<u>WB-JEE - 2009</u>

PHYSICS & CHEMISTRYQUESTIONS & ANSWERS

1. One Kg of copper is drawn into a wire of 1mm diameter and a wire of 2 mm diameter. The resistance of the two wires will be in the ratio

(A) 2:1 (B) 1:2 (C) 16:1 (D) 4:1

Hints: Mass = $(\pi r_1^2 \ell_1) \sigma$ (Ist wire)

Mass = $(\pi r_1^2 \ell_2)\sigma$ (2nd wire) $(\pi r_1^2 \ell_1)\sigma = (\pi r_2^2 \ell_2)\sigma$ $\frac{\ell_1}{\ell_2} = \left(\frac{r_2}{r_1}\right)^2$

$$\frac{R_1}{R_2} = \frac{\rho \frac{1}{A_1}}{\rho \frac{\ell_2}{A_2}} = \frac{\ell_1}{\ell_2} \times \frac{A_2}{A_1} = \frac{\ell_1}{\ell_2} \times \left(\frac{r_2}{r_1}\right)^2$$

$$= \left(\frac{r_2}{r_1}\right)^4$$
$$\implies 16:1$$

Ans: (C)

An electrical cable having a resistance of 0.2 Ω delivers 10kw at 200V D.C. to a factory. What is the efficiency of transmission?
(A) 65%
(B) 75%
(C) 85%
(D) 95%
Ans: (D)

Hints:
$$P = VI \implies I = \frac{10 \times 10^3}{200} = 50A$$
, Power loss = $(50)^2 (0.2) = 500W$
Efficiency = $\frac{10000 \times 100}{10000 + 500} = 95.23\%$

3. A wire of resistance 5 Ω is drawn out so that its new length is 3 times its original length. What is the reistance of the new wire? (A) 45 Ω (B) 15 Ω (C) 5/3 Ω (D) 5 Ω Ans: (A)

Hints:
$$\left(\frac{r_1}{r_2}\right)^2 = \left(\frac{\ell_2}{\ell_1}\right) = \frac{3\ell}{\ell} = 3$$

 $\left(\frac{R_2}{R_1}\right) = \frac{\ell_2}{\ell_1} \times \frac{A_1}{A_2} = 3 \times \left(\frac{r_1}{r_2}\right)^2 = 3 \times 3 \Longrightarrow R_2 = 45$

5.

2

 $\begin{array}{c|c} 2 & 0 \\ \hline 1 & \end{array}$

4. Two identical cells each of emf E and internal resistance r are connected in parallel with an external resistance R. To get maximum power developed across R, the value of R is

(A) $R = r/2$	(B) $R = r$	(C) $R = r/3$	(D) $R=2r$
Ans: (A)			
Hints : $R_{eq} = \frac{r}{2}$			
2E			
$I = \frac{2E}{r+2R}$			
For max. power cons	umption. I should be max. So	lenominator should be min. for th	nat
$r + 2R = \left(\sqrt{r}\right)$)		
. To write the decimal	number 37 in binary, how mar	y binary digits are required?	
(A) 5	(B) 6	(C) 7	(D) 4
Ans : (B)			
Hints :			
2 37 1			
2 18 0			
2 9 1			
2 4 0			

6. A junction diode has a resistance of 25 Ω when forward biased and 2500 Ω when reverse biased. The current in the diode, for the arrangement shown will be

(A) $\frac{1}{15}$ A (B) $\frac{1}{7}$ A (C) $\frac{1}{25}$ A (D) $\frac{1}{180}$ A Ans: (B) Hints: $R_{eq} = 25 + 10 = 35\Omega$ Because diode is forward biased. So $I = \frac{V}{R_{eq}} = \frac{5}{35} = \frac{1}{7}A$

- 7. If the electron in a hydrogen atom jumps from an orbit with level $n_1 = 2$ to an orbit with level $n_2 = 1$ the emitted radiation has a wavelength given by
- (A) $\lambda = 5/3R$ (C) $\lambda = R/4$ **(B)** $\lambda = 4/3 R$ (D) $\lambda = 3R/4$ Ans: (B) Hints: $\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right) = \frac{3R}{4}$ $\Rightarrow \lambda = \frac{4}{2n}$ 8. What is the particle x in the following nuclear reaction : ${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + x$ (A) electron **(B)** proton (C) Photon (D) Neutron Ans: (D) Hints: ${}^{9}_{4}Be + {}^{4}_{2}He \rightarrow {}^{12}_{6}C + {}^{1}_{0}X$ Hence X represents neutron $\binom{1}{0}n$ An alternating current of rms value 10 A is passed through a 12 Ω resistor. The maximum potential difference across the resistor 9. is (A) 20V (B) 90V 1969.68 V (C) (D) none Ans: (C) **Hints** : $I_{max} = 10A$ $I_{rms} = \frac{I_0}{\sqrt{2}} \Longrightarrow I_0 = \sqrt{2} \times 10 = 10\sqrt{2}$ Max. P.D. = $\sqrt{2} \times 10 \times 12 = 120 \times 1.414 = 169.68 V$ Which of the following relation represent Biot-Savart's law? 10. (A) $d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \overline{r}}{r}$ (B) $d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \hat{r}}{r^3}$ (C) $d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \overline{r}}{r^3}$ (D) $d\overline{B} = \frac{\mu_0}{4\pi} \frac{\overline{dl} \times \overline{r}}{r^4}$ Ans: (C) Hints: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I(d\vec{\ell} \times \vec{r})}{r^3}$

Note :- In question paper current (I) is missing

11. \vec{A} and \vec{B} are two vectors given by $\vec{A} = 2\hat{i} + 3\hat{j}$ and $\vec{B} = \hat{i} + \hat{j}$. The magnitude of the component of \vec{A} along \vec{B} is

(A)
$$\frac{5}{\sqrt{2}}$$
 (B) $\frac{3}{\sqrt{2}}$ (C) $\frac{7}{\sqrt{2}}$ (D) $\frac{1}{\sqrt{2}}$

Ans: (A)

Hints : Magnitude of components of \vec{A} along $\vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|} = \frac{(2\hat{i} + 3\hat{j})(\hat{i} + \hat{j})}{\sqrt{2}} = \frac{5}{\sqrt{2}}$

12. Given $\vec{C} = \vec{A} \times \vec{B}$ and $\vec{D} = \vec{B} \times \vec{A}$. What is the angle between \vec{C} and \vec{D} ? (A) 30° (B) 60° (C) 90° (D) 180° Ans: (D)

Hints : \vec{C} and \vec{D} are antiparellel since $\vec{A} \times \vec{B} = -(\vec{B} \times \vec{A})$

- 13. The acceleration 'a' (in ms⁻²) of a body, starting from rest varies with time t (in s) following the equation a = 3t + 4The velocity of the body at time t = 2s will be
 - (A) 10 ms^{-1} (B) 18 ms^{-1} (C) 14 ms^{-1} (D) 26 ms^{-1} Ans: (C) Hints: a = 3t + 4 $\frac{dV}{dt} = 3t + 4$ $\int_{0}^{V} dV = \int_{0}^{t} (3t + 4) dt$ $V = \frac{3t^{2}}{2} + 4t = \frac{12}{2} + 8 = 14 \text{ m/s}$
- 14. Figure below shows the distance-time graph of the motion of a car. If follows from the graph that the car is

	$t \rightarrow$						
(A) at rest	(B)	in uniform motion					
(C) in non-uniform acceleration	(D)	uniformly accelerated					
Ans: (D)							
Hints : Slope is increasing with constant rate. i.e motion is uniformaly accelerated							

 $x = 1.2t^2 \Longrightarrow v = 2.4t \Longrightarrow a = 2.4 \text{ m/s}^2$

15. Two particles have masses m & 4m and their kinetic energies are in the ratio 2: 1. What is the ratio of their linear momenta ?

 $\int x=1.2t^2$

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\frac{1}{2}$ (C) $\frac{1}{4}$ (D) $\frac{1}{16}$

Ans:(A)

Hints:
$$\frac{KE_1}{KE_2} = \frac{\frac{p_1^2}{2m}}{\frac{p_2^2}{2 \times 4m}} = \frac{2}{1} \Longrightarrow \frac{p_1}{p_2} = \frac{1}{\sqrt{2}}$$

16. The force F acting on a particle moving in a straight line is shown below. What is the work done by the force on the particle in the 1st meter of the trajectory ?

Ans: (D) Hints: Work done in 1 meter = area of shaded curve = $1/2 \times 1 \times 5 = 2.5$ J

17. If the kinetic energy of a body changes by 20% then its momentum would change by –
(A) 20%
(B) 24%
(C) 40%
(D) 44%
Ans: (No answer matching)

Hints:
$$\frac{\frac{p_{f}^{2}}{2m} - \frac{p_{i}^{2}}{2m}}{\frac{p_{i}^{2}}{2m}} \times 100 = 20$$

$$\Rightarrow \frac{p_f}{p_i} = \sqrt{1.2} = 1.095 \Rightarrow \frac{p_f - p_i}{p_i} = 0.095$$

Therefore % increase = 9.5%

18. A bullet is fired with a velocity u making an angle of 60° with the horizontal plane. The horizontal component o the velocity of the bullet when it reaches the maximum height is

(A) u (B) 0 (C)
$$\frac{\sqrt{3u}}{2}$$
 (D) $\frac{u}{2}$

Ans: (D)

Hints : Horizontal velocity would be constant so the value of velocity at the highest point will be u/2

19. A particle is projected at 60° to the horizontal with a kinetic energy K. The kinetic energy at the highest point is

(A) K (B) zero (C)
$$\frac{K}{4}$$
 (D) $\frac{K}{2}$

Ans:(C)

Hints : At highest point kinetic energy = $1/2m (v \cos 60^\circ)^2 = 1/4 \times 1/2m v^2 = K/4$

20. The poisson's ratio of a material is 0.5. If a force is applied to a wire of this material, there is a decrease in the cross-sectional area by 4%. The percentage increase in the length is :

(A) 1% (B) 2% (C) 2.5% (D) 4%

Ans:(D)

Hints : Poisson ratio = 0.5

Therefore density is constant hence change in volume is zero we have

 $V = A \times \ell = constant$

$$\log V = \log A + \log \ell$$
 or $\frac{dA}{A} + \frac{d\ell}{\ell} = 0 \Longrightarrow \frac{d\ell}{\ell} = -\frac{dA}{A}$

That is 4%

21. Two spheres of equal masses but radii r_1 and r_2 are allowed to fall in a liquid of infinite column. The ratio of their terminal velocities is

(A) 1 (B) $r_1:r_2$ (C) $r_2:r_1$ (D) $\sqrt{r_1}:\sqrt{r_2}$

Ans: (Data incomplete)

Hints : We have
$$v_{T} = \frac{2r^{2}(\sigma - \rho)g}{9\eta}$$

$$\frac{\mathbf{v}_1}{\mathbf{v}_2} = \left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^2 \frac{(\boldsymbol{\sigma}_1 - \boldsymbol{\rho})}{(\boldsymbol{\sigma}_2 - \boldsymbol{\rho})}; \text{ given } \mathbf{m}_1 = \mathbf{m}_2 \Longrightarrow \left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^3 = \frac{\boldsymbol{\sigma}_2}{\boldsymbol{\sigma}_1}$$

22. Two massless springs of force constants K₁ and K₂ are joined end to end. The resultant force constant K of the system is

(A)
$$K = \frac{K_1 + K_2}{K_1 K_2}$$
 (B) $K = \frac{K_1 - K_2}{K_1 K_2}$ (C) $K = \frac{K_1 K_2}{K_1 + K_2}$ (D) $K = \frac{K_1 K_2}{K_1 - K_2}$

Ans:(C)

Hints : In series $K_{eff} = \frac{K_1 K_2}{K_1 + K_2}$

23. A spring of force constant k is cut into two equal halves. The force constant of each half is

(A)
$$\frac{k}{\sqrt{2}}$$
 (B) k (C) $\frac{k}{2}$ (D) 2k

Ans: (D)

Hints : As $K \ell = \text{constant}$

K' = 2K

- 24. Two rods of equal length and diameter have thermal conductivities 3 and 4 units respectively. If they are joined in series, the thermal conductivity of the combination would be
 - (A) 3.43 (B) 3.5 (C) 3.4 (D) 3.34 Ans: (A)

Hints : In series $R = R_1 + R_2$

$$\frac{2\ell}{K_{eff}A} = \frac{\ell}{K_1A} + \frac{\ell}{K_2A}$$
$$K_{eff} = \frac{24}{7} = 3.43$$

25. 19 g of water at 30° C and 5 g of ice at -20° C are mixed together in a calorimeter. What is the final temperature of the mixture? Given specific heat of ice = 0.5 cal g⁻¹(°C)⁻¹ and latent heat of fusion of ice = 80 cal g⁻¹

(A) $0^{\circ}C$ (B) $-5^{\circ}C$ (C) $5^{\circ}C$ (D) $10^{\circ}C$ Ans: (C) Hints: $5 \times .5 \times 20 + 5 \times 80 + 5t = 19 \times 1 \times (30 - t)$ $t = 5^{\circ}C$

- 26. It is difficult to cook rice in an open vessel by boiling it at high altitudes because of
 - (A) low boiling point and high pressure (B) high boiling point and low pressure
 - (C) low boiling point and low pressure
- (D) high boiling point and high pressure

```
Ans:(C)
```

Hints : At high altitude pressure is low and boiling point also low

- 27. The height of a waterfall is 50 m. If $g = 9.8 \text{ ms}^{-2}$ the difference between the temperature at the top and the bottom of the waterfall is:
 - (A) $1.17 \,^{\circ}\text{C}$ (B) $2.17 \,^{\circ}\text{C}$ (C) $0.117 \,^{\circ}\text{C}$ (D) $1.43 \,^{\circ}\text{C}$ Ans: (C)

Hints:
$$\frac{mgh}{J} = ms\Delta t \Longrightarrow \Delta t = 0.117^{\circ}C$$

28. The distance between an object and a divergent lens is m times the focal length of the lens. The linear magnification produced by the lens is

(A) m (B)
$$\frac{1}{m}$$
 (C) m+1 (D) $\frac{1}{m+1}$

Ans:(D)

Hints : u = -mf

$$\frac{1}{v} - \frac{1}{(-mf)} = -\frac{1}{f} \implies \qquad \frac{1}{v} = -\frac{1}{f} \left(1 + \frac{1}{m}\right) \implies -\frac{v}{u} = \left(\frac{1}{1+m}\right)$$

A 2.0 cm object is placed 15 cm in front of a concave mirror of focal length 10 cm. What is the size and nature of the image?
(A) 4 cm. real
(B) 4 cm, virtual
(C) 1.0 cm, real
(D) None
Ans: (A)

Hints:
$$\frac{1}{v} - \frac{1}{15} = \frac{1}{-10} \Rightarrow v = -30 \text{ cm}$$

$$m = \frac{-30}{-15} = 2$$
, image size = 4 cm

30. A beam of monochromatic blue light of wavelength 4200 Å in air travels in water of refractive index 4/3. Its wavelength in water will be:

Hints : In water
$$\lambda = \frac{4200}{\frac{4}{3}} = 3150 \text{ Å}$$

- 31. Two identical light waves, propagating in the same direction, have a phase difference δ . After they superpose the intensity of the resulting wave will be proportional to
 - (A) $\cos \delta$ (B) $\cos (\delta/2)$ (C) $\cos^2(\delta/2)$ (D) $\cos^2 \delta$ Ans: (C)

