightarrow 3R = R + h$
 $\Rightarrow h = 2R$

Two wires are made of the same material and have the same volume. However wire 1 has cross-section area A and wire 2 has crosssectional area 3A. If the length of wire 1 increases by Δx on applying force F, how much force is needed to stretch wire 2 by the same amount?

(1) F (2)
$$4F$$

(3) $6F$ (4) $9F$.

Key. (4) Sol. $\ell_1 = 3\ell_2$

K S

$$Y = \frac{F}{A} \times \frac{\ell_1}{\Delta x} \qquad \dots (i)$$

$$Y = \frac{F'}{3A} \times \frac{\ell_1 / 3}{\Delta x} \qquad \dots (ii)$$

$$\frac{F}{A} \times \frac{\ell_1}{\Delta x} = \frac{F'}{3A} \times \frac{\ell_1}{3\Delta x}$$

$$F' = 9F$$

In an experiment the angles are required to be measured using an instrument. 29 divisions of the main scale exactly coincide with the 30 divisions of the vernier scale. If the smallest division of the main scale is half-a-degree (= 0.5°), then the least count of the instrument is: (1) one minute (2) half minute (3) one degree (4) half degree. Key. (1) Sol. $1VSD = \frac{29}{30}MSD$ L.C. = 1 MSD - 1 VSD $= \frac{1}{30}MSD$ $= \frac{1}{30} \times 0.5 = \frac{1}{60} =$ one minute 27.

> An inductor of inductance L = 400 mH and resistors of resistances $R_1 = 2 \Omega$ and $R_2 = 2 \Omega$ are connected to a battery of emf 12 V as shown in the figure. The internal resistance of the battery is negligible. The switch S is closed at t = 0. The potential drop across L as a function of time is :

(1)
$$6 e^{-5t} V$$
 (2) $\frac{12}{t} e^{-3t} V$
(3) $6 \left(1 - e^{\frac{-t}{0.2}} \right) V$ (4) $12 e^{-5t} V$

Key. (4)

- **Sol.** $e_{L} = E e^{-\frac{m_{L}}{L}}$
 - $e_{L} = 12e^{-\frac{2}{\cdot 4}t}$ $e_{L} = 12e^{-5t}$.

Directions : Question numbers 28, 29 and 30 are based on the following paragraph.

Two moles of helium gas are taken over the cycle ABCDA, as shown in the P–T diagram.

- 28. Assuming the gas to be ideal the work done on the gas in taking it from A to B is :
 - (1) 200 R (2) 300 R
 - (3) 400 R (4) 500 R.

Key. (3)

Sol. $W_{AB} = nR(T_f - T_i)$ = 2×R(500 - 300)

$$= 400 \text{ R}$$

29. The work done on the gas is taking it from D to A is

Key. (1)

Sol.
$$W_{DA} = nRT \ln \frac{P_i}{P_f} = 2 \times R \times 300 \ln \frac{1}{2}$$

= -414 R

30. The net work done on the gas in the cycle ABCDA is

(1) zero (2) 276 R (3) 1076 R (4) 1904 R.

(3) 1070 K

Key. (2)

30. $W_{ABCD} = W_{AB} + W_{BC} + W_{CD} + W_{DA}$ $W_{BC} = 2 \times R \times 500 \ln 2$

$$= 690 \text{ R}$$

$$W_{CD} = 2 \times R \times (300 - 500)$$

= -400 R
$$W_{ABCD} = 400R + (690R + (-400R) - 414R)$$

= 276 R.

CHEMISTRY

- 31. Knowing that the Chemistry of lanthanoids (Ln) is dominated by its +3 oxidation state, which of the following statements is incorrect?
 - (1) Because of the large size of the Ln (III) ions the bonding in its compounds is predominantly ionic in character.
 - (2) The ionic sizes of Ln (III) decrease in general with increasing atomic number.
 - (3) Ln (III) compounds are generally colourless

(4) Ln (III) hydroxides are mainly basic in character.

Key. (3)

Sol. Most of the Ln(III) compounds are coloured due to f - f transition.

32. A liquid was mixed with ethanol and a drop of concentrated H₂SO₄ was added. A compound with a fruity smell was formed. The liquid was:
(1) CH₃OH (2) HCHO

$$(3) CH_3COCH_3 \qquad (4) CH_3COOH$$

Key. (4)

Sol. Fruity smell is evolved due to formation of ester. $CH_3COOH + CH_3CH_2OH$ $\xrightarrow{conc. H_2SO_4} CH_3COOC_2H_5$ (ethylacetate (ester)

33. Arrange the carbanions, $(CH_3)_3 \overline{C}, \overline{C}Cl_3 (CH_3)_2 \overline{C}H, C_6H_5 \overline{C}H_2$, in order of their decreasing stability:

- (1) $C_6H_5\overline{C}H_2 > \overline{C}Cl_3 > (CH_3)_3\overline{C} > (CH_3)_2\overline{C}H$
- (2) $(CH_3)_2 \overline{C}H > \overline{C}Cl_3 > C_6H_5\overline{C}H_2 > (CH_3)_3\overline{C}$
- (3) $\overline{C}Cl_3 > C_6H_5\overline{C}H_2 > (CH_3)_2\overline{C}H > (CH_3)_3\overline{C}$
- (4) $(CH_3)_3\overline{C} > (CH_3)_2\overline{C}H > C_6H_5\overline{C}H_2 > \overline{C}Cl_3$

Key. (3)

- **Sol.** Due to the –I effect of three chlorine atoms and due to $p\pi - d\pi$ bonding CCl_3^- is extra stable. Carbanion follow stability order. $CCl_3^- > C_6H_5 \ \overline{CH}_2 > (CH_3)_2 \ \overline{CH} > (CH_3)_3 \ \overline{C}$
- 34. The alkene that exhibits geometrical isomerism is:
 - (1) propene (2) 2-methyl propene (3) 2-butene (4) 2-methyl-2-butene (4) 2-methyl-2-butene

Key. (3)

Due to restricted rotation around double bond it exhibits geometric isomerism.

- 35. In which of the following arrangements, the sequence is not strictly according to the property written against it?
 - (1) $CO_2 > SiO_2 < SnO_2 < PbO_2$: increasing oxidizing power
 - (2) HF < HCl < HBr < HI : increasing acid strength
 - (3) NH₃ < PH₃ < As H₃ < SbH₃ : increasing basic strength
 - (4) B < C < O < N : increasing first ionization enthalpy

Key. (3)

- **Sol.** As the size of the central non-metal increasing appreciably, the basicity of hydride decreases.
- 36. The major product obtained on interaction of phenol with sodium hydroxide and carbon dioxide is:
 - (1) benzoic acid (2) salicylaldehyde
 - (3) salicylic acid (4) phthalic acid
- Key. (3)
- **Sol.** According to Kolbe's reaction

- 37. Which of the following statement is incorrect regarding physissorptions?
 - (1) It occurs because of van der Waal's forces.

- (2) More easily liquiefiable gases are adsorbed readily
- (3) Under high pressure it results into multi molecular layer on adsorbent surface
- (4) Enthalpy of adsorption $(\Delta H_{adorption})$ is low and positive.

Key. (4)

Sol. Enthalpy of adsorption in physisorption is negative

 $\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$

As the entropy decreases ($\Delta S = -ve$) the ΔH must be negatie having a high magnitude. Therefore, the spontaneous adsorption will have negative enthalpy change.