Hints:
$$I = 4I_0 \cos^2\left(\frac{\delta}{2}\right) \Rightarrow I \propto \cos^2\left(\frac{\delta}{2}\right)$$

32. The equation of state for n moles of an ideal gas is PV = nRT, where R is a constant. The SI unit for R is (C) $J K g^{-1} K^{-1}$ (B) JK⁻¹ mol⁻¹ (D) JK⁻¹ g⁻¹ (A) JK⁻¹ per molecule Ans: (B) Hints: JK⁻¹ mol⁻¹ At a certain place, the horizontal component of earth's magnetic field is $\sqrt{3}$ times the vertical component. The angle of dip at 33. that place is (A) 30° **(B)** 60° (C) 45° (D) 90° Ans: (A) **Hints**: $\tan \theta = \frac{V}{H} = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30^{\circ}$ The number of electron in 2 coulomb of charge is 34. (C) 1.6×10^{19} (A) 5×10^{29} (B) 12.5×10^{18} (D) 9×10^{11} Ans: (B) Hints: $n = \frac{2}{1.6 \times 10^{-19}} = 12.5 \times 10^{18}$ 35. The current flowing through a wire depends on time as $I = 3t^2 + 2t + 5$. The charge flowing through the cross section of the wire in time from t = 0 to t = 2 sec. is (A) 22C **(B)** 20C (C) 18C (D) 5C Ans: (A) Hints: $Q = \int_0^2 (3t^2 + 2t + 5) dt = 22C$ If the charge on a capacitor is increased by 2 coulomb, the energy stored in it increases by 21%. The original charge on the 36. capacitor is (B) 20C (A) 10C (C) 30 C (D) 40 C Ans: (B) Hints: $\frac{q_f^2}{2C} - \frac{q_i^2}{2C} \times 100 = 21$ and $q_f - q_i = 2$ 20 solving we get $q_i = 20$ coulomb 37. The work done in carrying a charge Q once around a circle of radius r about a charge q at the centre is (C) $\frac{qQ}{4\pi\varepsilon_0} \left(\frac{1}{2\pi r}\right)$ (B) $\frac{qQ}{4\pi\varepsilon_0}\frac{1}{\pi r}$ (A) $\frac{qQ}{4\pi\varepsilon_0 r}$ (D) 0 Ans: (D) Hints : Work done by conservative force in a round trip is zero Four capacitors of equal capacitance have an equivalent capacitance C₁ when connected in series and an equivalent capaci-38.

tance C_2 when connected in parallel. The ratio $\frac{C_1}{C_2}$ is: (A) 1/4 (B) 1/16 (D) 1/12 (C) 1/8 Ans: (B)

Hints:
$$C_1 = \frac{C}{4}$$
 and $C_2 = 4C \Longrightarrow \frac{C_1}{C_2} = \frac{1}{16}$

39. Magnetic field intensity H at the centre of a circular loop of radius r carrying current I e m.u is (A) r/I oersted (B) $2\pi I/r$ oersted (C) $I/2\pi r$ oersted (D) $2\pi r/I$ oersted Ans: (B)

Hints:
$$H = \frac{\mu_0 I}{2r} = \frac{\mu_0}{4\pi} \times \frac{2\pi I}{r}$$

In e m.u system $\frac{\mu_0}{4\pi} = 1$. So $H = \frac{2\pi I}{r}$

Which of the following materials is the best conductor of electricity? 40. (A) Platinum (B) Gold (C) Silicon Ans: (D)

41. Which statement is incorrect

(A) Phenol is a weak acid

(C) Phenol liberates CO₂ from Na₂CO₃ soln

Hints: Phenol does not liberate CO₂ from Na₂CO₃ solution

Note : Strong acid is not formed by weak acid

In which of the following reactions new carbon-carbon bond is not formed : 42.

(A) Cannizaro reaction (B) Wurtz reaction (C) Aldol condensation (D) Friedel-Craft reaction Ans: (A)

(D) Copper

(D)2

(B) Phenol is an aromatic compound

(D) Phenol is soluble in NaOH

Hints : In cannizaro's reaction no new C-C bond is formed

e.g. $\parallel \parallel 50\%$ NaOH \rightarrow CH₃OH+HCOO⁻Na⁺

A compound is formed by substitution of two chlorine for two hydrogens in propane. The number of possible isomeric 43. compounds is

(C)5

Hints: $C_3H_8 \xrightarrow{-2H} C_3H_6Cl_2$, following isomers of $C_3H_6Cl_2$ is possible

Cl H Cl H-C-C-C-H H H H	$\begin{array}{cccc} H & H & H \\ & & \\ H - C - C - C - C - C \\ & & \\ H & H & C \end{array}$	H Cl H H-C-C-C-H H Cl H	H CI CI ↓ H−C−C [★] C−H H H H
(I)	(II)	(III)	(IV)
B		. 11 . 10	

Due to presence of chiral carbon compound (IV) is optically active and forms an enantiomer. So total no of isomers =5 Which one of the following is called a carbylamine? 44.

(A) R CN (B) R CONH₂ (C) R-CH=NH (D) R NC
Ans: (D)
$$($$

For making distinction between 2-pentanone and 3-pentanone the reagent to be employed is 45. $(A) K_2 Cr_2 O_7 / H_2 SO_4$ (B) Zn-Hg/HCl (C) SeO₂ (D) Iodine/NaOH **Hints :** In 2-pentanone *ie.*, $CH_3-C-CH_2CH_2CH_3$, CH_3-C- group is present due to which it can show iodoform test. *i.e.*, $\overset{\parallel}{\text{CH}_{3}-\text{C}-\text{CH}_{2}-\text{CH}_{2}-\text{CH}_{3}-\overset{\blacksquare}{\xrightarrow{\text{L}_{2}/\text{NaOH}}} CHI_{3}\downarrow + CH_{3}CH_{2}-CH_{2$ (Yellow ppt.) 46. Which one of the following formulae does not represent an organic compound? $(A) C_4 H_{10} O_4$ $(B)C_4H_0O_4$ $(C)C_{4}H_{7}CIO_{4}$ $(D) C_{4}H_{0}O_{4}$ Ans: (D) **Hints :** Unsaturation factor = 0, 1, 1, 0.5Hence (D) 47. The catalyst used for olefin polymerization is (A) Ziegler-Natta Catalyst (B) Wilkinson Catalyst (C) Raney nickel catalyst (D) Merrifield resin Ans: (A) **Hints**: $TiCl_3 + (C_2H_5)_3 Al$ The oxidant which is used as an antiseptic is : 48. (A) KBrO₂ (B) KMnO₄ (C) CrO₂ (D) KNO₂ Ans: (B) 49. Which of the following contributes to the double helical structure of DNA (A) hydrogen bond (B) covalent bond (C) disulphide bond (D) van-der Waal's force Ans: (A) The monomer used to produce orlon is 50. (A) CH₂=CHF (B) CH₂=C Cl₂ (C) CH₂=CH Cl (D) CH,=CH-CN Ans: (D) Hints: Orlon or PAN $Monomer \Rightarrow CH_2 = CH - CN$ 51. 1 mole of photon, each of frequency 2500 S^{-1} , would have approximately a total energy of : (A) 1 erg(B) 1 Joule (C)1eV (D) 1 MeV Ans: (A) **Hints**: Total Energy = Nhv = $6.022 \times 10^{23} \times 6.626 \times 10^{-34}$ J.S. $\times 2500$ s⁻¹ = 9.9 erg ≈ 10 erg In (A) option, it should be 10 erg instead of 1 erg. If n, number of radioatoms are present at time t, the following expression will be a constant : 52. (C) d In n/dt (A) n_t/t (B) $\ln n/t$ $(D) t n_{t}$ Ans: (C) **Hints**: $-\frac{dN}{dt} = \lambda N \implies -\frac{d\ln N}{dt} = \lambda$ Hence (C)

53. The following graph shows how $T_{1/2}$ (half-life) of a reactant R changes with the initial reactant concentration a_0 .

 $T_{1/2}$ $\frac{1/a_0}{1/a_0}$ The order of the reaction will be :
(A) 0 (B) 1

(D)3

Ans:(C)

Hints:
$$t_{\frac{1}{2}} \propto \frac{1}{a^{n-1}}$$

Hence (C)

54. The second law of thermodynamics says that in a cyclic process :

(A) work cannot be converted into heat

(B) heat cannot be converted into work

(C) work cannot be completely converted into heat (D) heat cannot be completely converted into work **Ans : (D)**

Hints : Because 0 K temperature is unattainable.

55. The equilibrium constant (K) of a reaction may be written as :

(A)
$$K = e^{-\Delta G/RT}$$
 (B) $K = e^{-\Delta G^0/RT}$ (C) $K = e^{-\Delta H/RT}$ (D) $K = e^{-\Delta H^0/RT}$

Ans: (\mathbf{B})

Hints : $\Delta G^{\circ} = -RT \ln K$

$$\Rightarrow \frac{\Delta G^{\circ}}{-RT} = \ln K$$
$$\therefore K = e^{-\Delta G^{\circ}/RT}$$

56. For the reaction $SO_2 + \frac{1}{2}O_2 = SO_3$, if we write $K_p = K_c (RT)^x$, then x becomes

Ans: (B) Hints: $K_{p} = K_{C}(RT)^{x}$ $x = (\Sigma n_{(g)})_{p} - (\Sigma n_{(g)})_{R}$ $= 1 - \frac{3}{2} = -\frac{1}{2}$

57. If it is assumed that $\frac{235}{92}U$ decays only by emitting α and β particles, the possible product of the decay is :

(A)
$$\frac{^{225}}{^{89}}Ac$$
 (B) $\frac{^{227}}{^{89}}Ac$ (C) $\frac{^{230}}{^{89}}Ac$ (D) $\frac{^{231}}{^{89}}Ac$

Ans: (B)

Hints : New mass no. $= 235 - 2 \times 4 = 227$

New at. no. = $92 - 2 \times 2 + 1 = 92 - 4 + 1 = 89$

58.The time taken for 10% completion of a first order reactin is 20 mins. Then, for 19% completion, the reaction will take
(A) 40 mins(B) 60 mins(C) 30 mins(D) 50 mins

Hints:
$$t = \frac{2.303}{\lambda} \log \frac{N_0}{N}$$
$$20 = \frac{2.303}{\lambda} \log \frac{100}{90} \qquad \dots \dots (i)$$
$$t = \frac{2.303}{\lambda} \log \frac{100}{81} \qquad \dots \dots (ii)$$
equation (i) / (ii)
$$\therefore t = 40 \text{ min.}$$

59. Which of the following will decrease the pH of a 50 ml solution of 0.01 M HCl?

(A) addition of 5 ml of 1 M HCl(C) addition of 50 ml of 0.002 M HClAns: (A)

Hints :50 ml 0.01 M \equiv 50 \times 0.01 = 0.5 millimole

 $5 \text{ ml } 1 \text{ (M)} \equiv 5 \times 1 = 5 \text{ millimole}$ Total millimoles = 5.5 millimole

 $10tai \min 10tes = 3.31$

Total volume = 55 ml.

Molarity =
$$\frac{5.5}{55} = 0.1(M) = 10^{-1} (M)$$

pH = 1

60. Equal volumes of molar hydrochloric acid and sulphuric acid are neutralised by dilute NaOH solution and x kcal and y kcal of heat are liberated respectively. Which of the following is true?

(A) x=y (B)
$$x = \frac{y}{2}$$
 (C) x=2y (D) none of the above

Ans: (B)

Hints : Enthalpy of 1 g equivalent of strong acid and 1 g equivalent strong base = 13.7 kcal Equal volume contains double eq. of H_2SO_4 than HCl

61. Hybridisation of central atom in NF_3 is

(A) sp³ (B) sp (C) sp² (D) dsp² Ans: (A)

Hints: $K = \frac{1}{F} = \frac{1}{F}$ $K = \frac{3\sigma \& 1 \text{ lone pair}}{Hyb. = sp^3}$

62. Of the following compounds the most acidic is

(A)
$$As_2O_3$$
 (B) P_2O_5 (C) Sb_2O_3 (D) Bi_2O_3
Ans: (B)

Hints : In a group as we go downwards, the oxide basic character increases hence maximum acidic oxide is P_2O_5

63. The half-life of a radioactive element is 10 hours. How much will be left after 4 hours in 1 g atom sample? (A) 45.6×10^{23} atoms (B) 4.56×10^{23} atoms (C) 4.56×10^{21} atoms (D) 4.56×10^{20} atoms **Ans : (B)**

Hints: $t_{\frac{1}{2}} = 10 \text{ hr.}$ $K = \frac{0.693}{10}$ $4 = \frac{2.303 \times 10}{0.693} \log \frac{1}{N}$ $\log \frac{1}{N} = \frac{4 \times 0.693}{2.303 \times 10} = 0.12036$ $\log N = -0.12036 = \overline{1.87964}$ $N = 7.575 \times 10^{-1} \text{ g atoms}$ $\therefore \text{ No. of atoms} = 7.575 \times 10^{-1} \times 6.023 \times 10^{23} \text{ atoms} = 4.56 \times 10^{23} \text{ atoms}$

(B) addition of 50 ml of 0.01 M HCl(D) addition of Mg

			$\begin{pmatrix} 1 & 1 \end{pmatrix}$	
64.	For the Paschen series the	values of n_1 and n_2 in the express	ion $\Delta E = Rhc \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ ar	e
		(B) $n_1 = 2, n_2 = 3, 4, 5$		
	. ,	lectron shifting to third shell i.e., r	$n = 3$ to $n = 4, 5, 6, \dots$	
65.		ing condition is the relation $\Delta H =$		stem?
	(A) Constant Pressure		(B) Constant temperature	
	(C) Constant temperature a	and pressure	(D) Constant temperature, pro	essure and composition
	Ans: (A)			L
		when pressure remains constant.		
66.	An organic compound mad	le of C, H and N contains 20% nit	rogen. Its molecular weight is :	
	(A) 70	(B) 140	(C) 100	(D) 65
	Ans: (A)			
	Hints : Nitrogen at. wt. $= 1$	4 in a molecule minimum one ator	n of N is present	
	<i>i.e.</i> , $20\% \equiv 14$	Molecular weight $=$ 70		
	$100\% \equiv 14 \times 5 = 70$			
67.	In Cu-ammonia complex, t	he state of hybridization of Cu^{+2} is	5	
	(A) sp^3	$(B) d^3s$	(C) sp^2f	(D) dsp^2
	Ans: (D)			
	Hints : In $[Cu(NH_3)_4]^+$			
	Cu^{+2} is in a state of dsp^2 hyb formation)	ridization and shape of the comple	ex is square planar. (One <i>e</i> ⁻ is exci	ted from $3d$ to $4p$ during complex
68.	The reaction that takes play	ce when Cl ₂ gas is passed through	o conc. NaOH solution is :	
	(A) Oxidation	(B) Reduction	(C) Displacement	(D) Disproportionation
	Ans: (D)			
		Oxidation	_	
	Hints: 0 Cl ₂ + NaOH (conc	. & hot) $NaCl^{-1} + NaCl^{+5}$	$V_{ClO_3} + H_2O$	
	Hints:	^	5 2	
	II d	Reduction		
(0)	Hence the reaction is	disproportionation		
69.	"Electron" is an alloy of (A) Mg and Zn	(B) Fe and Mg	(C) Ni and Zn	(D) Al and Zn
	(A) Nig and Zii Ans: (A)	(b) Fe and Mg	(C) INI aliu Zli	(D) Al and Zli
		of Mg(95%) + Zn(4.5%) and Cu(0	0.5%)	
70.		be restored into original form by		
70.	(A) Chlorine	(B) BaO ₂	$(C) H_2O_2$	$(D) MnO_2$
	Ans: (C)	$(D) DaO_2$	$(C) \Pi_2 O_2$	
		ainting is due to PbS which is oxid	lised by H O to form white PbS	0
	$PbS + H_2O_2 \rightarrow PbSO_4$			- 4
	(Black) (white)	· · · · · · · · · · · · · · · · · · ·		
71.		one which has the capability to for	m complex compound and also	possesses oxidizing and reducing
	properties is :			
	(A) HNO ₃	$(B) HNO_2$	(C) HCOOH	(D) HCN
	Ans: (B) HNO_2^{+3}			
	-			