38. Which of the following on heating with aqueous KOH, produces acetaldehyde?

39. In an atom, an electron is moving with a speed of 600 m/s with an accuracy of 0.005%. certainity with which the position of the electron can be located is ($h = 6.6 \times 10^{-34}$ kg m²s⁻¹, mass of electron $e_m = 9.1 \times 10^{-31}$ kg):

(1)
$$1.52 \times 10^{-4}$$
m (2) 5.01×10^{-3} m
(3) 1.92×10^{-3} m (4) 3.84×10^{-3} m

Key. (3)

Sol.
$$\Delta v = ... = 9.1 \times 10^{-31} \text{ kg}$$

 $\Delta x = ?$
 $\Delta x \times m \Delta v \ge \frac{h}{4\pi}$
 $\Delta x \ge \frac{h}{4m\Delta v\pi}$
 $\ge \frac{6.6 \times 10^{-34}}{4 \times 9.1 \times 10^{-31} \times 0.03 \times 3}$

$$\geq 1.9248 \times 10^{-3}$$

40. In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is

CH₃OH(l) + $3/2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$ At 298 K standard Gibb's energies of formation for CH₃OH(l), H₂O(l) and CO₂(g) are -166.2, -237.2 and -394.4 kJ mol⁻¹ respectively. If

standard enthalpy of combustion of methanol is $E^{\circ} = \frac{3(-0.036) - 2(-0.439)}{1}$ -726 kJ mol⁻¹, efficiency of the fuel cell will be: (1) 80% (b) 87% = 0.770 V(3) 90% (4) 97% Key. (4) 44. On the basis of the following thermochemical **Sol.** 2 (-237.2) -394.4 + 166.2 data: $(\Delta f G^{\circ} H^{+}_{(aq)} = 0)$ = -474.4 - 394.4 + 166.2 $H_2O(1) \longrightarrow H^+(aq) + OH^-(aq); \Delta H = 57.32 \text{ kJ}$ $\frac{702.6}{726}$ × 100 = 96.77 $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(1); \Delta H = -286.20 \text{ kJ}$ The value of enthalpy of formation of OH⁻ ion 41. Two liquids X and Y form an ideal solution. At at 25°C is: 300 K, vapour pressure of the solution (1) -22.88 kJ (2) -228.88 kJ containing 1 mol of X and 3 mol of Y is 550 (4) -343.52 kJ mm Hg. At the same temperature, if 1 mol of Y (3) +228.88 kJ Key. (2) is further added to this solution, vapour pressure Sol. 57.32 = $\Delta H_f(OH_{(aq)})$ + $\Delta H_f(H^+(aq) - \Delta H_f)$ of the solution increases by 10 mm Hg. Vapour pressure (in mmHg) of X and Y in their pure $(H_2O(1))$ $\Delta H_{\rm f} \left(OH_{\rm (aq)} \right) = 57.32 + (-286.20)$ states will be respectively: 286.20 - 57.32 = -228.88(1) 200 and 300 (2) 300 and 400 (3) 400 and 600 (4) 500 and 600 45. Copper crystallizes in fcc with a unit cell length Key. (3) **Sol.** $0.25P_A{}^0 + 0.75P_B{}^0 = 550 \text{ mm}$ $0.20P_A0 + 0.80P_B{}^0 = 650 \text{ mm}$ of 361 pm. What is the radius of copper atom? (1) 109 pm (2) 127 pm (3) 157 pm $P_{\rm X}^0 + 3P_{\rm Y}^0 = 2200$ (4) 181 pm Key. (2) $P_{x}^{0} + 4P_{y}^{0} = 2800$ Sol. For FCC $P_{v}^{0} = 600 \text{ mm}$ $\sqrt{2} a = 4r$ $P_{\rm v}^0 = 400 \, \rm mm$ $r = \frac{\sqrt{2 \times 361}}{4} = 127 \text{ pm}$ 42. The half life period of a first order chemical reaction is 6.93 minutes. The time required for 46. Which of the following has an optical isomer? the completion of 99% of the chemical reaction (1) $[CO(NH_3)_3Cl]^+$ will be $(\log 2 = 0.301)$ (2) $[CO(en) (NH_3)_2]^{2+}$ (1) 230.3 minutes (2) 23.03 minute (3) $[CO(H_2O)_4 (en)]^{3+}$ (3) 46.06 minutes (4) 460.6 minutes (4) $[CO(en)_2(NH_3)_2]^{3+}$ Kev. (3) Kev. (4) **Sol.** $K = \frac{0.693}{6.93} = 10^{-1} \text{ min}^{-1}$ Sol. NH₃ $10^{-1} = \frac{2.303}{t} \log \frac{100}{1}$ $t = \frac{2.303 \times 2}{10^{-1}} = 46.06 \text{ min}$ én Co en 43. Given: $E_{Fe^{3+}/Fe}^{0}$ =-0.036V, $E_{Fe^{2+}/Fe}^{0}$ =-0.439V. The value ΝH₃ of standard electrode potential for the change, ėn $\operatorname{Fe}_{(aq)}^{3+} + e^{-} \rightarrow \operatorname{Fe}^{2+}(aq)$ will be: (1) -0.072 V (2) 0.385 V (3) 0.770V (4) -0.270V Ċo en Kev. (3) **Sol.** $Fe^{3+} + 3e \rightarrow Fe$, $E^{\circ} = -0.036V$ ŇΗ₃ $Fe^{2+} + 2e \rightarrow Fe$, $E^{\circ} = -0.439V$ NH₃ $Fe^{3+} + e \rightarrow Fe^{2+}$.

AIEEE-PAPER 2009

Solid Ba(NO₃)₂ is gradually dissolved in a $1.0 \times$ 47. 10⁻⁴M Na₂CO₃ solution. At what concentration of Ba^{2+} will a precipitate being to form? (K_{sp} for Ba CO₃ = 5.1×10^{-9}): (1) 4.1×10^{-5} M (2) 5.1×10^{-5} M (3) 8.1×10^{-8} M (4) 8.1×10^{-7} M Key. (2) Sol. Na₂CO₃ \longrightarrow 2Na⁺ + CO₃²⁻ $1 \times 10^{-4} \text{ M}$ $Ba^{2+} + CO_3^{2-}$ BaCO₃ $K_{SP} = [Ba^{2+}] [[CO_{2}^{2-}]]$ $5.1 \times 10^{-9} = [Ba^{2+}] [1 \times 10^{-4}]$ $[\mathsf{Ba}^{2+}] = \frac{5.1 \times 10^{-9}}{1 \times 10^{-4}}$ $= 5.1 \times 10^{-5} \text{ M}$ 48. Which one of the following reactions of Xenon compounds is not feasible? (1) $XeO_3 + 6HF \rightarrow XeF_6 + 3H_2O$ (2) $3XeF_4 + 6H_2O \rightarrow 2Xe + XeO_3 + 12 HF +$ $1.5 O_2$ (3) $2XeF_2 + 2H_2O \rightarrow 2Xe + 4HF + O_2$ (4) $XeF_6 + RbF \rightarrow Rb [XeF_7]$ Key. (1) 49. Using MO theory predict which of the following species has the shortest bond length? (2) O_2^+ (4) O_2^{2-} (1) O_2^{2+} (3) O_2^{-} Key. (1) **Sol.** O_{2}^{2+} B.O. = $\frac{1}{2}[N_6 - Na]$ $=\frac{1}{2}[10-4]$ B.O.=3So bond length is shortest 50. In context with the transition elements, which of the following statements is incorrect?

- (1) In addition to the normal oxidation states, the zero oxidation state is also shown by these elements in complexes.
- (2) In the highest oxidation states, the transition metal show basic character and form cationic complexes.
- (3) In the highest oxidation states of the first five transition element (Sc to Mn), all the 4s and 3d electrons are used for bonding.
- (4) Once the d^{5} configuration is exceeded, the tendency to involve all the 3d electrons in bonding decreases.

Key. (2)

- In highest oxidation states transition metals form anionic complexes rather than that of cationic complexes.
- 51. Calculate the wavelength (in nanometer) associated with a proton moving at $1.0 \times$ 10^3 ms^{-1}

(Mass of proton = 1.67×10^{-27} kg and h = $6.63 \times$ 10^{-34} Js):

)
$$2.5 \text{ nm}$$
 (4) 14.0 r

Key. (2)

52.