72. Atoms in a P_4 molecule of white phosphorus are arranged regularly in the following way :

(A) at the corners of a cube

(C) at the corners of a tetrahedron Ans: (C)

Hints:

73. Which of the following statements is not correct (A) Silicon is extensively used as a semiconductor (C) Silicon occurs in free state in nature Ans: (C)

(B) Carborundum is SiC (D) Mica contains the element silicon

(B) at the corners of a octahedron

(D) at the centre and corners of a tetrahedron

Hints : Silicon exist in nature in combined state as SiO₂

In aluminium extraction by the Bayer process, alumina is extracted from bauxite by sodium hydroxide at high temperature and 74. pressures :

$$Al_2O_3(s) + 2OH^-(aq) \rightarrow 2Al_2O_2^-(aq) + H_2O(1)$$

Solid impurities such as Fe_2O_3 and SiO_2 are removed and then $\text{Al}(\text{OH})_4^-$ is reprecipitated :

 $2Al(OH)_4^- \rightarrow Al_2O_3.3H_2O(s) + 2OH^-(aq)$. In the industrial world :

(A) Carbon dioxide is added to precipitate the alumina

- (B) Temperature and pressure are dropped and the supersaturated solution seeded
- (C) Both (A) and (B) are practised
- (D) The water is evaporated

Ans: (B)

Ans: (C)

75. The addition of HBr to 2-pentene gives

(A) 2-bromopentane only

(C) 2-bromopentane and 3-bromopentane

(B) 3-bromopentane only

(D) 1-bromopentane and 3-bromopentane

Hints:
$$\stackrel{5}{CH_3} \stackrel{4}{-} \stackrel{3}{CH_2} \stackrel{2}{-} \stackrel{1}{L} \stackrel{H Br^-}{\longrightarrow} CH_3 - CH_2 - CH_2 - CH_3$$

H Br^- (Less stable)
 $\stackrel{\oplus}{Br}$ (Less stable)
 $CH_3 - CH_2 - CH - CH_2 - CH_3$
 $H Br^-$ (Less stable)
 $H Br^-$ (M is added to C₃ so as to get relatively
more stabler carbocation)
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (Less stable)
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M is added to C₃ so as to get relatively
 $H Br^-$ (M

76. Ethelene can be separated from acetylene by passing the mixture through : (A) fuming H_2SO_4 (B) pyrogallol (C) ammoniacal Cu₂Cl₂ (D) Charcoal powder Ans: (C) **Hints** : H–C=C–H + Cu₂Cl₂ \rightarrow Cu⁺C⁻ = C⁻Cu⁺ \downarrow Red ppt. $H_2C=CH_2 + Cu_2Cl_2 \rightarrow No. ppt$ 77. Reaction of R OH with R'MgX produces : (B) R'H (A) RH (C) R - R (D) R' - R'Ans: (B) $(+\delta - \delta + \delta + \delta - H + R' - MgX \longrightarrow R - O - MgX + R' - H$ (Alkane) Hints: Weakly Acts as base acidic H In the compound $HC \equiv C - CH = CH_2$ the hybridization of C-2 and C-3 carbons are respectively : 78. (C) sp² & sp (A) $sp^3 \& sp^3$ (B) $sp^2 \& sp^3$ (D) $sp^{3} \& sp$ Ans: (C) **Hints :** $H-C=C-CH=CH_2$ (Double bond is preferred) $\begin{array}{c} \uparrow \\ sp \\ sp^2 \end{array}$ The two structures written below represent 79. CH₃ CH, OH HO-HO-·н OH H--OH CH₂OH ĊH, (A) pair of diastereomers (B) pair of enantiomers (C) same molecule (D) both are optically inactive Ans: (C)CH, OH CH₃ R H R OH I & II are same Fischer projection because но-180° rotation doesn't change configuration Н Hints: ĊH₂OH ĊH, Ι Π Which of the following carbocations will be most stable? 80. (B) $CH_3 - \overset{+}{C}H_3$ (C) $(CH_3)_2 \overset{+}{C}H$ (D) $CH_2 = CH - \overset{+}{C}H_2$ (A) Ph_3C Ans: (A) Hints: Ph-C-Ph| (Highly resonance stabilized) | Ph

PHYSICS

SECTION-II

- 1 The displacement x of a particle at time t moving under a constant force is $t = \sqrt{x} + 3$, x in meters, t in seconds. Find the work done by the force in the interval from t = 0 to t = 6 second.
 - A. $t = \sqrt{x} + 3 \Rightarrow x = (t-3)^2 \Rightarrow v = 2(t-3)$ v at t = 0, -6 m/s v at t = 6 sec., 6 m/s change in KE is zero \Rightarrow work done = 0
- 2 Calculate the distance above and below the surface of the earth at which the acceleration due to gravity is the same

A.
$$\frac{GM}{(R+h)^2} = \frac{GM(R-h)}{R^3}$$
on solving we get
$$-Rh + R^2 - h^2 = 0$$
$$h = \frac{-R + \sqrt{R^2 + 4R^2}}{2} = \frac{(\sqrt{5} - 1)R}{2}$$

- 3 A ray of light travelling inside a rectangular glass block of refractive index $\sqrt{2}$ is incident on the glass-air surface at an angle of incidence of 45°. Show that the ray will emerge into the air at an angle of refraction equal to 90°
 - A. Given $C = 45^{\circ}$

4

$$\sin c = \frac{1}{\mu} = \frac{1}{\sqrt{2}} = \sin 45^\circ$$

So the ray will graze the interface after refraction at an angle of 90°

Two cells each of same e.m.f 'e' but of internal resistances r_1 and r_2 are connected in series through an external resistance R. If the potential difference between the ends of the first cell is zero, what will be the value of R in terms r_1 and r_2 ?

A.
$$I = \frac{2e}{r_1 + r_2 + R}$$
; now $e - Ir_1 = 0$
 $\Rightarrow r_2 - r_1 + R = 0, R = (r_1 - r_2)$

- 5 At time t = 0, a radioactive sample has a mass of 10 gm. Calculate the expected mass of radioactive sample after two successive mean lives.
 - **A.** Two successive mean lives = $\frac{2}{\lambda}$

No. of nuclei after two mean lives = $N_0 e^{-(\lambda) \left(\frac{2}{\lambda}\right)} = \frac{N_0}{e^2}$

Therefore mass
$$=\frac{10}{e^2}gm$$

CHEMISTRY

SECTION-II

6 Calculate the number of H^+ ion present in 1 ml of a solution whose pH is 10.

A. pH = 10

1

 $[H^+] = 10^{-10} M$

In 1000 ml solution there are $6.023\times 10^{13}\,H^{\scriptscriptstyle +}$ ions

- In 1 ml solution there are $6.023 \times 10^{10} \,\text{H}^{+}$ ions
- 7 Give the structure of pyro-sulfuric acid. How would you prepare it? What would you observe when colourless HI is added to pyro-sulfuric acid?

A.
$$(O O O H H H - S - O - S - O H H - S - O - S - O H (H_2 S_2 O_7)$$

(Pyro-sulfuric acid)

(Oleum)

Preparation of $H_2S_2O_7$: $H_2SO_4 + SO_3 \longrightarrow H_2S_2O_7$ (98%) (Oleum)

$$H_2SO_4 + 2HI \longrightarrow 2H_2O + SO_2 + I_2$$

(Colourless) (Violet colour)

- 8 Write with a balanced chemical equation how gypsum is used for the conversion of ammonia into ammonium sulfate without using H_2SO_4 .
 - A. Balanced reaction is

$$2NH_3 + CaSO_4 + CO_2 + H_2O = (NH_4)_2SO_4 + CaCO_3$$

9 Convert phenol to p-hydroxy acetophenone in not more than 2 steps.

10 An organic compound 'A' on treatment with ammoniacal silver nitrate gives metallic silver and produces a yellow crystalline precipitate of molecular formula $C_9H_{10}N_4O_4$, on treatment with Brady's reagent. Give the structure of the organic compound 'A'.

- **A.** Compound (A) is an aldehyde. It should be propanal CH₃CH₂CHO Reactions :
 - (i) $CH_3CH_2CHO \xrightarrow{Ammoniacal} Ag \downarrow$ (Tollen's reagent)

(ii)
$$O_2N$$
 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 $NH-N=CH-CH_2-CH_3$

(2, 4-Dinitro phenyl hydrazine) (Brady's reagent)

(Yellow ppt. with mol. formula $C_9H_{10}N_4O_4$)

<u>WB-JEE - 2009</u>

BIOLOGY QUESTIONS & ANSWERS

1.	The length of DNA hgav	ing 23 base pair is		
	(A) 78 Å	(B) 78.4 Å	(C) 74.8 Å	(D) 78.2 Å
	Ans: (D)			
	Hints : Distance between ad	• •		
2.	Which I _g is produced in prir	nary immune response?		
	(A) I _g A	(B) I _g E	$(C)I_{g}G$	(D) I _g M
	Ans: (D)			
3.	• • •	primary response to the given an d Blood Corpuscles of man is	tigen	
5.			$(C) 0 2 \dots$	(D) 10.2 II
	(A) 7.2 μ m	(B) 8.1 µm	(C) 9.2 µm	(D) 10.3 µ m
	Ans: (A)			
	Hints : The average diamete			
4.	-	ring oxidation of which of the fo		
	(A) α -ketoglutarate \rightarrow Su		(B) Succinic acid \rightarrow Fumaric	
	(C) Succinyl CoA \rightarrow Succin	iic acid	(D) Fumaric acid \rightarrow Malic ac	id
	Ans : (B)			
	Hints : FAD is electron acce	ptor during oxidation of succinic	e acid to fumaric acid	
5.	The chemical nature of horn	mones secreted by α & δ cell	s of pancreas is –	
	(A) Glycolipid	(B) Glycoprotein	(C) Steroid	(D) Polypeptide
	Ans: (D)			
	Hints : Hormones produced	by $lpha$ cells (glucagon) and eta	cells (somatostatin) are polypep	tide
6.	The genetic material of Rabi	es virus is		
	(A) Double stranded RNA	(B) Single stranded RNA	(C) Double stranded DNA	(D) ssDNA
	Ans: (B)			
	Hints : The genetic materia	l of Rabies virus is ss RNA		
7.	T-lymphocyte is produced in	1		
	(A) Bone marrow	(B) Spleen	(C) Pancreas	(D) Thymus
	Ans: (A)			
	Hints : T-lymphocyte are pr	oduced in bone marrow but matu	ire in thymus	

8.	How many ATP molecules ar	e obtained from fermentation of	1 molecule of alucose?	
0.	(A) 2	(B)4	(C) 3	(D) 5
	Ans: (A)	(b)4	(C)3	(D)3
		P are produced by fermentation	of one molecule of glucose	
9.	Number of nitrogenous base	1 1	of one molecule of glucose	
9.	(A) 3	(B)2	(C) 1	(\mathbf{D}) 5
	(A) 5 Ans: (A)	(B)2	(C)1	(D)5
	. ,	and the sector		
10	Hints : Three nitrogenous bat A character which is express			
10.	-	(B) Recessive	(C) Ca dominant	
	(A) Dominant	(B) Recessive	(C) Co-dominant	(D) Epistatic
	Ans: (A)	ana a la babaid		
11	Hints : Dominant gene is exp		10	
11.	-	on chromosomes are most conde		(\mathbf{D}) T is the set
	(A) Prophase	(B) Metaphase	(C) Anaphase	(D) Telophase
	Ans: (B)			
10	Hints : Chromosome is mos	=		
12.	Which of the following is co			
	(A) Haemophilic-Y chromoso		(B) Down's syndrome - 21st cl	
	(C) Sickle cell anaemia-X chro	omosome	(D) Parkinson's disease-X and	l Y chromosome
	Ans: (B)	601 / 1		
10	Hints : Down's syndrome is			
13.		eria are being employed for prod		
	(A) Thyroxine	(B) Human insulin	(C) Cortisol	(D) Epinephrine
	Ans: (B)			
		v being produced by genetically e	engineered bacteria (E.coli). Thi	s insulin is called Humulin
14.	Scientific name of sunflower			
	(A) Hibiscus rosa-sinensis	(B) Solanum nigram	(C) Oryza sativa	(D) Helianthus annus
	Ans: (D)	CI.		
17	Hints : Helianthus annuus is			
15.		ethods, new and better varieties	-	
	(A) Selection		(B) Grafting	
	(C) Hybridization		(D) Hybridization followed by	selection
	Ans: (D)	t and ha farmed has had aiding time	fallowed her calcution	
16	• •	t can be formed by hybridisation	Tollowed by selection.	
16.	Which one is product of aero	1	(C) Leatin said	(D) Dramania agid
	(A) Malic acid	(B) Ethyl alcohol	(C) Lactic acid	(D) Pyruvic acid
	Ans: (A)			
17	Hints : Malic acid is produc	t of aerobic respiration		
17.	CO_2 acceptor in C_3 cycle is		(C) DED	(D) Malia agid
	(A) OAA	(B) RUBP	(C) PEP	(D) Malic acid
	Ans: (B)	high contracts) is CO constanting	Calant	
10		biphosphate) is CO_2 acceptor in	C ₃ plant	
18.	Virus was discovered by who		(C) Hamilto	(D) Designing -1-
	(A) Stanley	(B) Ivanowsky	(C) Herelle	(D) Beijerinek
	Ans: (B)	ad winne		
	Hints : Ivanowsky discovered	eu virus		