Sol.

Sol.
$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-54}}{1.67 \times 10^{-27} \times 1 \times 10^3}$$

= $\frac{6.63 \times 10^{-34}}{1.67 \times 10^{-24}}$
= 0.40×10^{-9} m
= 0.40 nm

A binary liquid solution is prepared by mixing n-heptane and ethanol. Which one of the following statement is corret regarding the behaviour of the solution?

- (1) The solution formed is an ideal solution
- (2) The solution is non-ideal, showing +ve deviation from Raoult's Law
- (3) The solution is non-ideal, showing -ve deviation from Raoult's Law
- (4) n-heptane shows +ve deviation while ethanol shows -ve deviation from Raoult's Law.

Kev. (2)

Sol. On mixing n-heptane and ethanol; strong interactions are replaced by weak interaction and hence it kes non-ideal solution with positive deviation.

53. The number of stereoisomers possible for a compound of the molecular formula CH₃ - CH = CH - CH (OH) - Me is:

54. The IUPAC name of neopentane is: (1) 2 -methylbutane

If $\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = -3/2$, MATHEMATICS then 61. Let a, b, c be such that $b(a + c) \neq 0$. If (1) A is true and B is false a a+1 a-1 | a+1b+1 c-1 (2) A is false and B is true b-1 $-b \ b+1 \ b-1 + \ a-1$ c+1 = 0,(3) both A and B are true c-1 c+1 $|(-1)^{n+2}a$ $(-1)^{n+1}b$ $(-1)^{n}c$ c (4) both A and B are false then the value of n is Key (3) (2) any even integer (1) zero Sol.: $cos(\beta - \gamma) + cos(\gamma - \alpha) + cos(\alpha - \beta) = -3/2$ (3) any odd integer (4) any integer $\Rightarrow 2\cos(\beta - \gamma) + 2\cos(\gamma - \alpha) + 2\cos(\alpha - \beta) = -3$ Key (3) $\Rightarrow \Sigma(\cos\beta\cos\gamma + 2\Sigma\sin\alpha\sin\beta + 3 = 0)$ -b с а $\Rightarrow (\cos\alpha + \cos\beta + \cos\gamma)^2 + (\sin\alpha + \sin\beta + \sin\gamma)^2 = 0$ **Sol.:** a+1 b+1 c-1 $\Rightarrow \cos\alpha + \cos\beta + \cos\gamma = 0$ a+1 b-1 c+1 $\sin\alpha + \sin\alpha + \sin\gamma = 0$ The lines $p(p^2 + 1) x - y + q = 0$ and 65. $(p^{2} + 1)^{2}x + (p^{2} + 1)y + 2q = 0$ are perpendicular to a common line for (1) no value of p $a(1+(-1)^n)$ $(-b)(1+(-1)^n)$ $c(1+(-1)^n)$ Ы a+1 b+1 (2) exactly one value of p (3) exactly two values of p a – 1 (4) more than two values of p Key (2) 62. If the mean deviation of the numbers 1, 1 + d, 1 $+ 2d, \dots, 1 + 100d$ from their mean is 255, then **Sol.:** $p(p^2 + 1) = \frac{-(p^2 + 1)^2}{p^2 + 1}$ the d is equal to (1) 10.0(2) 20.0y = q(3) 10.1(4) 20.2 $\mathbf{x} + \mathbf{y} + 2\mathbf{q} = 0$ Key (3) $\Rightarrow p = -1$. **Sol.:** $\frac{|x-\overline{x}|}{n} = 255$ 66. If A, B and C are three sets such that $A \cap B = A$ $\overline{\mathbf{x}} \!=\! \frac{1\!+\!1\!+\!d\!+\!1\!+\!2d...\!+\!1\!+\!100d}{101}$ \cap C and A \cup B = A \cup C, then (1) A = B(2) A = C $=\frac{101+d\left(\frac{100\times101}{2}\right)}{101}$ (3) B = C(4) $A \cap B = \phi$ Key (3) **Sol.:** $A \cup B = A \cup C$ $= 1 + \frac{50 \times 101 d}{101} = 1 + 50 d$ \Rightarrow n (A \cup B) = n(A \cup C) \Rightarrow n(A) + n(B) - n(A \cap B) $|\mathbf{x} - \overline{\mathbf{x}}| = 255 \times 101$ $= n(A) + n(C) - n(A \cap C)$ $2 \operatorname{d} \left(\frac{50 \times 51}{2} \right) = 255 \times 101$ n(B) = n(C)67. If $\vec{u}, \vec{v}, \vec{w}$ are non-coplanar vectors and p, q are $d = \frac{255 \times 101}{50 \times 51} = 10.1$ real numbers. then the equality $[3\vec{u}, p\vec{v}, p\vec{w}] - [p\vec{v}, \vec{w}, q\vec{u}] - [2\vec{w}, q\vec{v}, q\vec{u}] = 0$ holds 63. If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the for expression $3b^2x^2 + 6bcx + 2c^2$ is (1) exactly one value of (p, q)(1) greater than 4ab (2) less than 4ab (2) exactly two values of (p, q)(3) greater than -4ab (4) less than -4ab(3) more than two but not all values of (p, q)(4) all values of (p, q)Key (3) **Sol.:** As, $bx^2 + cx + a = 0$ has imaginary roots Key (1) So, $c^2 < 4ab$ **Sol.:** $3p^2 [\vec{u} \, \vec{v} \, \vec{w}] - pq [\vec{u} \, \vec{v} \, \vec{w}] + 2q^2 [\vec{u} \, \vec{v} \, \vec{w}] = 0$ Now, $3b^2 x^2 + 6bcx + 2c^2$ $\Rightarrow 3p^2 - pq + 2q^2 = 0$ $= 3(bx + c)^2 - c^2 \ge -c^2 \ge -4ab$ $p = \frac{q \pm \sqrt{1 - 24} q}{2 \times 3}$ 64. Let A and B denote the statements A: $\cos \alpha + \cos \beta + \cos \gamma = 0$ $p = \frac{q \pm \sqrt{23}iq}{2 \times 3} \Rightarrow p = 0, q = 0$ B : $\sin\alpha + \sin\beta + \sin\gamma = 0$

Now,
$$|z| = |z - \frac{z}{z} + \frac{4}{z}| \le 2 + \frac{4}{|z|}$$

$$= \frac{|z|^2 - 2|z| - 4|z|}{|z|} \le 0$$

$$= 0 < |z| \le 1 + 5.$$
76. Three distinct points A, B and C are given in the 2-dimensional coordinate plane such that the ratio of the distance of any one of them from the point (1.0) to the distance form the point (1.0) the distance of any one of them from the point (1.0) to the distance of any one of them from the point (1.0) to the distance of any one of them from the point (1.0) to the distance of any one of them from the point (1.0) to the distance of any one of them from the point (1.0) to the distance of any one of them from the point (1.0) to the distance of any one of the point (1.0) the distance of any one of them from the point (1.0) the distance of any one of them from the point (1.0) the distance of any one of the point (1.0) the distance of any one of the point (1.0) the distance of any one of the point (1.0) the distance of any one of the point (1.0) the distance of any one of the point (1.0) the distance of any one of the distance of any one of the any of the distance of any one o

y' = $c_1 c_2 e^{c_2 x}$ y' = $c_2 y$ (from (i)](ii) y'' = $c_2 y'$ (iii) from (ii) & (iii) $\frac{y'}{y} = \frac{y''}{y'} \Rightarrow yy'' = (y')^2$

81. One ticket is selected at random from 50 tickets numbered 00, 01, 02, ..., 49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, equals