19.	Electron microscope is base			
		(B) Resolution of glass lenses	(C) Magnification of glass len	ses (D) Refraction of light
	Ans: (A)			
20	-	e is based on principle of electron		
20.	•	ate name of which of the followin	•	
	(A) HMP shunt	(B) Glycolysis	(C) TCA cycle	(D) Calvin cycle
	Ans: (C)		1 • • • •	
21	•	rebs' cycle or Tricarboxylic acid c	•	
21.		ints develop from which of the fol	-	
	(A) Procambium	(B) Protoderm	(C) Periblem	(D) Cortex
	Ans: (A)			
		vascular tissue in higher plants		
22.	Which element is cause of e			
	(A) Hg	(B) Pb	(C) Cd	(D) As
	Ans : (C)			
	Hints : Etai etia is caused by			
23.	Chromosomes can be staine	ed with one of the following chem		
	(A) Acetocarmine	(B) Safranine	(C) Light green	(D) Eosin
	Ans:(A)			
	Hints : Acetocarmine is use	d to stain chromosome		
24.	Which one of the following	is the American Poultry breed		
	(A) Australop	(B) Minovca	(C) Assel	(D) Rhod Island Red
	Ans: (D)			
	Hints : Rhod island Red is th	ne American Poultry Breed		
25.	Which part of the human bra	ain is largest :		
	(A) Cerebellum	(B) Thlamus	(C) Cerebrum	(D) Medulla
	Ans:(C)			
	Hints : Cerebrum is the larg	est part of brain		
26.	When the other floral parts a	are arranged at the base of the gyr	noecium, the flower is called :	
	(A) Hypogynous flower	(B) Perigynous flower	(C) Epigynous flower	(D) Agynous flower
	Ans:(A)			
	Hints : Hypogynous flower	/Superior ovary		
27.	In a CAM plant the concentre	ration of organic acid :		
	(A) increases during the day	7	(B) decreases or increases dur	ing the day
	(C) increases during night		(D) decreases during any time	
	Ans:(C)			
	Hints : In a CAM plant the	concentration of organic acid inc	creases during night	
28.	Protein coat of virus is know	wn as :		
	(A) Capsid	(B) Virion	(C) Virioid	(D) Bacterial wall
	Ans: (A)			
	Hints : Protein coat of virus	is called capsid		
29.		ion during Krebs' cycle per gluco	ose molecule is :	
	(A) 2 ATP molecules	(B) 8 ATP molecules	(C) 36 ATP molecules	(D) 38 ATP molecules
	Ans: (A)			
		r two Krebs' cycle (1 glucose mol	lecule) is produced at SLP	
	•		· •	

30.	Feedback inhibition of enzy	mes is affected by which of the fo	ollowing	
	(A) enzyme	(B) substrate	(C) end products	(D) intermediate end products
	Ans: (C)			
	Hints : Feedback inhibition			
31.		ns is related with one of the follow	ving :	
	(A) Blast disease of rice		(B) Rust disease of wheat	
	(C) 'Bakanae' disease of rice	2	(D) Early blight disease of po	tato
	Ans : (C)			
		rice/foolish seedling disease, dis	-	
32.		ollination by which of the followi	-	
	(A) Insects	(B) Birds	(C) Snails	(D)Air
	Ans : (B)			
	Hints : Pollination by bird is	· ·		
33.	-	example of man-made ecosystem		
	(A) Herbarium	(B) Aquarium	(C) Tissue culture	(D) Forest
	Ans: (B)			
	Hints : Aquarium is man-ma			
34.		esent in the following organelle :		
	(A) Peroxysome	(B) Chloroplast	(C) Mitochondrion	(D) Lysosome
	Ans: (C)			
25		respiratory enzymes for food oxid	lation	
35.	Pellagra is caused due to de			
	(A) Thiamin	(B) Niacin	(C) Pyridoxin	(D) Biotin
	Ans: (B)	NT and a factor of the set of the		
26	Hints : Pellagra is caused by			
36.		g Leucocytes transforms into mac		
	(A) Eosinophil Ans:(C)	(B) Basophil	(C) Monocyte	(D) Lymphocyte
	Hints : Monocytes transfor	ms to form macrophagas		
37.	Mention the "Incubation P			
57.	(A) 10–14 days	(B) 20–25 days	(C) 30 days	(D) 45 days
	Ans: (A)	(D) 20 25 days	(C) 50 days	(D) +3 duys
	Hints : Incubation period of	P vivax is 10-14 days		
38.	-	othalamus, responsible for physic	ological sweat secretion is	
50.	(A) Para-ventricular nucleus		(C) Median Eminence	(D) Pars Distalis
	Ans: (A)			
		leus of hypothalamus is related to	sweat secretion	
39.	The duration of cardiac cycl			
	(A) 0.8 sec	(B) $0.8 \ \mu$ sec	(C) 0.08 sec	(D) 0.008 sec
	Ans: (A)			
	Hints : The duration of card	diac cycle is 0.8 sec		
	rings. The duration of call	unue e y e 10 15 0.0 500		
40.	The intensity levels of whis	pering noise is :		
	(A) $10 - 15 dB$	(B) $20 - 40 \text{dB}$	(C) $45 - 50 dB$	(D) $50 - 55 dB$
	Ans: (A)			

41.	The wildlife Protection Act	was introduced in :				
71.	(A) 1974	(B) 1981	(C)	1986	(D)	1991
	Ans: (A)	(D) 1901	(C)	1900	(D)	1991
42.	In honey the percentage of	Maltose and other s	ugar is			
12.	(A) 9.2	(B) 8.81	(C)	10.5	(D)	11.2
	Ans: (B)	(D) 0.01	(C)	10.0	(D)	11.2
43.	Identify the correct type of	food chain ·				
			ow fly maggots $\rightarrow c$	common frog \rightarrow snake		
	(A) Grazing food chain	(B) Detrital foo		Decomposer food chain	(D)	Predator food chain
	Ans: (B)	()		I		
	Hins: It is Detritus food cl	hain. Always starts f	rom dead organic m	aterial.		
44.	Which is <i>not</i> applicable to t	•	•			
	(A) Hybridization	(B) Natural pop	-	Reproductive isolation	(D)	Gene Pool
	Ans: (A)					
	Hints : Hybridization is no	ot applicable to the b	ilogical species con	cept.		
45.	DNA sequence that code fo	r protein are known	as —			
	(A) Introns	(B) Exons	(C)	Control regions	(D)	Intervening sequences
	Ans. (B)					
	Hints : Exon is a part of DN	NA which codes for a	protein			
46.	Which one of the following	is a systemic insect	cide ?			
	(A) Malathion	(B) Parathion	(C)	Endrin	(D)	Furadan
	Ans: (D)					
	Hints : The systemic insect	ticide is parathion.				
47.	The resolving power of a co	mpound microscope	will increase with			
	(A) decrease in wave leng	th of light and increa	ase in numerical apo	erture		
	(B) increase in wave lengt	th of light and decrea	ase in numerical apo	erture		
	(C) increase in both wave	length of light and r	umerical aperture			
	(D) decrease in both wave	e length of light and	numerical aperture			
	Ans: (A)					
	Hints : Decrease in wavele	ngth of light and inc	rease in numerical a	aperature is responsible.		
48.	Osteomalacia is a disease ca	aused by the deficies	ncy of —			
	(A) Calciferol	(B) Retinol	(C)	Tocopherol	(D)	Phylloquinone
	Ans: (A)					
	Hints : Osteomalacia is cau	used by calciferol de	ficiency in body			
49.	Which is the correct sequen	ice of arrangement of	of types of W.B.C. i	n decreasing order in terr	ns of a	number per mm ³ of human
	blood ?					
	(A) Eosinophils > Basoph	-	(B)	Basophils > Eosinophils		-
	(C) Neutrophils > Eosinop	phils > Basophils	(D)	Eosinophils > Neutroph	ils > E	Basophils
	Ans : (C)					
50.	Cells in G ₀ phase of cell cyc	le				
	(A) Exit cell cycle	(B) Enter cell cy	cle (C)	Suspend cell cycle	(D)	Terminate cell cycle
	Ans : (C)					
	Hints : G_0 is the arrest / sus	spended phase of cel	l cycle.			
51.	Choose the correct non-pro-	tein amino acid				
	(A) Hydroxyproline	(B) hydroxylysi	ne (C)	cystine	(D)	γ amino butyric acid
	Ans: (D)					

52.	Seedless Banana is						
	(A) Parthenocarpic fruit	(B)	Multiple fruit	(C)	Drupe fruit	(D)	True fruit
	Ans: (A)						
	Hints : It is formed by parth						
53.	The major site of protein bre						
	(A) Kidney	(B)	Spleen	(C)	Liver	(D)	Bone-Marrow
51	Ans: (C)						
54.	Collagen is a	(D)	Globulin	(\cap)	Derived Protein	(\mathbf{D})	Salaroprotain
	(A) PhosphoproteinAns: (D)	(B)	Giobuilli	(C)	Derived Floteni	(D)	Scleroprotein
	Hints : Collagen is sclerop	otein	that requires vit-C for synth	esis			
55.	The "Repeating Unit" of gly			0313			
00.	(A) Fructose	(B)	Mannose	(C)	Glucose	(D)	Galactose
	Ans: (C)			(-)			
	Hints : Glycogen is a homo	polym	ner of glucose				
56.	Graham's Law is correlated w	vith					
	(A) Diffusion	(B)	Osmoregulation	(C)	Osmosis	(D)	Adsorption
	Ans: (A)						
			a	1	•		
	Hints : Graham's law of dif	fusion	, rate of diffusion $\sqrt[\alpha]{\text{Densitive}}$	ity of	particle		
57.	Which of the following does	s not a					
	(A) Acetyl-choline	(B)	Glutamic acid	(C)	Epinephrine	(D)	Tyrosine
	Ans: (D)						
7 0	Hints : Tyrosine is not a new						
58.	The generation of excitation						
	(A) Generation of end-plat	-		(B)	Release of calcium from t	-	1111
	(C) Formation of cross-lin Ans: (B)	kages	between actin and myosin	(D)	Hydrolysis of ATP to AD)r	
	Hints : During generation o	fexcit	ration contraction coupling of	ralciu	m is attached to troponin		
59.	In AIDS, HIV kills :	e onon		Juiera	in is acaened to doponini.		
	(A) Antibody molecule	(B)	T _{HELPER} cell	(C)	Bone-Marrow cells	(D)	TCytotoxic cell
	Ans: (B)						eg totome con
	Hints: HIV kills helper T ce	lls.					
60.	Generally artificial Pacemak	er cor	nsists of one battery made up	of			
	(A) Nickel	(B)	Dry Cadmium	(C)	Photo Sensitive Material	(D)	Lithium
	Ans: (D)						
	Hints : Lithium halide batter	-	_				
61.	Goitre can occur as a conseq	uence	e of all the following except				
	(A) Iodine deficiency			(B)	Pituitary Adenoma		
	(C) Grave's disease			(D)	Excessive intake of exog	enous	thyroxine
	Ans: (D) Hints: Excessive inteke of	avocc	nous thuroving will not and	luce t	he symptoms of Caiting		
62.	Hints : Excessive intake of Pernicious anaemia results of	-		iuce ti	ne symptoms of Gottle.		
02.	(A) Vit B_1	(B)	VitA	(C)	Vit B ₁₂	(D)	Iron
	Ans: (C)						

	Hinta . Domisious anasmis		and hur defining on a fuit D	on Cu	anaachalamina		
62	Hints : Pernicious anaemia Which of the following sub					duol.	read
63.	•		•				
	(A) Creatine Phosphate Ans: (C)	(Б)	ADP	(C)	Glucose-6-Phosphate	(D)	ATP
61			agentor lands to				
64.	The Genetic deficiency of A		-	(\mathbf{C})	Diabatas Insinidus		Nanhragania Diahatas
	(A) Diabetes mellitus	(B)	Glycosuria	(C)	Diabetes Insipidus	(D)	Nephrogenic Diabetes
	Ans: (D)			e a di i			
65	Hints : Nephrogenic diabe						
65.	Out of A-T, G-C pairing, ba		DNA may exist in alternat			nent ca	alled
	(A) Tautomerisational mu	tation		(B)	Analogue substitution		
	(C) Point mutation			(D)	Frameshift mutation		
	Ans: (A)	ſ	. 1.1.	1.1		<i>.</i> .	
	Hints : Tautomers are ison result in the formed migration			dily int	erconvert by a chemical r	eactio	n. Commonly this reaction
66	Cellular Totipotency was fit						
66.	1 1		Robert Hooke	(\mathbf{C})	T.Schwann		A V L couverbook
	(A) F.C. Steward	(D)	Robert Hooke	(C)	1.Schwann	(D)	A.V. Leeuwenhock
(7	Ans: (A)		A				
67.	Molecular scissors which c	ut DN.	A at specific site is		Dalamaan		
	(A) Pectinase			(B)	Polymerase		
	(C) Restriction endo nucl	ease		(D)	Ligase		
	Ans: (C)	a1aaaa	is used to out DNA at sma	aifia ait	o (molecular ecision)		
60	Hints : Restriction endonu		is used to cut DNA at spe	ciffic sit	e (molecular scissor).		
68.	SO_2 pollution is indicated b						$C = 1 \cdot (C1 \cdot (C$
	(A) <i>Desmodium</i> (Grasses)	(B)	Sphagnum (Mosses)	(C)	Usnea (Lichens)	(D)	Cucurbita (Climbers)
	Ans: (C)						
(0)	Hints : Lichon is the indica		SO ₂ pollution				
69.	Sporopollenin is chemically		F (1) = 1 = (Durit		TI
	(A) Homopolysaccharide	(B)	Fatty substance	(C)	Protein	(D)	Heteropolysaccharide
	Ans: (B)	Ν.	II - Course house doors				
70	Hints : Sporopollenin is ch						
70.	During replication of DNA,		-				$2l \rightarrow 2l$
		(B)	$5' \rightarrow 3'$	(C)	$5' \rightarrow 5'$	(D)	$3' \rightarrow 3'$
	Ans: (B)	c			1		
71	Hints : Okazaki fragments a			$\rightarrow 3$,t	ney join after wards.		
71.	The chemical nature of chro	matin	is as follows :		NT 1 1 1 10 11 /	, .	
	(A) Nucleic acids	0	1.1.4	(B)	Nucleid acid & histone	-	
	(C) Nucleic acids, histone	e & no	n histone proteins	(D)	Nucleic acids & non-hi	stone j	proteins
	Ans: (C)	1	. 1	1.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4			
70	Hints : Chromatin = nuclei			nistone	proteins.		
72.	Choose the minor carp from $(A) = C$	the fo	llowing :		T 1 11		
	(A) Cyprinus carpio			(B)	Labeo calbasu	11	
	(C) Labeo bata			(D)	Ctenopharyngodon ide	ella	
	Ans: (C)	0.4	it aire is an all and 1				
72	Hints : <i>Laveo bata</i> is a min		-	owth rat	e slower.		
73.	The scientific name of Asia: (A) $A a dag accurti$	-	-		Andre to the last		Andre alle - l'anne
	(A) Aedes aegypti	(B)	Aedes albopictus	(C)	Aedes taeniorhynchus	(D)	Aeaes aidoimeatus

	Ans	: (B)						
	Hin	ts: Aedes albopictus is	an As	ian tiger mosquito.				
74.	The	size of filtration slits of (Glome	erulus :				
	(A)	10 nm	(B)	15 nm	(C)	20 nm	(D)	25 nm
	Ans	: (D)						
	Hin	ts: Average size of filter	ration	slit of glomerulus is 25 nm	l.			
75.	Orn	<i>ithorhynchus</i> is an exam	ple of	:				
	(A)	Dinosaur	(B)	Monotreme mammal	(C)	Marsupial mammal	(D)	Eutherian mammal
	Ans	: (B)						
		•		illed platypus) is monotren	ne.			
76.		pophage incertulus is an		•				
		Monophagus pest	(B)	Diphagus pest	(C)	Oligophagus pest	(D)	Polyphagus pest
		: (A)						
				is a monophagus pest that		• •		
77.		•		tors of man first time show	ved bip			
		Australopithecus	(B)	Cro-magnon	(C)	Java apeman	(D)	Peking man
		: (A)						
78.	-	phic levels in ecosystem	is for	med by :				
	(A)	only bacteria			(B)	only plants		
	(C)	only herbivores			(D)	Organisms linked in foo	od chai	in
		: (D)						
-				m is formed by organisms	linked	in the food chain.		
79.		life span of Honey bee					~	10 10 1
	. ,	3-4 months	(B)	1-2 months	(C)	6-7 months	(D)	10-12 months
		:(A)						
80.		ne of a gaseous plant ho						
	. /	IAA	(B)	Gibberellin	(C)	Ethylene	(D)	Abscisic acid
		.:(C)						
	Hin	ts: Ethylene is a gaseor	us pla	nt hormone that acts for ri	nening			

Hints : Ethylene is a gaseous plant hormone that acts for ripening.

BIOLOGY

SECTION-II

- Name one each specific plant hormone which perform the following exclusive physiological roles :
 a. Maintenance of apical dominance of shoots
 b. Internodal elongation
 - c. Enhancement of cell division

- d. Change of sex in flowers
- **A.** a) Apical dominance of shoot is maintained by Auxin
 - b) Internodal elongation by gibberellin
 - c) Enhancement of cell division by cytokinin
 - d) Change of sex in flowers G.A/Auxin/CK
- 2. Mention the function of the enzyme aconitase in Kreb's cycle

A. Citrate
$$\xrightarrow{Aconitase}, Fe^{2+}$$
 Cis aconitate
Cis aconitate $\xrightarrow{Aconitase}$ Isocitrate

3. Write down the scientific names of potato and tomato plants

А.	Name	Scientific name	family
	Patato	Solanum tuberosum	Solanaceae
	Tomato	Lycopersicum esculentum	Solanaceae

- 4. Why honey bee is regarded as social insect?
 - A. In bee hive labour based division in found, each having specific function. Queen bee lays eggs, while sterile females act as workers to perform all works of the hive including collection of nectar, formation of honey, rearing of young etc. Drone or male bees only act during the process of mating to provide spermatozoa
- 5. What are biopesticides ? Give two examples.
 - A. Biopestisides are those biological agents that are used for control of weeds, insects and pathogens
 - a) Nicotine-tobaco
 - b) Azadirachtin-Neem
- 6. What is Biosphere Reserve? State the main functions of biosphere reserve
 - A. Biosphere Reserve are multipurpose protected areas which are meant for preserving genetic diversity. It has 3 zones.
 - 1) Core or Natural zone
 - 2) Buffer zone
 - 3) Transition zone or Manupulation zone.
 - Function a) Restoration
 - b) Conservation
 - c) Development
 - d) Monitoring
 - e) Education and Research

- 7. What are stem cells ?
 - A. Stem cells are cells found in most, if not all, multicellular orginism. They are characterised by the ability to renew themselves through mitotic cell division and differentiating into diverse range of specialised cell types. Example : Bone marrow cells
- 8. How ADH increases Blood Pressure?
 - **A.** ADH hormone is associated with water absorption by kidney. Hyposecretion of ADH leads to low water absorption and volume of urine is increased so. vol of blood will decrease and finally BP will decrease. More ADH leads to increased blood volume and consequently high B.P. ADH also related to vasoconstriction leading to high B.P.
- 9. Name two end-products of β -oxidation of fatty acid
 - A. Two products of β Oxidation
 - a) Acetyl CoA
 - b) FADH,
 - c) NADH₂
- 10. Mention of transformation event of immature sperm to matured spermatozoa. State the specific location of Sertoli cell within Testis.
 - A. Cell membrane and nuclear membrane start dissociation. Golgi structure modifies to form acrosome cap to contain the enzymes. Mitochondria increases in number and arrange in the middle piece. Distal centriole acts as basal body to give rise to flagella.

<u>WB-JEE - 2009</u>

MATHEMATICS QUESTIONS & ANSWERS

1.	If C is the reflecton of A (2, 4) in x-axis and B is the reflection of C in y-axis, then AB is				
	(A) 20	(B) $2\sqrt{5}$	(C) $4\sqrt{5}$	(D) 4	
	Ans : (C) Hints : $A \equiv (2, 4)$	$C \equiv (2, -4); B \equiv (-2, -4)$		$\stackrel{\text{y}}{\uparrow} \stackrel{\text{A}}{\not} (2,4)$	
	$ AB = \sqrt{(2 - (-2))}$	$\overline{(-4)^2 + (4 - (-4))^2} = \sqrt{4^2 + 8^2}$		x	
	$=\sqrt{16+64} = \sqrt{8}$	$\overline{0} = \sqrt{16 \times 5} = 4\sqrt{5}$			
2.	The value of cos15	$r^{\circ}\cos 7\frac{1^{\circ}}{2}\sin 7\frac{1^{\circ}}{2}$ is		(-2, -4) C(2, -4)	
	(A) $\frac{1}{2}$	(B) $\frac{1}{8}$	(C) $\frac{1}{4}$	(D) $\frac{1}{16}$	
	Ans: (B)				
	Hints: cos15° cos	$57\frac{1}{2}^{0}\sin 7\frac{1}{2}^{0} = \frac{1}{2}\left(2\sin 7\frac{1}{2}^{0}\right)$	$\cos 7\frac{1}{2}^0 \bigg) . (\cos 15^\circ)$		
	$\frac{1}{2}(\sin 15^\circ)(\cos 15^\circ)$	$(a^{\circ}) = \frac{1}{4} (2\sin 15^{\circ}\cos 15^{\circ}) = \frac{1}{4}$	$\times \sin 30^0 = \frac{1}{8}$		
3.	The value of integr	al $\int_{-1}^{1} \frac{ x+2 }{x+2} dx$ is			
	(A) 1 Ans:(B)	(B) 2	(C) 0	(D) –1	
	Hints : $I = \int_{-1}^{1} \frac{ x }{x+1} x$	$\frac{2}{2}$ dx , x+2=v \Rightarrow dx=c	lv		
	$\therefore \mathbf{I} = \int_{1}^{3} \frac{ v }{v} dv = \int_{1}^{3} $	$\frac{v}{v} dv = \int_{1}^{3} dv = 2$			

4. The line y = 2t² intersects the ellipse
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 in real points if
(A) $|t| \leq 1$ (B) $|t| < 1$ (C) $|t| > 1$ (D) $|t| \geq 1$
Ans : (A)
Hints : $\frac{x^2}{9} + \frac{y^2}{4} = 1$; $y = 2t^2$
 $\frac{x^2}{9} + \frac{4t^4}{4} = 1 \Rightarrow \frac{x^2}{9} + t^4 = 1 \Rightarrow x^2 = 9(1 - t^4)$
 $x^2 \geq 0 \Rightarrow 9(1 - t^4) \geq 0 \Rightarrow t^4 - 1 \leq 0$
 $\Rightarrow (t^2 - 1)(t^2 + 1) \leq 0$
 $\Rightarrow t^2 - 1 \leq 0$ (: $t^2 + 1 > 0$)
 $\Rightarrow |t| \leq 1$
5. General solution of sin x + cosx = min $\{1, a^2 - 4a + 6\}$ is
(A). $\frac{n\pi}{2} + (-1)^n \frac{\pi}{4}$ (B) $2n\pi + (-1)^n \frac{\pi}{4}$ (C) $n\pi + (-1)^{n+1} \frac{\pi}{4}$ (D) $n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$
Ans : (D)
Hints : sin x + cos x = min $\{1, a^2 - 4a + 6\}$
 $a^2 - 4a + 6 = (a - 2)^2 + 2$: $\min_{a \in IR} \{1, a^2 - 4a + 6\} = 2$
 $\therefore \min_{a \in IR} \{1, a^2 - 4a + 6\} = \min\{1, 2\} = 1$
sinx + cosx = $1 \Rightarrow \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x = \frac{1}{\sqrt{2}}$
 $\Rightarrow sin \left(x + \frac{\pi}{4}\right) = sin \frac{\pi}{4}, \Rightarrow x + \frac{\pi}{4} = n\pi + (-1)^n \cdot \frac{\pi}{4}$
6. If A and B square matrices of the same order and AB = 31, then A⁻¹ is equal to

(A) 3B (B) $\frac{1}{3}B$ (C) $3B^{-1}$ (A)

(D) $\frac{1}{3}B^{-1}$

Ans: (B)

Hints : AB = 3I, A⁻¹.AB = 3.A⁻¹I
$$\Rightarrow$$
 B = 3A⁻¹ \Rightarrow A⁻¹ = $\frac{1}{3}$ B

The co-ordinates of the focus of the parabola described parametrically by $x = 5t^2 + 2$, y = 10t + 4 are 7. (A) (7,4) (B) (3.4) (C) (3,-4) (D) (-7,4) Ans: (A) Ans: (A) Hints: $x = 5t^2 + 2$; y = 10t + 4, $\left(\frac{y-4}{10}\right)^2 = \left(\frac{x-2}{5}\right)$ or, $(y-4)^2 = 20(x-2)$ (7, 4)(2, 4)**>** x For any two sets A and B, A - (A - B) equals 8. (A) B (B) A - B(C) $A \cap B$ (D) $A^{C} \cap B^{C}$ Ans: (C) **Hints**: $A - (A - B) = A - (A \cap B^{c}) = A \cap (A \cap B^{c})^{c} = A \cap (A^{c} \cup B) = (A \cap A^{c}) \cup (A \cap B) = A \cap B$ If $a = 2\sqrt{2}$, b = 6, $A = 45^{\circ}$, then 9. (A) no triangle is possible **(B)** one triangle is possible (C) two triangle are possible either no triangle or two triangles are possible (D) Ans: (A) **Hints:** $a = 2\sqrt{2}$; b = 6; $A = 45^{0}$ $\frac{a}{\sin A} = \frac{b}{\sin B} \Longrightarrow \sin B = \frac{b}{a} \sin A$ \Rightarrow sinB = $\frac{6}{2\sqrt{2}}$ sin45° = $\frac{3}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{3}{2} \Rightarrow$ No triangle is possible since sinB > 1 10. A Mapping from IN to IN is defined as follows : $f: IN \rightarrow IN$ $f(n) = (n+5)^2, n \in IN$ (IN is the set of natural numbers). Then (A) f is not one-to-one (B) f is onto (C) f is both one-to-one and onto (D) f is one-to-one but not onto Ans: (D) **Hints**: $f: IN \rightarrow IN$; $f(n) = (n+5)^2$ $(n_1 + 5)^2 = (n_2 + 5)^2$ $\implies (n_1 - n_2) (n_1 + n_2 + 10) = 0$ \Rightarrow n₁ = n₂ \rightarrow one-to-one There does not exist $n \in IN$ such that $(n + 5)^2 = 1$ Hence f is not onto

11. In a triangle ABC if $\sin A \sin B = \frac{ab}{c^2}$, then the triangle is (A) equilateral (B) isosceles Ans: (C)

(C) right angled

(D) obtuse angled

Hints:
$$\sin A \sin B = \frac{ab}{c^2}$$

$$\Rightarrow c^{2} = \frac{ab}{\sin A \sin B} = \left(\frac{a}{\sin A}\right) \left(\frac{b}{\sin B}\right)$$
$$\Rightarrow c^{2} = \left(\frac{c}{\sin C}\right)^{2} \Rightarrow \sin^{2}C = 1 \Rightarrow \sin C = 1 \Rightarrow C = 90^{\circ}$$

12.
$$\int \frac{\mathrm{dx}}{\sin x + \sqrt{3}\cos x}$$
 equals

(A)
$$\frac{1}{2}\ln\left|\tan\left(\frac{x}{2}-\frac{\pi}{6}\right)\right| + c$$
 (B) $\frac{1}{2}\ln\left|\tan\left(\frac{x}{4}-\frac{\pi}{6}\right)\right| + c$ (C) $\frac{1}{2}\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{6}\right)\right| + c$ (D) $\frac{1}{2}\ln\left|\tan\left(\frac{x}{4}+\frac{\pi}{3}\right)\right| + c$

where c is an arbitrary constant **Ans**: (C)

Hints:
$$\int \frac{dx}{\sin x + \sqrt{3} \cos x} = \int \frac{dx}{2\left(\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x\right)} = \frac{1}{2}\int \frac{dx}{\sin\left(x + \frac{\pi}{3}\right)}$$
$$= \frac{1}{2}\int \csc\left(x + \frac{\pi}{3}\right) dx = \frac{1}{2}\log\left|\tan\left(\frac{x}{2} + \frac{\pi}{6}\right)\right| + c$$
$$= \frac{1}{2}\ln\left|\tan\left(\frac{x}{2} + \frac{\pi}{6}\right)\right| + c$$
The value of $\left(1 + \cos\frac{\pi}{6}\right)\left(1 + \cos\frac{\pi}{3}\right)\left(1 + \cos\frac{2\pi}{3}\right)\left(1 + \cos\frac{7\pi}{6}\right)$ is

(A)
$$\frac{3}{16}$$
 (B) $\frac{3}{8}$ (C) $\frac{3}{4}$ (D) $\frac{1}{2}$

Ans: (A)

13.