1/1/4
1/7

(1) 1/14	(2) 1/7
(3) 5/14	(4) 1/50

- Key: (1)
- **Sol.:** A = Events that sum of the digits on selected ticket is 8

= {08, 17, 26, 35, 44} n(A) = 5 Event that product of digits is zero = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 20, 30, 40} \Rightarrow n(B) = 14 P $\left(\frac{A}{B}\right) = \frac{5}{14}$

82. Let y be an implicit function of x defined by $x^{2x} - 2x^{x} \cot y - 1 = 0$. Then y' (1) equals (1) -1 (2) 1 (3) log 2 (4) - log 2

Key: (1)

- Sol.: When x = 1, $y = \frac{\pi}{2}$ $(x^{x} - \cot y)^{2} = \csc^{2}y$ $x^{x} = \cot y + |\operatorname{cosec} y|$ when x = 1, $y = \frac{\pi}{2}$ $\Rightarrow x^{x} = \cot y + \csc y$ diff. w.r.t. to x $x^{x}(1 + \ln x) = (-\csc^{2}y - \csc y \cot y) \frac{dy}{dx}$ when x = 1 and $y = \frac{\pi}{2}$ $\frac{dy}{dx} = -1$
- 83. The area of the region bounded by the parabola $(y 2)^2 = x 1$, the tangent to the parabola at the point (2, 3) and the x-axis is (1) 3 (2) 6 (3) 9(4) 12

Key: (3)

Sol.: Equation of tangent at (2, 3)

- (1) P(-1) is the minimum and P(1) is the maximum of P
- (2) P(-1) is not minimum but P(1) is the maximum of P
- (3) P(-1) is the minimum but P(1) is not the maximum of P
- (3) neither P(-1) is the minimum nor P(1) is the maximum of P
- (4) niether P(-1) is the minimum nor P(1) is the maximum of P

Key: (2)
Sol.:
$$P(x) = x^4 + ax^3 + bx^2 + cx + d$$

 $P'(x) = 4x^3 + 3ax^2 + 2bx + c$

As
$$P'(x) = 0$$
 has only root $x = 0$
 $\Rightarrow c = 0$

 $P'(x) = x(4x^2 + 3ax + 2b)$ $\Rightarrow 4x^3 + 3ax + 2b = 0 \text{ has non real root.}$ and $4x^2 + 3ax + 2b > 0 \forall x \in [-1, 1].$

As $P(-1) < P(1) \Rightarrow P(1)$ is the max. of P(x) in [-1, 1]85. The shortest distance between the line y - x = 1and the curve $x = y^2$ is

(1)
$$\frac{3\sqrt{2}}{8}$$
 (2) $\frac{2\sqrt{3}}{8}$
(3) $\frac{3\sqrt{2}}{5}$ (4) $\frac{\sqrt{3}}{4}$

Key : (1) Sol.: $1 = 2y \frac{dy}{dx}$

84.

$$\frac{dy}{dx} = \frac{1}{2y} = 1$$

$$\Rightarrow y = \frac{1}{2} \Rightarrow x = \frac{1}{4}$$
(4) Statement-1 i
Key : (3)
Sol: $g(f(x)) = \sin(f(x))$
Sol: $g(f(x)) = \int_{-2x \cos(x)}^{2x \cos(x)} (g(f(x))) = \int_{-2x \cos(x)}^{2x \cos(x)} (g($

(3) Statement-1 is true, statement-2 is false.

statement-1.

Statement–1 is false, Statement–2 is true

Sol.:
$$g(f(x)) = \sin(f(x)) = \begin{cases} \sin x^2, & x \ge 0 \\ -\sin x^2, & x < 0 \end{cases}$$

 $(g(f(x)))' = \begin{cases} 2x \cos x^2, & x \ge 0 \\ -2x \cos x^2, & x < 0 \end{cases}$
R.H.D. of $(g(f(0)))' = \lim_{h \to 0^+} \frac{2h \cosh^2}{h} = 2$
L.H.D. of $(g(f(0)))' = \lim_{h \to 0^+} \frac{2h \cosh^2}{-h} = -2$

arly gof is twice differentiable at x = 0 hence differentiable at x = 0 and its derivative is tinuous at x = 0.

tement 1: The variance of first n even natural mbers is $\frac{n^2 - 1}{4}$

tement 2: The sum of first n natural numbers

n(n+1)and the sum of squares of first n 2 U

and numbers is $\frac{n(n+1)(2n+1)}{6}$

- Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1
- Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for statement-1.