Hints:
$$\left(1 + \cos\frac{\pi}{6}\right)\left(1 + \cos\frac{\pi}{3}\right)\left(1 + \cos\frac{2\pi}{3}\right)\left(1 + \cos\frac{7\pi}{6}\right)$$

= $\left(1 + \frac{\sqrt{3}}{2}\right)\left(1 + \frac{1}{2}\right)\left(1 - \frac{1}{2}\right)\left(1 - \frac{\sqrt{3}}{2}\right) = \left(1 - \frac{3}{4}\right)\left(1 - \frac{1}{4}\right) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$

14. If
$$P = \frac{1}{2} \sin^2 \theta + \frac{1}{3} \cos^2 \theta$$
 then
(A) $\frac{1}{3} \le P \le \frac{1}{2}$ (B) $P \ge \frac{1}{2}$ (C) $2 \le P \le 3$ (D) $-\frac{\sqrt{13}}{6} \le P \le \frac{\sqrt{13}}{6}$
Ans: (A)
Hints: $P = \frac{1}{2} \sin^2 \theta + \frac{1}{3} \cos^2 \theta = \frac{1}{2} \sin^2 \theta + \frac{1}{3} (1 - \sin^2 \theta) = \frac{1}{3} + \frac{1}{6} \sin^2 \theta$
 $0 \le \sin^2 \theta \le 1 \Rightarrow \frac{1}{3} \le \frac{1}{3} + \frac{1}{6} \sin^2 \theta \le \frac{1}{3} + \frac{1}{6}$
 $\Rightarrow \frac{1}{3} \le P \le \frac{1}{2}$
15. A positive acute angle is divided into two parts whose tangents are $\frac{1}{2}$ and $\frac{1}{3}$. Then the angle is
(A) $\frac{\pi}{4}$ (B) $\frac{\pi}{5}$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{6}$
Ans: (A)
Hints: Angle $\theta = \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \tan^{-1} \left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}} \right)$
 $= \tan^{-1} \left(\frac{5/6}{5/6} \right) = \tan^{-1}(1) = \pi/4$
16. If $f(x) = f(a - x) then \int_{0}^{\pi} xf(x) dx$ is equal to
(A) $\int_{0}^{\pi} f(x) dx$ (B) $\frac{a^2}{2} \int_{0}^{\pi} f(x) dx$ (C) $\frac{a}{2} \int_{0}^{\pi} f(x) dx$ (D) $-\frac{a}{2} \int_{0}^{\pi} f(x) dx$
Ans: (C)
Hints: $f(x) = f(a - x)$, $1 = \int_{0}^{\pi} xf(x) dx = \int_{0}^{\pi} (a - x)f(a - x) dx$
 $= \int_{0}^{\pi} (a - x)f(x) dx = a \int_{0}^{\pi} f(x) dx$

17. The value of
$$\int_{0}^{\infty} \frac{dx}{(x^{2}+4)(x^{2}+9)}$$
 is
(A) $\frac{\pi}{60}$ (B) $\frac{\pi}{20}$ (C) $\frac{\pi}{40}$ (D) $\frac{\pi}{80}$
Ans: (A)
Hints: $\int_{0}^{\infty} \frac{dx}{(x^{2}+4)(x^{2}+9)} = \int_{0}^{\pi/2} \frac{\sec^{2}\theta}{(\tan^{2}\theta+4)(\tan^{2}\theta+9)} d\theta$ (putting x = tanθ)
 $= \frac{1}{5} \int_{0}^{\pi/2} \frac{(9+\tan^{2}\theta)-(4+\tan^{2}\theta))\sec^{2}\theta}{(\tan^{2}\theta+4)(\tan^{2}\theta+9)} d\theta$
 $= \frac{1}{5} \int_{0}^{\pi/2} \frac{\sec^{2}\theta}{4+\tan^{2}\theta} d\theta - \int_{0}^{\pi/2} \frac{\sec^{2}\theta}{9+\tan^{2}\theta} d\theta$
 $= \frac{1}{5} \left[\frac{1}{2} \tan^{-1} \left(\frac{\tan\theta}{2} \right) \right]_{0}^{\pi/2} - \frac{1}{3} \tan^{-1} \left(\frac{\tan\theta}{3} \right) \right]_{0}^{\pi/2}$
 $= \frac{1}{5} \left[\frac{1}{2} \tan^{-1} \left(\frac{\tan\theta}{2} \right) \right]_{0}^{\pi/2} - \frac{1}{3} \tan^{-1} \left(\frac{\tan\theta}{3} \right) \right]_{0}^{\pi/2}$
 $= \frac{1}{5} \left[\frac{1}{2} \frac{\pi}{2} - \frac{1}{3} \frac{\pi}{2} \right] = \left(\frac{\pi}{2} \right) \left(\frac{1}{5} \right) \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{\pi}{2} \cdot \frac{1}{5} \cdot \frac{1}{6} = \frac{\pi}{60}$
18. If I₁ = $\int_{0}^{\pi/4} \sin^{2}x dx$ and I₂ = $\int_{0}^{\pi/4} \cos^{2}x dx$, then,
(A) I₁ = I₁ (B) I₁ < I₂ (C) I₁ > I₂ (D) I₂ = I₁ + $\pi/4$
Hints: I₁ = $\int_{0}^{\pi/4} \sin^{2}x dx$ and I₂ = $\int_{0}^{\pi/4} \cos^{2}x dx$ and I₁ = $\int_{0}^{\pi/4} \sin^{2}x dx$
I₁ $\left(0, \frac{\pi}{4} \right), \cos^{2}x > \sin^{2}x \therefore \int_{0}^{\pi/4} \cos^{2}x dx > \int_{0}^{\pi/4} \sin^{2}x dx$
I₂ > I₁ i.e. I₁ < I₂
19. The second order derivative of a sin⁴ twith respect to a cos⁴ t at t = $\frac{\pi}{4}$ is

(B) $\frac{1}{12a}$

(C)
$$\frac{4\sqrt{2}}{3a}$$
 (D) $\frac{3a}{4\sqrt{2}}$

(A) 2
(B)
$$\frac{1}{12a}$$

Ans: (C)
Hints: $y = a \sin^3 t$; $x = a \cos^3 t$
 $\frac{dy}{dt} = 3a \sin^2 t \cos t$; $\frac{dx}{dt} = -3 a \cos^2 t \sin t$
 $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3a \sin^2 t \cos t}{-3a \cos^2 t \sin t} = -\frac{\sin t}{\cos t} = -\tan t$

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-\tan t\right) = \frac{d}{dt}\left(-\tan t\right)\frac{dt}{dx}$$

$$= \left(-\sec^{2} t\right) \frac{1}{-3\cos^{2} t \sin t} = \frac{1}{+3\cos^{4} t \sin t}$$

$$\frac{d^{2}y}{dx^{2}} \Big|_{t=\pi/d} = \frac{1}{3a\left(\frac{1}{\sqrt{2}}\right)^{4}\left(\frac{1}{\sqrt{2}}\right)} = \frac{\left(\sqrt{2}\right)^{2}}{3a} = \frac{4\sqrt{2}}{3a}$$
20. The smallest value of 5 cos + 12 is
(A) 5 (B) 12 (C) 7 (D) 17
Ans : (C)
Hints : 5 cos + 12, -1 < cos 0 < 1
 $\Rightarrow -5 \le 5 \cos 0 \le 5$
 $\therefore 5 \cos 0 \ge 12 \ge -5 \cdot 12 \Rightarrow 5 \cos 0 + 12 \ge 7$
21. The general solution of the differential equation $\frac{dy}{dx} = e^{yxx} + e^{y-x}$ is
(A) $c^{-} = c^{-} - c^{-} + c$ (B) $c^{-} = c^{-} - c^{+} + c$ (C) $c^{-} = c^{+} + c^{-} + c$ (D) $c^{0} = c^{+} + c^{+} + c$ where c is an arbitrary constant
Ans : (B)
Hints : $(n + 1)(n + 2) \dots (n + r)$
 $= \frac{(n + r)!}{n!r!} r! = r! \stackrel{n+r}{n} C_{n}$
23. The integrating factor of the differential equation $x\log x \frac{dy}{dx} + y = 2\log x$ is given by
(A) $r!$ (B) $(r + 4)!$ (C) $(r + 1)!$ (D) $(r + 2)!$
Ans : (B)
Hints : $\frac{d^{2}}{dx^{2}} = \frac{1}{\sqrt{n}} \frac{d^{2}}{dx}$
Hints : $\frac{d^{2}}{dx} + \frac{1}{\sqrt{n}\sqrt{n}} = \frac{2}{x}$
 $H_{1} = \int \frac{1}{\sqrt{n}\sqrt{n}} \frac{dy}{dx} = \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}}$
 $H_{1} = \frac{r}{r} \frac{1}{\sqrt{n}\sqrt{n}} \frac{dy}{dx}$
 $= e^{\log(\log x)} = \log x$

24. If
$$x^2 + y^2 = 1$$
 then
(A) $yy'' - (2y')^2 + 1 = 0$ (B) $yy'' + (y')^2 + 1 = 0$ (C) $yy'' - (y')^2 - 1 = 0$ (D) $yy'' + (2y')^2 + 1 = 0$
Ans: (B)
Hints: $2x + 2yy = 0$
 $1 + yy'' + (y')^2 = 0$
25. If $c_0, c_1, c_2, \dots, c_n$ denote the co-efficients in the expansion of $(1 + x)^n$ then the value of $c_1 + 2c_2 + 3c_3 + \dots + nc_n$ is
(A) $n2^{2^n}$ (B) $(n + 1)2^{n^{-1}}$ (C) $(n + 1)2^n$ (D) $(n + 2)2^{n^{-1}}$
Ans. (A)
Hints: $(1 + x)^n = c_0 + xc_1 + x^2c_2 + \dots + x^nc_n$
 $n(1 + x)^{n-1} = c_1 + 2c_2 + 3c_2 + \dots + nc_n$
26. A polygon has 44 diagonals. The number of its sides is
(A) 10 (B) 11 (C) 12 (D) 13
Ans: (B)
Hints: $c_2 - n = 44$
 $n(n-3) = 88$
 $n(n-3) = 11 \times 8$
 $n = 11$
27. If a, β be the roots of $x^2 - a(x - 1) + b = 0$, then the value of $\frac{1}{a^2 - aa} + \frac{1}{\beta^2 - a\beta} + \frac{2}{a + b}$
(A) $\frac{4}{a + b}$ (B) $\frac{1}{a + b}$ (C) 0 (D) -1
Ans: (C)
Hints: $x^2 - ax = a + 3$ $\alpha\beta = a + b$
 $\alpha^2 - a\alpha = -(a + b)$

28. The angle between the lines joining the foci of an ellipse to one particular extremity of the minor axis is 90°. The eccentricity of the ellipse is

(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{\sqrt{3}}$ (C) $\sqrt{\frac{2}{3}}$ (D) $\sqrt{\frac{1}{2}}$

 $-\frac{1}{a+b} - \frac{1}{a+b} + \frac{2}{a+b} = 0$
Ans: (D)
Hints:
$$\frac{\pi}{de} = \tan \frac{\pi}{4}$$

 $b = ae \Rightarrow \frac{b}{a} = e$
 $e^{2} = 1 - \frac{b^{2}}{a^{2}}$
(0, b)
 $e^{2} = 1 - \frac{b^{2}}{a^{2}}$
(0, -b)
 $e^{2} = 1 - e^{2}$
(0, -b)
 $e^{2} = \frac{1}{2} \Rightarrow e = \frac{1}{\sqrt{2}}$
29. The order of the differential equation $\frac{d^{2}y}{dx^{2}} = \sqrt{1 - (\frac{dy}{dx})^{2}}$ is
(A) 3 (B) 2 (C) 1 (D) 4
Ans: (B)
30. The sum of all real roots of the equation $|x - 2|^{2} + |x - 2| - 2 = 0$
(A) 7 (B) 4 (C) 1 (D) 5
Ans: (B)
Hints: Put $|x - 2| = 0$
 $(y - 1)(y + 2) = 0$
 $y = 1$ $y = -2$
 $|x - 2| = 1$ (Not possible)
 $x - 2 = 1$
 $x = 2 \pm 1$
 $x = 3, 1$
Sum = 4
31. If $\int_{-1}^{4} f(x)dx = 4$ and $\int_{2}^{4} (3 - f(x))dx = 7$ then the value of $\int_{-1}^{2} f(x)dx$
(A) -2 (B) 3 (C) 4 (D) 5
Ans: (D)
Hints: $\int_{1}^{4} f(x)dx = 4$
 $3(4 - 2) - \frac{4}{2} f(x)dx = 7$
 $\frac{4}{2} f(x)dx = -1$
 $\frac{2}{1} f(x)dx = \frac{4}{1} f(x)dx + \frac{2}{1} f(x)dx = 4 - \frac{4}{1} f(x)dx = 4 - (-1) = 5$

(A) 7 (B) 8 (C) 6 (D) 16 where N is a set of natural numbers Ans: (A) **Hints**: $2^{3n} = (8)^n = (1+7)^n = 1 + {}^nC_17 + {}^nC_27^2 \dots + {}^nC_n7^n$ $2^{3n} - 1 = 7[{}^{n}C_{1} + {}^{n}C_{2}7 + \dots]$ The Rolle's theorem is applicable in the interval $-1 \le x \le 1$ for the function 33. (A) f(x) = x(B) $f(x) = x^2$ (C) $f(x) = 2x^3 + 3$ (D) f(x) = |x|Ans: (B) **Hints:** $f(x) = x^2$ and f(1) = f(-1) for f(x) = |x| but at x = 0, f(x) = |x| is not differentiable hence (B) is the correct option. f(1) = 1 = f(-1)34. The distance covered by a particle in t seconds is given by $x = 3 + 8t - 4t^2$. After 1 second velocity will be (A) 0 unit/second (B) 3 units/second (C) 4 units/second (D) 7 units/second Ans: (A) **Hints :** $v = \frac{dx}{dt} = 8 - 8t$ t = 1, v = 8 - 8 = 0If the co-efficients of x^2 and x^3 in the expansion of $(3 + ax)^9$ be same, then the value of 'a' is 35. (A) $\frac{3}{7}$ (B) $\frac{7}{3}$ (C) $\frac{7}{9}$ (D) $\frac{9}{7}$ Ans:(D) Hints: $(3 + ax)^9 = {}^9C_03^9 + {}^9C_13^8(ax) + {}^9C_23^7(ax)^2 + {}^9C_33^6(ax)^3$ ${}^9C_23^7a^2 = {}^9C_33^6a^3$ $\frac{9}{7} = a$ The value of $\left(\frac{1}{\log_3 12} + \frac{1}{\log_4 12}\right)$ is 36. (B) $\frac{1}{2}$ (A) 0 (C) 1 (D) 2 Ans: (C) **Hints**: $\log_{12}3 + \log_{12}4 = \log_{12}12 = 1$ 37. If $x = \log_a bc$, $y = \log_b ca$, $z = \log_c ab$, then the value of $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$ will be (A) x + y + z(B) 1 (C) ab + bc + ca(D) abc Ans: (B) **Hints**: $1 + x = \log_a a + \log_a bc = \log_a abc$ $\frac{1}{1+x} = \log_{abc} a$, Similarly $\frac{1}{1+v} = \log_{abc} b$ $\frac{1}{1+z} = \log_{abc} c, \text{ Ans.} = \log_{(abc)} abc = 1$

32.

For each $n \in N$, $2^{3n} - 1$ is divisible by

- 38. Using binomial theorem, the value of (0.999)³ correct to 3 decimal places is (A) 0.999 (B) 0.998 (C) 0.997 (D) 0.995 Ans: (C) **Hints**: ${}^{3}C_{0} - {}^{3}C_{1}(.001) + {}^{3}C_{2}(.001)^{2} - {}^{3}C_{3}(.001)^{3}$ = 1 - .003 + 3(.000001) - (.000000001) = 0.99739. If the rate of increase of the radius of a circle is 5 cm/.sec., then the rate of increase of its area, when the radius is 20 cm, will be (D) 400π (A) 10π (B) 20π (C) 200π Ans: (C) **Hints :** $A = \pi r^2$ $\frac{dr}{dt} = 5$ $\frac{\mathrm{dA}}{\mathrm{dt}} = 2\pi r \frac{\mathrm{dr}}{\mathrm{dt}} = 2\pi 20(5)$ $= 200 \,\pi$ The quadratic equation whose roots are three times the roots of $3ax^2 + 3bx + c = 0$ is 40. (A) $ax^2 + 3bx + 3c = 0$ (B) $ax^2 + 3bx + c = 0$ (C) $9ax^2 + 9bx + c = 0$ (D) $ax^2 + bx + 3c = 0$ Ans: (A) **Hints:** $3a\alpha^2 + 3b\alpha + c = 0$ $x = 3\alpha \Longrightarrow \alpha = \frac{x}{3}$ $3a\frac{x^2}{9} + 3b.\frac{x}{3} + c = 0$ $ax^2 + 3bx + 3c = 0$ Angle between $y^2 = x$ and $x^2 = y$ at the origin is 41. (A) $2\tan^{-1}\left(\frac{3}{4}\right)$ (B) $\tan^{-1}\left(\frac{4}{3}\right)$ (C) $\frac{\pi}{2}$ (D) Ans : (C) Hins: Angle between axes (since co-ordinate axes are the tangents for the given curve). In triangle ABC, a = 2, b = 3 and $sin A = \frac{2}{3}$, then B is equal to 42. (A) 30° (B) 60° (C) 90° (D) 120° Ans: (C) **Hints:** $\frac{a}{\sin A} = \frac{b}{\sin B}$ $\sin B = \frac{b}{a} \cdot \sin A = \frac{3}{2} \cdot \frac{2}{3} = 1$
 - $B = \frac{\pi}{2}$

43.
$$\int_{0}^{1000} e^{x-[x]} \text{ is equal to}$$
(A) $\frac{e^{1000}-1}{e-1}$ (B) $\frac{e^{1000}-1}{1000}$ (C) $\frac{e-1}{1000}$ (D) $1000 (e-1)$
Ans : (D)
Hins : $I = 1000 \int_{0}^{1} e^{x-[x]}$
 $= 1000 \int_{0}^{1} e^{x} dx = 1000 (e^{x})_{0}^{1} = 100 (e-1)$
Period of function is 1

44. The coefficient of x^n , where n is any positive integer, in the expansion of $(1 + 2x + 3x^2 + \infty)^{\frac{1}{2}}$ is

(A) 1 (B)
$$\frac{n+1}{2}$$
 (C) $2n+1$ (D) $n+1$

Ans: (A)

$$s = 1 + 2x + 3x^{2} \dots \infty$$

Hints:
$$\frac{xs = x + 2x^{2} + \dots \infty}{s(1 - x) = 1 + x + x^{2} + \dots \infty}$$
$$s = \frac{1}{(1 - x)^{2}}$$
$$f(x) = \frac{1}{1 - x}, \quad f(x) = (1 - x)^{-1} = 1 + x + x^{2} + x^{3} \dots \infty = 1$$

45. The circles $x^2 + y^2 - 10x + 16 = 0$ and $x^2 + y^2 = a^2$ intersect at two distinct points if (A) a < 2 (B) 2 < a < 8 (C) a > 8 (D) a = 2Ans. (B) Hints: $C_1(5, 0)$ $r_1 = \sqrt{25 - 16} = 3$ $C_2(0, 0)$ $r_2 = a$ $r_1 \& r_2 < C_1C_2 < r_1 + r_2$ $|a - 3| < \sqrt{25} < a + 3$ |a - 3| < 5 < a + 3 -5 < a - 3 < 5 2 < a-2 < a < 8

2 < a < 8

46.
$$\int \frac{\sin^{-1} x}{\sqrt{1-x^{2}}} dx \text{ is equal to}$$
(A) $\log(\sin^{-1} x) + c$ (B) $\frac{1}{2}(\sin^{-1} x)^{2} + c$ (C) $\log\left(\sqrt{1-x^{2}}\right) + c$ (D) $\sin(\cos^{+} x) + c$
where *c* is an arbitrary constant
Ans: (B)
Hints: $I = \int tdt$ $\sin^{-1} x = t$
 $= \frac{1}{2}t^{2} + c$ $\frac{1}{\sqrt{1-x^{2}}}dx = dt$
 $= \frac{1}{2}(\sin^{-1} x)^{2} + c$
47. The number of points on the line $x + y = 4$ which are unit distance apart from the line $2x + 2y = 5$ is
(A) 0 (B) 1 (C) 2 (D) Infinity
Ans: (A)
Hints: $x + y = 4$
 $x + y = \frac{5}{2}$
 $PQ = \frac{4 - \frac{5}{\sqrt{2}}}{\sqrt{2}} = \frac{3}{2\sqrt{2}} = \frac{3\sqrt{2}}{4}$
48. Simplest form of $\frac{2}{\sqrt{2} + \sqrt{2} + \sqrt{2} + 2\cos 4x}$ is
(A) $\sec \frac{x}{2}$ (B) $\sec x$ (C) $\csc x$ (D) 1
Ans: (A)
Hints: $\frac{2}{\sqrt{2} + \sqrt{2} + \sqrt{2} \cos^{2} 2x} = \frac{2}{\sqrt{2} + \sqrt{2} + 2\cos 2x} = \frac{2}{\sqrt{2} + \sqrt{2} 2\cos^{2} x}$
 $= \frac{2}{\sqrt{2} + 2\cos x} = \frac{2}{2\cos \frac{x}{2}} = \sec \frac{x}{2}$
49. If $y = \tan^{-1}\sqrt{\frac{1-\sin x}{1+\sin x}}$, then the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{6}$ is
(A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) 1 (D) -1
Ans: (A)

Hints: $y = \tan^{-1} \sqrt{\frac{1 - \cos\left(\frac{\pi}{2} - x\right)}{1 + \cos\left(\frac{\pi}{2} - x\right)}}$ $= \tan^{-1} \sqrt{\frac{2\sin^2\left(\frac{\pi}{4} - \frac{x}{2}\right)}{2\cos^2\left(\frac{\pi}{4} - \frac{x}{2}\right)}} = \tan^{-1} \left| \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \right| = \left(\frac{\pi}{4} - \frac{x}{2}\right)$ $\frac{dy}{dx} = -\frac{1}{2}$

- 50. If three positive real numbers a, b, c are in A.P. and abc = 4 then minimum possible value of b is
 - (A) $2^{\frac{3}{2}}$ (B) $2^{\frac{3}{2}}$ (C) $2^{\frac{1}{3}}$ (D) $2^{\frac{5}{2}}$ Ans: (B) Hints: (b - d) b (b + d) = 4 $(b^2 - d^2) b = 4$ $b^3 = 4 + d^2 b$ $b^3 \ge 4 \Rightarrow b \ge (2)^{\frac{2}{3}}$

51. If $5\cos 2\theta + 2\cos^2 \frac{\theta}{2} + 1 = 0$, when $(0 < \theta < \pi)$, then the values of θ are :

(A)
$$\frac{\pi}{3} \pm \pi$$
 (B) $\frac{\pi}{3}, \cos^{-1}\left(\frac{3}{5}\right)$ (C) $\cos^{-1}\left(\frac{3}{5}\right) \pm \pi$ (D) $\frac{\pi}{3}, \pi - \cos^{-1}\left(\frac{3}{5}\right)$

Ans: (D)

Hints: $5\cos 2\theta + 1 + \cos \theta + 1 = 0$

$$5(2\cos^{2}\theta - 1) + \cos\theta + 2 = 0$$

$$10\cos^{2}\theta + \cos\theta - 3 = 0$$

$$(5\cos\theta + 3)(2\cos\theta - 1) = 0$$

$$\cos\theta = \frac{1}{2}$$

$$\theta = \frac{\pi}{3}$$

$$\cos\theta = \frac{\pi}{3}$$

$$\cos\theta = -\frac{3}{5}$$

$$\theta = \cos^{-1}\left(-\frac{3}{5}\right)$$

$$= \pi - \cos^{-1}\left(\frac{3}{5}\right)$$

52. For any complex number *z*, the minimum value of |z| + |z-1| is

(A) 0 (B) 1 (C) 2 (D) -1 Ans: (B) Hints: 1 = |z - (z - 1)| $1 \le |z| + |z - 1|$ 53. For the two circles $x^2 + y^2 = 16$ and $x^2 + y^2 - 2y = 0$ there is / are

(A) one pair of common tangents

(B) only one common tangent (D) no common tangent

(C) three common tangents Ans: (D)

Hints: $C_1(0,0)$

- $r_1 = 4$ $r_2 = \sqrt{0+1} = 1$ $C_{2}(0,1)$ $C_1C_2 = \sqrt{0+1} = 1$ $r_1 - r_2 = 3$ $C_1 C_2 < r_1 - r_2$
- If C is a point on the line segment joining A (-3, 4) and B (2, 1) such that AC = 2BC, then the coordinate of C is 54.

(A)
$$\left(\frac{1}{3}, 2\right)$$
 (B) $\left(2, \frac{1}{3}\right)$ (C) $(2, 7)$ (D) $(7, 2)$

Ans: (A)

Hints:

A(-3, 4) C B(2, 1) 2 1

 $C\left(\frac{4-3}{3},\frac{2+4}{3}\right)$ $C\left(\frac{1}{3},2\right)$

If *a*, *b*, *c* are real, then both the roots of the equation (x - b)(x - c) + (x - c)(x - a) + (x - a)(x - b) = 0 are always 55. (C) real (A) positive (B) negative (D) imaginary Ans: (C)

Hints: $3x^2 - 2x(a+b+c) + ab + bc + ca = 0$

$$D = 4(a+b+c)^{2} - 4.3(ab+bc+ca)$$

= $4(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
= $2[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]$
= $[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]$
>0

The sum of the infinite series $1 + \frac{1}{2!} + \frac{1.3}{4!} + \frac{1.3.5}{6!} + \dots$ is 56.

(A) *e* (B) e^2 (C) \sqrt{e} (D) Ans: (C)

Hints:
$$T_n = \frac{1.3.5...(2n-1)}{2n}$$

$$= \frac{\left| \frac{2n}{2n(2.4...2n)} \right|}{\left| \frac{2n}{2^{n} \left| \frac{n}{2} \right|} \right|}$$
$$= \frac{x^{n}}{\left| \frac{n}{2} \right|}$$
$$\frac{1}{2} = x$$
$$\therefore \frac{x}{\left| \frac{1}{2} \right|} + \frac{x^{2}}{\left| \frac{2}{2} \right|} + \dots = e^{x} - 1$$
$$\exp = 1 + e^{x} - 1 = e^{x} = e^{\frac{1}{2}}$$

57. The point (-4, 5) is the vertex of a square and one of its diagonals is 7x - y + 8 = 0. The equation of the other diagonal is (A) 7x - y + 23 = 0 (B) 7y + x = 30 (C) 7y + x = 31 (D) x - 7y = 30Ans: (C)

Ans: (C)
Hints:
$$x + 7y = k$$
(1)
 $-4 + 35 = k$
 $31 = k$
 $x + 7y - 31 = 0$
A
B (-4, 5)

58. The domain of definition of the function $f(x) = \sqrt{1 + \log_e(1-x)}$ is

(A)
$$-\infty < x \le 0$$
 (B) $-\infty < x \le \frac{e-1}{e}$ (C) $-\infty < x \le 1$ (D) $x \ge 1-e$

Ans: (B)

Hints : $1 - x > 0 \Longrightarrow x < 1$

$$1 + \log_{e} (1 - x) \ge 0$$
$$\log_{e} (1 - x) \ge -1 \Longrightarrow 1 - x \ge e^{-1}$$
$$x \le 1 - \frac{1}{e}$$
$$x \le \frac{e - 1}{e}$$

59. For what value of *m*, $\frac{a^{m+1} + b^{m+1}}{a^m + b^m}$ is the arithmetic mean of '*a*' and '*b*'?

(A) 1 (B) 0 (C) 2 (D) None **Ans : (B) Hints :** $\frac{a^{m+1} + b^{m+1}}{a^m + b^m} = \frac{a+b}{2}$ m = 0 Satisfy.

60. The value of the limit
$$\lim_{x\to 1} \frac{\sin(e^{k-1}-1)}{\log x}$$
 is
(A) 0 (B) e (C) $\frac{1}{e}$ (D) 1
Ans: (D)
Hints: $\lim_{x\to 0} \frac{\sin(e^{k}-1)}{\log(1+h)}$ Put $x = 1+h$
 $= \lim_{x\to 0} \frac{\sin(e^{k}-1)}{(e^{k}-1)} \cdot \frac{(e^{k}-1)}{h} \cdot \frac{1}{\log(1+h)}$
 $= \lim_{x\to 0} \frac{\sin(e^{k}-1)}{(e^{k}-1)} \cdot \frac{(e^{k}-1)}{h} \cdot \frac{1}{\log(1+h)}$
 $= 1.1.1$
 $= 1$
61. Let $f(x) = \frac{\sqrt{x+3}}{x+1}$ then the value of $\frac{14}{x \to 3-0} f(x)$ is
(A) 0 (B) does not exist (C) $\frac{1}{2}$ (D) $-\frac{1}{2}$
Ans: (B)
Hints: Because on left hand side of 3 function is not defined.
62. $f(x) = x+|x|$ is continuous for
(A) $x \in (-\infty,\infty)$ (B) $x \in (-\infty,\infty) - (0)$ (C) only $x > 0$ (D) no value of x
Ans: (A)
Hints: $f(x) = \frac{2x: x \ge 0}{0: x < 0}$
 $y = 0$
(C) $\frac{1}{2}$
(C) $\frac{a}{b}$ (D) $\frac{b}{a}$
Ans: (B)
Hints: Let $\frac{1}{2}\cos^{-1}(\frac{a}{b}) = 0$, then $\cos 2\theta = \frac{a}{b}$

$$\tan\left[\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right] + \tan\left[\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right]$$
$$= \tan\left(\frac{\pi}{4} + \theta\right) + \tan\left(\frac{\pi}{4} - \theta\right) = 2\left(\frac{1 + \tan^2\theta}{1 - \tan^2\theta}\right) = \frac{2}{\cos 2\theta} = \frac{2}{\frac{a}{b}} = \frac{2b}{a}$$

64. If $i = \sqrt{-1}$ and *n* is a positive integer, then $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is equal to (A) 1 (B) *i* (C) *iⁿ* (D) 0 Ans: (D) Hints: $i^n(1+i+i^2+i^3) = i^n(1+i-1-i) = 0$

65.
$$\int \frac{dx}{x(x+1)}$$
 equals

(A)
$$\ln \left| \frac{x+1}{x} \right| + c$$
 (B) $\ln \left| \frac{x}{x+1} \right| + c$ (C) $\ln \left| \frac{x-1}{x} \right| + c$ (D) $\ln \left| \frac{x-1}{x+1} \right| + c$

where c is an arbitrary constant.

Ans: (B)

Hints:
$$\int \frac{dx}{x(x+1)} = \int \left(\frac{1}{x} - \frac{1}{x+1}\right) dx = \int \frac{dx}{x} - \int \frac{dx}{x+1} = \ln|x| - \ln|x+1| + C = \ln\left|\frac{x}{x+1}\right| + C$$

66. If a, b, c are in GP. (a > 1, b > 1, c > 1), then for any real number x (with $x > 0, x \neq 1$), $\log_a x$, $\log_b x$, $\log_c x$ are in (A) G.P. (B) A.P. (C) H.P. (D) G.P. but not in H.P. Ans: (C)

Hints : *a*, *b*, *c* are in G.P.