Statement-1 is true, statement-2 is false.

Statement–1 is false, Statement–2 is true

.

$$\frac{x = x = n + 1}{\text{variance } (\sigma^2)} = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n} = \frac{\sum_{i=1}^n (2i - (n+1))^2}{n}$$
$$= \frac{4\sum_{i=1}^n i^2 + \sum_{i=1}^n (n+1)^2 - 4(n+1)\sum_{i=1}^n i}{n} = n^2 - 1$$

- tement 1: $\sim (p \leftrightarrow \sim q)$ is equivalent to $p \leftrightarrow q$ tement 2 : ~ ($p \leftrightarrow ~ q$) is a tautology
 - Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1
 - Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for statement-1.
 - Statement-1 is true, statement-2 is false. (4) Statement-1 is false, Statement-2 is true

Sol.:

••					
р	q	~q	$(p \leftrightarrow$	$\thicksim(p\leftrightarrow$	$p \leftrightarrow$
			~q)	~q)	q
Т	Т	F	F	Т	Т
Т	F	Т	Т	F	F
F	Т	F	Т	F	F
F	F	Т	F	Т	Т

Clearly, ~ $(p \leftrightarrow \neg q)$ is not a tautology because it does not contain T in the column of its truth table. Also, $\neg(p \leftrightarrow \neg q) \& p \leftrightarrow q$ have the same truth value.

90. Let A be a 2 × 2 matrix Statement 1 : adj (adj A) = A Statement 2 : ladj Al = |A|
(1) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for statement-1

(2) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for statement-1.

(3) Statement–1 is true, statement–2 is false.

(4) Statement–1 is false, Statement–2 is true

Key: (1)

Sol.: $adj(adjA) = |A|^{n-2}A$, where |A| = determinant of A but n = 2

 $\Rightarrow A$

also ladj $A = |A|^{n-1} \Rightarrow |A|$

Statement-1 is true and Statement-2 is also true and Statement-2 is correct explanation of Statement-1.

AIEEE 2009 (KEY)

PHYSIC	S KEY	CHEMISTR	YKEY	MATHS	KEY
1.	(3)	31. (3)	61.	(3)
2.	(1)	32. (4)	62.	(3)
3.	(3)	33. (3)	63.	(3)
4.	(1)	34.	3)7	64.	(3)
5.	(2)	35.	3)	65.	(2)
6.	(1)	36.	3)	66.	(3)
7.	(4)	37. (4)	67.	(1)
8.	(3)	38. (4)	68.	(2)
9.	(4)	39. (3)	69.	(4)
10.	(2)	40. (4)	70.	(4)
11.	(4)	41. (3)	71.	(3)
12.	(2)	42. (3)	72.	(1)
13.	(2)	43. (3)	73.	(2)
14.	(3)	44. (2)	74.	(3)
15.	(4)	45. (75.	(2)
16.	(2)	IFE NA46. YA	4)A GROUP	76.	(2)
17.	(2)	47. (2)	77.	(2)
18.	(2)	48. (1)	78.	(2)
19.	(3)	49. (1)	79.	(2)
20.	(1)	50. (2)	80.	(4)
21.	(2)	51. (2)	81.	(1)
22.	(4)	52. (2)	82.	(1)
23.	(3)	53. (3)	83.	(3)
24.	(1)	54. (2)	84.	(2)
25.	(4)	55. (2)	85.	(1)
26.	(1)	56. (3)	86.	(1)
27.	(4)	57. (3)	87.	(3)
28.	(3)	58. (2)	88.	(4)
29.	(1)	59. (2)	89.	(3)
30.	(2)	60. (3)	90.	(1)