 $\Rightarrow \log_x a, \log_x b, \log_x c$ are in A.P.

$$\Rightarrow \frac{1}{\log_x a}, \frac{1}{\log_x b}, \frac{1}{\log_x c} \text{ are in H.P.}$$

 $\Rightarrow \log_a x, \log_b x, \log_c x \text{ are in H.P.}$

67. A line through the point A (2, 0) which makes an angle of 30° with the positive direction of *x*-axis is rotated about A in clockwise direction through an angle 15°. Then the equation of the straight line in the new position is

(A)
$$(2-\sqrt{3})x + y - 4 + 2\sqrt{3} = 0$$

(B) $(2-\sqrt{3})x - y - 4 + 2\sqrt{3} = 0$
(C) $(2-\sqrt{3})x - y + 4 + 2\sqrt{3} = 0$
(D) $(2-\sqrt{3})x + y + 4 + 2\sqrt{3} = 0$

Ans: (B)

Hints : Equation of line in new position :

$$y - 0 = \tan 15^{\circ} (x - 2)$$
$$\Rightarrow y = \left(\frac{\sqrt{3} - 1}{\sqrt{3} + 1}\right)(x - 2)$$
$$\Rightarrow y = \frac{\left(\sqrt{3} - 1\right)^2}{2}(x - 2)$$

$$\Rightarrow 2y = (4 - 2\sqrt{3})(x - 2)$$
$$\Rightarrow y = (2 - \sqrt{3})(x - 2)$$
$$\Rightarrow (2 - \sqrt{3})x - y - 4 + 2\sqrt{3} = 0$$

68. The equation $\sqrt{3} \sin x + \cos x = 4$ has (A) only one solution (B) two solutions **Ans**: (D)

(C) infinitely many solutions (D) no solution

2 = 0

Hints :
$$\sqrt{3}\sin x + \cos x = 2\sin\left(x + \frac{\pi}{6}\right) \le 2$$
. Therefore

 $\sqrt{3}\sin x + \cos x = 4$ cannot have a solution

69. The slope at any point of a curve y = f(x) is given by $\frac{dy}{dx} = 3x^2$ and it passes through (-1, 1). The equation of the curve is (A) $y = x^3 + 2$ (B) $y = -x^3 - 2$ (C) $y = 3x^3 + 4$ (D) $y = -x^3 + 2$

Hints: $\frac{dy}{dx} = 3x^2 \Rightarrow \int dy = \int 3x^2 dx \Rightarrow y = x^3 + C$ Curve passes through (-1, 1). Hence $1 = -1 + C \Rightarrow C = 2$

$$\therefore y = x^3 + 2$$

70. The modulus of $\frac{1-i}{3+i} + \frac{4i}{5}$ is

(A)
$$\sqrt{5}$$
 unit (B) $\frac{\sqrt{11}}{5}$ unit (C) $\frac{\sqrt{5}}{5}$ unit (D) $\frac{\sqrt{12}}{5}$ unit

Ans: (C)
Hints:
$$\frac{1-i}{3+i} + \frac{4i}{5} = \frac{5-5i+4i(3+i)}{5(3+i)} = \frac{5-5i+12i-4}{5(3+i)} = \frac{1+7i}{5(3+i)} = \frac{(1+7i)(3-i)}{5(9+1)}$$

 $= \frac{3+21i-i+7}{5\times10} = \frac{10+20i}{5\times10} = \frac{1+2i}{5}$
 \therefore Modulus $= \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = \sqrt{\frac{1}{25} + \frac{4}{25}} = \sqrt{\frac{1}{5}} = \frac{\sqrt{5}}{5}$ unit
The equation of the tangent to the conic $x^2 - y^2 - 8x + 2y + 11 = 0$ at (2, 1) is
(A) $x + 2 = 0$ (B) $2x + 1 = 0$ (C) $x + y + 1 = 0$ (D) $x - 4x$
Ans: (D)

Hints: Equation of tangent at (x_1, y_1) is $xx_1 - yy_1 - 4(x + x_1) + (y + y_1) + 11 = 0$ $x_1 = 2; y = 1$ ∴ Equation of tangent is 2x - y - 4(x + 2) + (y + 1) + 11 = 0

or
$$-2x - 8 + 12 = 0$$

71.

or -2x+4=0or 2x=4or x=2or x-2=0

72. A and B are two independent events such that $P(A \cup B') = 0.8$ and P(A) = 0.3. The P(B) is

(A)
$$\frac{2}{7}$$
 (B) $\frac{2}{3}$ (C) $\frac{3}{8}$ (D) $\frac{1}{8}$

Hints: Let P(B) = x

 $P(A \cup B') = P(A) + P(B') - P(A \cap B') = 0.3 + (1 - x) - 0.3(1 - x)$

or 0.8 = 1 - x + 0.3xor 1 - 0.7x = 0.8or 0.7x = 0.2

 0.1×-0.2

or
$$x = \frac{2}{7}$$

73. The total number of tangents through the point (3, 5) that can be drawn to the ellipses $3x^2 + 5y^2 = 32$ and $25x^2 + 9y^2 = 450$ is (A) 0 (B) 2 (C) 3 (D) 4 Ans: (C)

Hints : (3, 5) lies outside the ellipse $3x^2 + 5y^2 = 32$ and on the ellipse $25x^2 + 9y^2 = 450$. Therefore there will be 2 tangents for the first ellipse and one tangent for the second ellipse.

74. The value of
$$\lim_{n \to \infty} \left[\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + n^2} \right]$$
 is
(A) $\frac{\pi}{4}$ (B) $\log 2$ (C) zero (D)1
Ans: (A)
Hints: $\lim_{n \to \infty} \left[\frac{n}{2} + \frac{n}{2} + \frac{n}{2} + \dots + \frac{n}{2} \right]$

$$\lim_{n \to \infty} \left[n^2 + 1^2 \quad n^2 + 2^2 \right] = \lim_{n \to \infty} \frac{1}{n^2 + r^2} = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^n \frac{1}{1 + \left(\frac{r}{n}\right)^2} = \int_0^1 \frac{dx}{1 + x^2} = \left[\tan^{-1} x \right]_0^1 = \frac{\pi}{4}$$

75. A particle is moving in a straight line. At time *t*, the distance between the particle from its starting point is given by $x = t - 6t^2 + t^3$. Its acceleration will be zero at

(A) t = 1 unit time (B) t = 2 unit time (C) t = 3 unit time (D) t = 4 unit time **Ans: (B)**

Hints: $x = t - 6t^2 + t^3$ $\frac{dx}{dt} = 1 - 12t + 3t^2$ $\frac{d^2x}{dt^2} = -12 + 6t$ Acceleration = $\frac{d^2x}{dt^2}$

 $\therefore \text{Acceleration} = 0 \Longrightarrow 6t - 12 = 0 \Longrightarrow t = 2$

76. Three numbers are chosen at random from 1 to 20. The probability that they are consecutive is

(A)
$$\frac{1}{190}$$
 (B) $\frac{1}{120}$ (C) $\frac{3}{190}$ (D) $\frac{5}{190}$
Ans: (C)
Hints: Total number of cases; ${}^{20}C_3 = \frac{20 \times 19 \times 18}{2 \times 3} = 20 \times 19 \times 3 = 1140$
Total number of favourable cases = 18
 \therefore Required probability $= \frac{18}{1140} = \frac{3}{190}$
77. The co-ordinates of the foot of the perpendicular from (0, 0) upon the line $x + y = 2$ are
(A) $(2, -1)$ (B) $(-2, 1)$ (C) $(1, 1)$ (D) $(1, 2)$
Ans: (C)
Hints: Let P be the foot of the perpendicular. P lies on a line perpendicular to $x + y = 2$.
 \therefore Equation of the line on which P lies is of the form $: x - y + k = 0$
But this line passes through (0, 0).
 $\therefore k = 0$
Hence, co-ordinates of P may be obtained by solving $x + y = 2$ and $y = x$
 $\therefore x = 1, y = 1$
Hence, P = $(1, 1)$
78. If A the product of the perpendicular to the pe

78. If A is a square matrix then,

(A) $A + A^{T}$ is symmetric (B) AA^{T} is skew - symmetric (C) $A^{T} + A$ is skew-symmetric (D) $A^{T}A$ is skew symmetric **Ans**: (A)

(D) x = 1

Hints:
$$(A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = A + A^{T}$$

79. The equation of the chord of the circle $x^2 + y^2 - 4x = 0$ whose mid point is (1, 0) is (A) y=2 (B) y=1 (C) x=2Ans: (D)

Equation : x = 1

80. If $A^2 - A + I = 0$, then the inverse of the matrix A is (A) A - I (B) I - A (C) A + I (D) A Ans: (B) Hints: $A^2 - A + I = 0 \Rightarrow A^2 = A - I \Rightarrow A^2 \cdot A^{-1} = A \cdot A^{-1} - A^{-1} \Rightarrow A = I - A^{-1} \Rightarrow A^{-1} = I - A$

MATHEMATICS

SECTION-II

1. A train moving with constant acceleration takes t seconds to pass a certain fixed point and the front and back end of the train pass the fixed point with velocities u and v respectively. Show that the length of the trai is $\frac{1}{2}(u + v)t$.

A.
$$v = u + at$$

 $a = \frac{v - u}{t}$
 $v^2 = u^2 + 2aS$
 $\frac{v^2 - u^2}{2a} = S \Longrightarrow S = \frac{(v + u)(v - u)}{2a} = \frac{at(v + u)}{2a} = \frac{u + v}{2}t$
Show that

$$\frac{\sin\theta}{\cos 3\theta} + \frac{\sin 3\theta}{\cos 9\theta} + \frac{\sin 9\theta}{\cos 27\theta} = \frac{1}{2}(\tan 27\theta - \tan\theta)$$

A.
$$T_1 = \frac{2\sin\theta}{2\cos3\theta} \cdot \frac{\cos\theta}{\cos\theta} = \frac{\sin2\theta}{2\cos3\theta\cos\theta}$$

$$= \frac{1}{2} \cdot \frac{\sin(3\theta - \theta)}{\cos 3\theta \cdot \cos \theta}$$
$$T_1 = \frac{1}{2} (\tan 3\theta - \tan \theta)$$
$$T_2 = \frac{1}{2} (\tan 9\theta - \tan 3\theta)$$
$$T_3 = \frac{1}{2} (\tan 27\theta - \tan 9\theta)$$

2.

$$T_1 + T_2 + T_3 = \frac{1}{2}(\tan 27\theta - \tan \theta)$$

3. If $x = \sin t$, $y = \sin 2t$, prove that

$$(1 - x^{2})\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + 4y = 0$$

A. $y = \sin(2\sin^{-1}x)$
 $\frac{dy}{dx} = \cos(2\sin^{-1}x) \cdot \frac{2}{\sqrt{1 - x^{2}}}$
 $\sqrt{1 - x^{2}}\frac{dy}{dx} = 2\cos(2\sin^{-1}x)$

$$(1 - x^{2})\left(\frac{dy}{dx}\right)^{2} = 4 \cdot \cos^{2}(2\sin^{-1}x) = 4[1 - \sin^{2}(2\sin^{-1}x)]$$
$$(1 - x^{2})\left(\frac{dy}{dx}\right)^{2} = 4[1 - y^{2}]$$

Again differentiate

$$(1-x^{2})2 \cdot \frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx}\right)^{2}(-2x) = -8y\frac{dy}{dx}$$

Divide by $2\frac{dy}{dx}$

$$(1-x^{2})\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + 4y = 0$$

4. Show that, for a positive integer n, the coefficient of x^k ($0 \le K \le n$) in the expansion of

$$1 + (1 + x) + (1 + x)^2 + \dots + (1 + x)^n is^{n+1}C_{n-k}$$

A.
$$S = \frac{1 - (1 + x)^{n+1}}{1 - (1 + x)} = \frac{(1 + x)^{n+1} - 1}{x}$$

Coefficient of
$$x^{k}$$
 in $\frac{(1+x)^{n+1}}{x} - \frac{1}{x}$ = Coefficient of x^{k+1} in $(1+x)^{n+1} = {n+1 \choose k+1} = {n+1 \choose k+1}$

5. If m, n be integers, then find the value of $\int_{-\pi}^{\pi} (\cos mx - \sin nx)^2 dx$

A.
$$I = \int_{-\pi}^{\pi} (\cos^2 mx + \sin^2 nx - 2\sin nx \cdot \cos mx) dx$$
$$= \int_{-\pi}^{\pi} \cos^2 mx dx + \int_{-\pi}^{\pi} \sin^2 nx \cdot dx - 2 \int_{-\pi}^{\pi} \sin nx \cdot \cos mx \cdot dx$$
$$= 2 \int_{0}^{\pi} \cos^2 mx \cdot dx + 2 \int_{0}^{\pi} \sin^2 nx \cdot dx - 0 \qquad (Odd \dots)$$
$$= 2 \int_{0}^{\pi} (1 + \cos 2mx) dx + \int_{0}^{\pi} (1 - \cos 2nx) dx$$
$$= \pi + \frac{1}{2m} (\sin 2mx)_{0}^{\pi} + \pi - \frac{1}{2n} (\sin 2nx)_{0}^{\pi}$$
$$= \pi + \pi + \frac{1}{2m} (0 - 0) - \frac{1}{2n} (0 - 0)$$
$$= 2\pi$$

6. Find the angle subtended by the double ordinate of length 2a of the parabola $y^2 = ax$ at its vertex.

A.
$$y^2 = ax, a^2 = ax, a = x$$
 [put y = a]
A (a, a), B(a, -a)
Slope OA = $\frac{a}{a} = 1$
Slope of OB = $\frac{-a}{a} = -1$
Ans. = $\frac{\pi}{2}$

$$Lt_{x \to a} \frac{x^{2} f(a) - a^{2} f(x)}{x - a}$$
A.
$$Lt_{x \to a} \frac{x^{2} f(a) - a^{2} f(x)}{x - a}, \frac{0}{0} \text{ form by LH}$$

$$= Lt_{x \to a} \frac{2x f(a) - a^{2} f^{1}(x)}{1}$$

$$= 2af(a) - a^{2} f^{1}(a)$$

8. Find the values of 'a' for which the expression $x^2 - (3a - 1)x + 2a^2 + 2a - 11$ is always positve.

A.
$$x^{2}-(3a-1)x + 2a^{2}+2a-11 > 0$$

D < 0
 $(3a-1)^{2}-4(2a^{2}+2a-11) < 0$
 $9a^{2}-6a+1-8a^{2}-8a+44 < 0$
 $a^{2}-14a+45 < 0$
 $(a-9)(a-5) < 0$
 $5 < a < 9$

9. Find the sum of the first n terms of the series $0.2 + 0.22 + 0.222 + \dots$

A.
$$S = \frac{2}{9} [0.9 + 0.99 + 0.999 + \dots]$$
$$= \frac{2}{9} [(1 - 0.1) + (1 - 0.01) + (1 - 0.001) \dots]$$
$$= \frac{2}{9} [n - (0.1 + 0.01 \dots + n \text{ terms})]$$

$$= \frac{2}{9}n - \frac{2}{9}\frac{(0.1)[1 - (0.1)^n]}{[1 - (0.1)]}$$
$$\frac{2}{9}n - \frac{2}{9}\frac{(0.1)}{(0.9)}[1 - (0.1)^n]$$
$$\frac{2}{9}n - \frac{2}{81} + \frac{2}{81}(0.1)^n$$

- 10. The equation to the pairs of opposite sides of a parallelogram are $x^2 5x + 6 = 0$ and $y^2 6y + 5$. Find the equations of its diagonals.
 - **A.** x = 2(i)
 - x=3.....(ii)
 - y = 1 (iii)

$$y = 5 \dots (iv)$$

A (2, 1), B (3, 1), C (3, 5), D(2, 5)

Equation of AC

$$\frac{x-2}{3-2} = \frac{y-1}{5-1}, \quad x-2 = \frac{y-1}{4}$$

$$4x-8 = y-1, \quad 4x-y-7 = 0$$
Equation of BD
$$\frac{x-3}{2-3} = \frac{y-1}{5-1}$$

$$x-3 = y-1$$

$$\frac{x-3}{-1} = \frac{y-1}{4}, -4x + 12 = y - 1$$

4x + y - 13 = 0